Skip to main content

Advertisement

Log in

Secondary diabetes mellitus due to primary aldosteronism

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Primary aldosteronism (PA) and diabetes mellitus (DM) are clinical conditions that increase cardiovascular risk. Approximately one in five patients with PA have DM. Nevertheless, the pathophysiology linking these two entities is not entirely understood. In addition, the majority of patients with PA have glucocorticoid co-secretion, which is associated with increased risk of impaired glucose homeostasis. In the present review, we aim to comprehensively discuss all the available research data concerning the interplay between mineralocorticoid excess and glucose metabolism, with separate analysis of the sequalae in muscle, adipose tissue, liver and pancreas. Aldosterone binds both mineralocorticoid and glucocorticoid receptors and amplifies tissue glucocorticoid activity, via 11-β-hydroxysteroid dehydrogenase type 1 stimulation. A clear classification of the molecular events as per specific receptor in insulin-sensitive tissues is impossible, while their synergistic interaction is plausible. Furthermore, aldosterone induces oxidative stress and inflammation, perturbs adipokine expression, thermogenesis and lipogenesis in adipose tissue, and increases hepatic steatosis. In pancreas, enhanced oxidative stress and inflammation of beta cells, predominantly upon glucocorticoid receptor activation, impair insulin secretion. No causality between hypokalemia and impaired insulin response is yet proven; in contrast, hypokalemia appears to be implicated with insulin resistance and hepatic steatosis. The superior efficacy of adrenalectomy in ameliorating glucose metabolism vs. mineralocorticoid receptor antagonists in clinical studies highlights the contribution of non-mineralocorticoid receptor-mediated mechanisms in the pathophysiologic process. The exact role of hypokalemia, the mechanisms linking mineralocorticoid excess with hepatic steatosis, and possible disease-modifying role of pioglitazone warrant further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 1889–1916 (2016)

    Article  CAS  Google Scholar 

  2. J.W. Conn, Hypertension, the potassium ion and impaired carbohydrate tolerance. N. Eng. J. Med. 273, 1135–1143 (1965)

    Article  CAS  Google Scholar 

  3. G. Hanslik, H. Wallaschofski, A. Dietz, A. Riester, M. Reincke, B. Allolio et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn’s Registry. Eur. J. Endocrinol. 173, 665–675 (2015)

    Article  CAS  Google Scholar 

  4. M.K. Kwak, J.Y. Lee, B.J. Kim, S.H. Lee, J.M. Koh, Effects of primary aldosteronism and different therapeutic modalities on glucose metabolism. J. Clin. Med. (2019). https://doi.org/10.3390/jcm8122194

  5. Y. Akehi, T. Yanase, R. Motonaga, H. Umakoshi, M. Tsuiki, Y. Takeda et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: a large, multicenter cohort study in Japan. Diabetes Care 42, 938–945 (2019)

    Article  CAS  Google Scholar 

  6. M. Reincke, C. Meisinger, R. Holle, M. Quinkler, S. Hahner, F. Beuschlein et al. Is primary aldosteronism associated with diabetes mellitus? Results of the German Conn’s registry. Horm. Metab. Res. 42, 435–439 (2010)

    Article  CAS  Google Scholar 

  7. C. Catena, R. Lapenna, S. Baroselli, E. Nadalini, G.L. Colussi, M. Novello et al. Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J. Clin. Endocrinol. Metab. 91, 3457–3463 (2006)

    Article  CAS  Google Scholar 

  8. M. Haluzik, G.S. Sindelka, J. Widimsky, M. Prazny, T. Zelinka, J.S. Skrha, Serum leptin levels in patients with primary hyperaldosteronism before and after treatment: relationships to insulin sensitivity. J. Hum. Hypertens. 16, 41–45 (2002)

    Article  CAS  Google Scholar 

  9. E. Fischer, C. Adolf, A. Pallauf, C. Then, M. Bidlingmaier, F. Beuschlein et al. Aldosterone excess impairs first phase insulin secretion in primary aldosteronism. J. Clin. Endocrinol. Metab. 9, 2513–2520 (2013)

    Article  Google Scholar 

  10. M. Han, X. Cao, C. Zhao, L. Yang, N. Yin, P. Shen, et al. Assessment of glycometabolism impairment and glucose variability using flash glucose monitoring system in patients with adrenal diseases. Front. Endocrinol. (2020). https://doi.org/10.3389/fendo.2020.544752

