Skip to main content

Advertisement

Log in

Expression of miR-31-5p affects growth, migration and invasiveness of papillary thyroid cancer cells

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In this study, we evaluated the biological role of miRNA-31-5p in papillary thyroid cancer (PTC).

Methods

By using the real-time PCR, we measured miRNA-31-5p expression levels in 25 PTC tissues and in two human PTC cell lines (K1 and TPC-1). Then, K1 cells were transiently transfected with mirVana inhibitor or mirVana mimic to miRNA-31-5-p. Cell proliferation was determined by MTT and colony formation assays. The in vitro metastatic ability of thyroid cancer cells was evaluated by adhesion, migration and invasion assays. Epithelial mesenchymal transition (EMT) and Hippo pathway related gene and protein levels were evaluated by using the TaqMan™ Gene Expression Assays and western blot analysis, respectively.

Results

We found a significant increase of miR-31-5-p expression in tumor tissue and in K1 cells harboring the BRAF p.V600E mutation. Knockdown of miR-31-5p determined a reduction of cell proliferation, associated with a significant decrease in cell adhesion, migration and invasion properties. A downregulation of EMT markers and YAP/β-catenin axis was also observed.

Conclusions

Our findings suggest that miRNA-31-5p acts as oncogenic miRNA in human thyrocytes and its overexpression may be involved in the BRAF-related tumorigenesis in PTCs, providing new understanding into its pathological role in PTC progression and invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Bulotta, M. Celano, G. Costante, D. Russo, Novel therapeutic options for radioiodine-refractory thyroid cancer: redifferentiation and beyond. Curr. Opin. Oncol. 32(1), 13–19 (2020). https://doi.org/10.1097/CCO.0000000000000593

    Article  CAS  PubMed  Google Scholar 

  2. R. Niciporuka, J. Nazarovs, A. Ozolins, Z. Narbuts, E. Miklasevics, J. Gardovskis. Can we predict differentiated thyroid cancer behavior? role of genetic and molecular markers. Medicina (Kaunas, Lithuania) 57(10), 1131 (2021). https://doi.org/10.3390/medicina57101131.

  3. M. Rogucki, A. Buczynska, A.J. Kretowski, A. Poplawska-Kita, The Importance of miRNA in the Diagnosis and Prognosis of Papillary Thyroid Cancer. J. Clin. Med. 10(20), 4738 (2021). https://doi.org/10.3390/jcm10204738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Hussain, Micro-RNAs (miRNAs): Genomic Organisation, Biogenesis and Mode of Action. Cell. Tissue Res. 349, 405–413 (2012). https://doi.org/10.1007/s00441-012-1438-0

    Article  CAS  Google Scholar 

  5. C.R. Lima, C.C. Gomes, M.F. Santos, Role of microRNAs in endocrine cancer metastasis. Mol. Cell. Endocrinol. 456, 62–75 (2017). https://doi.org/10.1016/j.mce.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  6. H. Shakib, S. Rajabi, M.H. Dehghan, F.J. Mashayekhi, N. Safari-Alighiarloo, M. Hedayati, Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 66, 435–455 (2019). https://doi.org/10.1007/s12020-019-02030-8

    Article  CAS  PubMed  Google Scholar 

  7. Y. Sun, S. Yu, Y. Liu, F. Wang, Y. Liu, H. Xiao, Expression of miRNAs in Papillary Thyroid Carcinomas Is Associated with BRAF Mutation and Clinicopathological Features in Chinese Patients. Int. J. Endocrinol. 2013, 128735 (2013). https://doi.org/10.1155/2013/128735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Papaioannou, A.G. Chorti, A. Chatzikyriakidou, K. Giannoulis, S. Bakkar, T.S. Papavramidis, MicroRNAs in Papillary Thyroid Cancer: What Is New in Diagnosis and Treatment. Front. Oncol. 11, 755097 (2022). https://doi.org/10.3389/fonc.2021.755097

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. Celano, F. Rosignolo, V. Maggisano, V. Pecce, M. Iannone, D. Russo, S. Bulotta, MicroRNAs as Biomarkers in Thyroid Carcinoma. Int. J. Genomics. 2017, 6496570 (2017). https://doi.org/10.1155/2017/6496570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. Maggisano, F. Capriglione, A. Verrienti, M. Celano, A. Gagliardi, S. Bulotta, M. Sponziello, C. Mio, V. Pecce, C. Durante, G. Damante, D. Russo, Identification of Exosomal microRNAs and Their Targets in Papillary Thyroid Cancer Cells. Biomedicines 10(5), 961 (2022). https://doi.org/10.3390/biomedicines10050961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Wang, B.G. Liu, C.X. Zhou, MicroRNA-31 inhibits papillary thyroid carcinoma cell biological progression by directly targeting SOX11 and regulating epithelial-to-mesenchymal transition, ERK and Akt signaling pathways. Eur. Rev. Med. Pharmacol. Sci. 23, 5863–5873 (2019). https://doi.org/10.26355/eurrev_201907_18329