  11. W. Chen, F. Li, C. He, Y. Zhu, W. Tan, Elevated prevalence of abnormal glucose metabolism in patients with primary aldosteronism: a meta-analysis. Ir. J. Med. Sci. 183, 283–291 (2014)

    Article  CAS  Google Scholar 

  12. S. Monticone, F. D’Ascenzo, C. Moretti, T.A. Williams, F. Veglio, F. Gaita et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018)

    Article  CAS  Google Scholar 

  13. J. Widimsky, B. Strauch, J. Skrha, Can primary hyperaldosteronism be considered as a specific form of diabetes mellitus? Physiol. Res. 50, 603–607 (2001)

    Google Scholar 

  14. C.H. Tsai, X.M. Wu, C.W. Liao, Z.W. Chen, C.T. Pan, Y.Y. Chang et al. Diabetes mellitus is associated with worse baseline and less post-treatment recovery of arterial stiffness in patients with primary aldosteronism. Ther. Adv. Chronic Dis. 13, 1–14 (2022)

    Article  Google Scholar 

  15. G. Giacchetti, V. Ronconi, F. Turchi, L. Agostinelli, F. Mantero, S. Rilli et al. Aldosterone as a key mediator of the cardiometabolic syndrome in primary aldosteronism: an observational study. J. Hypertens. 25, 177–186 (2007)

    Article  CAS  Google Scholar 

  16. W. Arlt, K. Lang, A.J. Sitch, A.S. Dietz, Y. Rhayem, I. Bancos, et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight (2017). https://doi.org/10.1172/jci.insight.93136

  17. L. Handgriff, C. Adolf, D.A. Heinrich, L. Braun, N. Nirschl, L. Sturm et al. The impact of glucocorticoid co-secretion in primary aldosteronism on thyroid autoantibody titers during the course of disease. Horm. Metab. 52, 404–411 (2020)

    Article  CAS  Google Scholar 

  18. J. Gerards, D.A. Heinrich, C. Adolf, C. Meisinger, W. Rathmann, L. Sturm et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol cosecretion. J. Clin. Endocrinol. Metab. 104, 3192–3202 (2019)

    Article  Google Scholar 

  19. D. Watanabe, M. Yatabe, A. Ichihara, Evaluation of insulin sensitivity and secretion in primary aldosteronism. Clin. Exp. Hypertens. 38, 613–617 (2016)

    Article  CAS  Google Scholar 

  20. G.L. Colussi, C. Catena, R. Lapenna, E. Nadalini, A. Chiuch, L.A. Sechi, Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients. Diabetes Care 30, 2349–2354 (2007)

    Article  CAS  Google Scholar 

  21. E.M. Freel, I.K. Tsorlalis, J.D. Lewsey, R. Latini, A.P. Maggioni, S. Solomon et al. Aldosterone status associated with insulin resistance in patients with heart failure—data from the ALOFT study. Heart 95, 1920–1924 (2009)

    Article  CAS  Google Scholar 

  22. T.L. Goodfriend, B.M. Egan, D.E. Kelley, Plasma aldlosterone, plasma lipoproteins, obesity and insulin resistance in humans. Prostaglandins, Leykot. Essent. Fat. Acids 60, 401–405 (1999)

    Article  CAS  Google Scholar 

  23. E. Kumagai, H. Adachi, D.R. Jacobs, Y. Hirai, M. Enomoto, A. Fukami et al. Plasma aldosterone levels and development of insulin resistance: prospective study in a general population. Hypertension 58, 1043–1048 (2011)

    Article  CAS  Google Scholar 

  24. D. Petrasek, G. Jensen, M. Tuck, N. Stern, In vitro effects of insulin on aldosterone production in rat zone glomerulosa cells. Life Sci. 50, 1781–1787 (1992)

    Article  CAS  Google Scholar 

  25. G. Giacchetti, E. Faloia, B. Mariniello, C. Sardu, C. Gatti, M.A. Camilloni et al. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am. J. Hypertens. 15, 381–388 (2002)

    Article  CAS  Google Scholar 

  26. G. Lastra, A. Whaley-Connell, C. Manrique, J. Habibi, A.A. Gutweiler, L. Appesh, et al. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am. J. Physiol. Endocrinol. Metabol. (2008). https://doi.org/10.1152/ajpendo.00258.2007

  27. J. Selvaraj, S. Sathish, C. Mayilvanan, K. Balasubramanian, Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat. Mol. Cell. Biochem. 372, 113–126 (2013)