    Article  CAS  PubMed  Google Scholar 

  12. D. Yi, D. Zhang, J. He, Long non-coding RNA LIFR-AS1 suppressed the proliferation, angiogenesis, migration and invasion of papillary thyroid cancer cells via the miR-31-5p/SIDT2 axis. Cell. Cycle 20, 2619–2637 (2021). https://doi.org/10.1080/15384101.2021.1995129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R.M. Tuttle, B. Haugen, N.D. Perrier, Updated American Joint Committee on Cancer/Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What Changed and Why? Thyroid 27(6), 751–756 (2017). https://doi.org/10.1089/thy.2017.0102

    Article  PubMed  PubMed Central  Google Scholar 

  14. B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26, 1–133 (2016). https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  15. N. Passon, E. Bregant, M. Sponziello, M. Dima, F. Rosignolo, C. Durante, M. Celano, D. Russo, S. Filetti, G. Damante, Somatic amplifications and deletions in genome of papillary thyroid carcinomas. Endocrine 50, 453–464 (2015). https://doi.org/10.1007/s12020-015-0592-z

    Article  CAS  PubMed  Google Scholar 

  16. R.E. Schweppe, J.P. Klopper, C. Korch, U. Pugazhenthi, M. Benezra, J.A. Knauf, J.A. Fagin, L.A. Marlow, J.A. Copland, R.C. Smallridge, B.R. Haugen, Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J. Clin. Endocrinol. Metab. 93, 4331–4341 (2008). https://doi.org/10.1210/jc.2008-1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Bairoch, The Cellosaurus, a Cell-Line Knowledge Resource. J. Biomol. Tech. 29(2), 25–38 (2018). https://doi.org/10.7171/jbt.18-2902-002

    Article  PubMed  PubMed Central  Google Scholar 

  18. V. Maggisano, M. Celano, S.M. Lepore, M. Sponziello, F. Rosignolo, V. Pecce, A. Verrienti, F. Baldan, C. Mio, L. Allegri, M. Maranghi, R. Falcone, G. Damante, D. Russo, S. Bulotta, Human telomerase reverse transcriptase in papillary thyroid cancer: gene expression, effects of silencing and regulation by BET inhibitors in thyroid cancer cells. Endocrine 63, 545–553 (2019). https://doi.org/10.1007/s12020-018-01836-2

    Article  CAS  PubMed  Google Scholar 

  19. K.J. Livak, S.J. Flood, J. Marmaro, W. Giusti, K. Deetz, Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362 (1995). https://doi.org/10.1101/gr.4.6.357

    Article  CAS  PubMed  Google Scholar 

  20. M. Celano, V. Maggisano, S. Bulotta, L. Allegri, V. Pecce, L. Abballe, G. Damante, D. Russo, Quercetin improves the effects of sorafenib on growth and migration of thyroid cancer cells. Endocrine 67, 496–498 (2020). https://doi.org/10.1007/s12020-019-02140-3

    Article  CAS  PubMed  Google Scholar 

  21. S. Borowicz, M. Van Scoyk, S. Avasarala, M.K.K. Rathinam, J. Tauler, R.K. Bikkavilli, R.A. Winn, The soft agar colony formation assay. J. Vis. Exp. 92, e51998 (2014). https://doi.org/10.3791/51998

    Article  CAS  Google Scholar 

  22. S. Bulotta, M.V. Ierardi, J. Maiuolo, M.G. Cattaneo, A. Cerullo, L.M. Vicentini, N. Borgese, Basal nitric oxide release attenuates cell migration of HeLa and endothelial cells. Biochem. Biophys. Res. Commun. 386, 744e749 (2009). https://doi.org/10.1016/j.bbrc.2009.06.118

    Article  CAS  Google Scholar 

  23. M. D’Agostino, P. Voce, M. Celano, M. Sponziello, S. Moretti, V. Maggisano, A. Verrienti, C. Durante, S. Filetti, E. Puxeddu, D. Russo, Sunitinib exerts only limited effects on the proliferation and differentiation of anaplastic thyroid cancer cells. Thyroid 22, 138–144 (2012). https://doi.org/10.1089/thy.2011.0060