    Article  CAS  Google Scholar 

  28. C. Calle, J. Campion, M. Garcia-Arencibia, B. Maestro, N. Davila, Transcriptional inhibition of the human insulin receptor gene by aldosterone. J. Steroid Biochem. Mol. Biol. 84, 543–553 (2003)

    Article  CAS  Google Scholar 

  29. F. Giorgino, A. Almahfouz, L.J. Goodyear, R.J. Smith, Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J. Clin. Investig. 91, 2020–2030 (1993)

    Article  CAS  Google Scholar 

  30. H. Hitomi, H. Kiyomoto, A. Nishiyama, T. Hara, K. Moriwaki, K. Kaifu et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension 50, 750–755 (2007)

    Article  CAS  Google Scholar 

  31. T. Wada, S. Ohshima, E. Fujisawa, D. Koya, H. Tsuneki, T. Sasaoka, Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology 150, 1662–1669 (2009)

    Article  CAS  Google Scholar 

  32. A. Hirata, N. Maeda, A. Hiuge, T. Hibuse, K. Fujita, T. Okada et al. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc. Res. 84, 164–172 (2009)

    Article  CAS  Google Scholar 

  33. P. Li, X.N. Zhang, C.M. Pan, F. Sun, D.L. Zhu, H.D. Song et al. Aldosterone perturbs adiponectin and PAI-1 expression and secretion in 3T3-L1 adipocytes. Horm. Metab. Res. 43, 464–469 (2011)

    Article  CAS  Google Scholar 

  34. F. Fallo, P. della Mea, N. Sonino, C. Bertello, M. Ermani, R. Vettor et al. Adiponectin and insulin sensitivity in primary aldosteronism. Am. J. Hypertens. 20, 855–861 (2007)

    Article  CAS  Google Scholar 

  35. C. Guo, V. Ricchiuti, B.Q. Lian, T.M. Yao, P. Coutinho, J.R. Romero et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-γ, and proinflammatory adipokines. Circulation 117, 2253–2261 (2008)

    Article  CAS  Google Scholar 

  36. T.A. Williams, S. Monticone, R. Urbanet, C. Bertello, G. Giraudo, R. Vettor et al. Genes implicated in insulin resistance are down-regulated in primary aldosteronism patients. Mol. Cell. Endocrinol. 355, 162–168 (2002)

    Article  Google Scholar 

  37. D. Kraus, J. Jager, B. Meier, M. Fasshauer, J. Klein, Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Horm. Metab. Res. 37, 455–459 (2005)

    Article  CAS  Google Scholar 

  38. D.J. Torpy, S.R. Bornstein, W. Taylor, R. Tauchnitz, R.D. Gordon, Leptin levels are suppressed in primary aldosteronism. Horm. Metab. Res. 31, 533–536 (1999)

    Article  CAS  Google Scholar 

  39. J.L. Faulkner, T. Bruder-Nascimento, E.J. Belin De Chantemele, The regulation of aldosterone secretion by leptin: implications in obesity-related cardiovascular disease. Curr. Opin. Nephrol. Hypertens. 27, 63–69 (2018)

    Article  CAS  Google Scholar 

  40. R. Yamashita, T. Kikuchi, Y. Mori, K. Aoki, Y. Kaburagi, K. Yasuda et al. Aldosterone stimulates gene expression of hepatic gluconeogenic enzymes through the glucocorticoid receptor in a manner independent of the protein kinase B cascade. Endocr. J. 51, 243–251 (2004)

    Article  CAS  Google Scholar 

  41. G. Liu, M. Grifman, B. Keily, J.E. Chatterton, F.W. Staal, Q.X. Li, Mineralocorticoid receptor is involved in the regulation of genes responsible for hepatic glucose production. Biochem. Biophys. Res. Commun. 342, 1291–1296 (2006)

    Article  CAS  Google Scholar 

  42. Y. Chen, X. Chen, Q. Chen, C. Yu, Non-alcoholic fatty liver disease and hypokalemia in primary aldosteronism among Chinese population. Front. Endocrinol. (2021). https://doi.org/10.3389/fendo.2021.565714

  43. F. Fallo, A. Dalla Pozza, M. Tecchio, F. Tona, N. Sonino, M. Ermani et al. Nonalcoholic fatty liver disease in primary aldosteronism: a pilot study. Am. J. Hypertens. 23, 2–5 (2010)