    Article  CAS  PubMed  Google Scholar 

  24. S. Bulotta, A. Cerullo, R. Barsacchi, C. De Palma, D. Rotiroti, E. Clementi, N. Borgese, Endothelial nitric oxide synthase is segregated from caveolin-1 and localizes to the leading edge of migrating cells. Exp. Cell Res. 312(6), 877–889 (2006). https://doi.org/10.1016/j.yexcr.2005.12.014

    Article  CAS  PubMed  Google Scholar 

  25. N. Mastronikolis, E. Tsiambas, D. Roukas, P. Fotiades, A. Chrysovergis, V. Papanikolaou, E. Kyrodimos, S. Mastronikoli, A. Niotis, V. Ragos, Micro-RNAs signatures in papillary thyroid carcinoma. J. Buon. 25(5), 2144–2146 (2020)

    PubMed  Google Scholar 

  26. X. Chen, L. Zhong, X. Li, W. Liu, Y. Zhao, J. Li, Down-regulation of microRNA-31-5p inhibits proliferation and invasion of osteosarcoma cells through Wnt/β-catenin signaling pathway by enhancing AXIN1. Exp. Mol. Pathol. 108, 32–41 (2019). https://doi.org/10.1016/j.yexmp.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  27. Z. Lu, Q. He, J. Liang, W. Li, Q. Su, Z. Chen, Q. Wan, X. Zhou, L. Cao, J. Sun, Y. Wu, L. Liu, X. Wu, J. Hou, K. Lian, A. Wang, miR-31-5p Is a Potential Circulating Biomarker and Therapeutic Target for Oral Cancer. Mol. Ther. Nucleic Acids 16, 471–480 (2019). https://doi.org/10.1016/j.omtn.2019.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Y.L. Du, Y. Liang, G.Q. Shi, Y. Cao, J. Qiu, L. Yuan, Z. Yong, L. Liu, J. Li, LINC00689 participates in proliferation, chemoresistance and metastasis via miR-31-5p/YAP/beta-catenin axis in colorectal cancer. Exp. Cell. Res. 395, 112176 (2020). https://doi.org/10.1016/j.yexcr.2020.112176

    Article  CAS  PubMed  Google Scholar 

  29. F. Song, Z. Xuan, X. Yang, X. Ye, Z. Pan, Q. Fang, Identification of key microRNAs and hub genes in non-small-cell lung cancer using integrative bioinformatics and functional analyses. J. Cell. Biochem. 121, 2690–2703 (2020). https://doi.org/10.1002/jcb.29489

    Article  CAS  PubMed  Google Scholar 

  30. H.G. Vuong, A.M.A. Altibi, U.N.P. Duong, L. Hassell, Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-A meta-analysis. Clin. Endocrinol. (Oxf.). 87, 411–417 (2017). https://doi.org/10.1111/cen.13413

    Article  CAS  PubMed  Google Scholar 

  31. V. Vasko, A.V. Espinosa, W. Scouten, H. He, H. Auer, S. Liyanarachchi, A. Larin, V. Savchenko, G.L. Francis, A. de la Chapelle, M. Saji, M.D. Ringel, Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc. Natl Acad. Sci. USA. 104, 2803–2808 (2007). https://doi.org/10.1073/pnas.0610733104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P. Baquero, E. Jimenez-Mora, A. Santos, M. Lasa, A. Chiloeches, TGF beta induces epithelial-mesenchymal transition of thyroid cancer cells by both the BRAF/MEK/ERK and Src/FAK pathways. Mol. Carcinog. 55, 1639–1654 (2016). https://doi.org/10.1002/mc.22415

    Article  CAS  PubMed  Google Scholar 

  33. M. Sponziello, F. Rosignolo, M. Celano, V. Maggisano, V. Pecce, R.F. De Rose, G.E. Lombardo, C. Durante, S. Filetti, G. Damante, D. Russo, S. Bulotta, Fibronectin-1 expression is increased in aggressive thyroid cancer and favors the migration and invasion of cancer cells. Mol. Cell. Endocrinol. 431, 123–132 (2016). https://doi.org/10.1016/j.mce.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  34. S. Xia, C. Wang, E.L. Postma, Y. Yang, X. Ni, W. Zhan, Fibronectin 1 promotes migration and invasion of papillary thyroid cancer and predicts papillary thyroid cancer lymph node metastasis. Onco Targets Ther. 10, 1743–1755 (2017). https://doi.org/10.2147/OTT.S122009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Y. Lei, L. Chen, G. Zhang, A. Shan, C. Ye, B. Liang, J. Sun, X. Liao, C. Zhu, Y. Chen, J. Wang, E. Zhang, L. Deng, MicroRNAs target the Wnt/betacatenin signaling pathway to regulate epithelial mesenchymal transition in cancer (Review). Oncol. Rep. 44, 1299–1313 (2020). https://doi.org/10.3892/or.2020.7703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. B. Mi, Q. Li, T. Li, G. Liu, J. Sai, High miR-31-5p expression promotes colon adenocarcinoma progression by targeting TNS1. Aging (Albany NY) 12, 7480–7490 (2020). https://doi.org/10.18632/aging.103096

    Article  CAS  PubMed  Google Scholar 

  37. I. Akrida, V. Bravou, H. Papadaki, The deadly cross-talk between Hippo pathway and epithelial-mesenchymal transition (EMT) in cancer. Mol. Biol. Rep. 49(10), 10065–10076 (2022). https://doi.org/10.1007/s11033-022-07590-z

    Article  CAS  PubMed  Google Scholar 

  38. T. Pei, Y. Li, J. Wang, H. Wang, Y. Liang, H. Shi, B. Sun, D. Yin, J. Sun, R. Song, S. Pan, Y. Sun, H. Jiang, T. Zheng, L. Liu, YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget 6, 17206–17220 (2015). https://doi.org/10.18632/oncotarget.4043

    Article  PubMed  PubMed Central  Google Scholar 

  39. S.E. Hiemer, L. Zhang, V.K. Kartha, T.S. Packer, M. Almershed, V. Noonan, M. Kukuruzinska, M.V. Bais, S. Monti, X. Varelas, A YAP/TAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell Carcinoma. Mol. Cancer Res. 13, 957–968 (2015). https://doi.org/10.1158/1541-7786.MCR-14-0580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. W. Zhang, Y. Gao, F. Li, X. Tong, Y. Ren, X. Han, S. Yao, F. Long, Z. Yang, H. Fan, L. Zhang, H. Ji, YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin. Cancer Res. 75, 4450–4457 (2015). https://doi.org/10.1158/0008-5472.CAN-14-3396

    Article  CAS  PubMed  Google Scholar 

  41. M. Celano, C. Mignogna, F. Rosignolo, M. Sponziello, M. Iannone, S.M. Lepore, G.E. Lombardo, V. Maggisano, A. Verrienti, S. Bulotta, C. Durante, C. Di Loreto, G. Damante, D. Russo, Expression of YAP1 in aggressive thyroid cancer. Endocrine 59(1), 209–212 (2018). https://doi.org/10.1007/s12020-017-1240-6

    Article  CAS  PubMed  Google Scholar 

  42. Z. Liu, W. Zeng, Y. Maimaiti, J. Ming, Y. Guo, Y. Liu, C. Liu, T. Huang, High Expression of Yes-activated Protein-1 in Papillary Thyroid Carcinoma Correlates With Poor Prognosis. Appl. Immunohistochem. Mol. Morphol. 27(1), 59–64 (2019). https://doi.org/10.1097/PAI.0000000000000544.

    Article  CAS  PubMed  Google Scholar 

  43. M. Wang, M. Dai, D. Wang, W. Xiong, Z. Zeng, C. Guo, The regulatory networks of the Hippo signaling pathway in cancer development. J. Cancer 12, 6216–6230 (2021). https://doi.org/10.7150/jca.62402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. P. Ma, J. Han, Overexpression of miR-100-5p inhibits papillary thyroid cancer progression via targeting FZD8. Open Med. (Wars.) 17(1), 1172–1182 (2022). https://doi.org/10.1515/med-2022-0490

    Article  CAS  PubMed  Google Scholar 

  45. B. Basu, M.K. Ghosh, Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. Biochim. Biophys. Acta Mol. Cell. Res. 1869, 119261 (2022). https://doi.org/10.1016/j.bbamcr.2022.119261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was financially supported by the Department of Health Sciences, University of Catanzaro “Magna Græcia”.

Funding

This study was funded by grants from the Italian Ministry of Universities and Research, PRIN2017EKMFTN_003.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, V.M., F.C., and D.R.; Investigation, V.M., F.C., A.V., and M.C.; Data curation, A.V., M.S., V.P., M.C.; Writing-original draft preparation, V.M., S.B., and D.R.; Writing-review and editing, C.D., S.B., and D.R.; Supervision, C.D., D.R., and S.B. All authors have read and agreed to the published version of the paper.

Corresponding author

Correspondence to Stefania Bulotta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This study was conducted according to guidelines of the Declaration of Helsinki and approved by the ethics committee of Sapienza University of Rome (protocol code 1184/17 and date of approval 21/12/2017).

Consent for publication

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggisano, V., Capriglione, F., Verrienti, A. et al. Expression of miR-31-5p affects growth, migration and invasiveness of papillary thyroid cancer cells. Endocrine 79, 517–526 (2023). https://doi.org/10.1007/s12020-022-03267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03267-6

Keywords

Navigation