    Article  CAS  Google Scholar 

  44. T. Wada, H. Kenmochi, Y. Miyashita, M. Sasaki, M. Ojima, M. Sasahara et al. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology 151, 2040–2049 (2010)

    Article  CAS  Google Scholar 

  45. A. Gamliel-Lazarovich, A. Raz-Pasteur, R. Coleman, S. Keidar, The effects of aldosterone on diet-induced fatty liver formation in male C57BL/6 mice: comparison of adrenalectomy and mineralocorticoid receptor blocker. Eur. J. Gastroenterol. Hepatol. 25, 1086–1092 (2013)

    Article  CAS  Google Scholar 

  46. T. Wada, Y. Miyashita, M. Sasaki, Y. Aruga, Y. Nakamura, Y. Ishii et al. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet. Am. J. Physiol. Endocrinol. Metab. 305, 1415–1425 (2013)

    Article  Google Scholar 

  47. R. Noguchi, H. Yoshiji, Y. Ikenaka, K. Kaji, Y. Shirai, Y. Aihara et al. Selective aldosterone blocker ameliorates the progression of non-alcoholic steatohepatitis in rats. Int. J. Mol. Med. 26, 407–413 (2010)

    CAS  Google Scholar 

  48. G.K. Adler, G.R. Murray, A.F. Turcu, H. Nian, C. Yu, C.C. Solorzano et al. Primary aldosteronism decreases insulin secretion and increases insulin clearance in humans. Hypertension 75, 1251–1259 (2020)

    Article  CAS  Google Scholar 

  49. J.M. Luther, P. Luo, M.T. Kreger, M. Brissova, C. Dai, T.T. Whitfield et al. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia 54, 2152–2163 (2011)

    Article  CAS  Google Scholar 

  50. L.M. Mosso, C.A. Carvajal, A. Maiz, E.H. Ortiz, C.R. Castillo, R.A. Artigas et al. A possible association between primary aldosteronism and a lower b-cell function. J. Hypertens. 25, 2125–2130 (2007)

    Article  CAS  Google Scholar 

  51. Y. Tsurutani, C. Sugisawa, A. Ishida, K. Inoue, J. Saito, M. Omura et al. Aldosterone excess may inhibit insulin secretion: a comparative study on glucose metabolism pre- and post-adrenalectomy in patients with primary aldosteronism. Endocr. J. 64, 339–346 (2017)

    Article  CAS  Google Scholar 

  52. H. Komada, Y. Hirota, A. So, T. Nakamura, Y. Okuno, H. Fukuoka et al. Insulin secretion and sensitivity before and after surgical treatment for aldosterone-producing adenoma. Diabetes Metab. 46, 236–242 (2020)

    Article  CAS  Google Scholar 

  53. F. Chen, J. Liu, Y. Wang, T. Wu, W. Shan, Y. Zhu, et al. Aldosterone induces clonal β-cell failure through glucocorticoid receptor. Sci. Rep. (2015). https://doi.org/10.1038/srep13215

  54. H.M. Jin, D.C. Zhou, H.F. Gu, Q.Y. Qiao, S.K. Fu, X.L. Liu et al. Antioxidant N-acetylcysteine protects pancreatic β-cells against aldosterone-induced oxidative stress and apoptosis in female db/db mice and insulin-producing MIN6 cells. Endocrinology 154, 4068–4077 (2013)

    Article  CAS  Google Scholar 

  55. J.F. Ndisang, A. Jadhav, The heme oxygenase system attenuates pancreatic lesions and improves insulin sensitivity and glucose metabolism in deoxycorticosterone acetate hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R211–R223 (2010)

    Article  CAS  Google Scholar 

  56. H. Kaneto, Y. Kajimoto, J.I. Miyagawa, T.A. Matsuoka, Y. Fujitani, Y. Umayahara et al. Beneficial effects of antioxidants in diabetes possible protection of pancreatic b-cells against glucose toxicity. Diabetes 48, 2398–2406 (1999)

    Article  CAS  Google Scholar 

  57. J.S. Harmon, R. Stein, R.P. Robertson, Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J. Biol. Chem. 280, 11107–11113 (2005)

    Article  CAS  Google Scholar 

  58. D.K. Hagman, L.B. Hays, S.D. Parazzoli, V. Poitout, Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing Mafa expression in isolated rat islets of langerhans. J. Biol. Chem. 280, 32413–32418 (2005)

    Article  CAS  Google Scholar 

  59. R. Goto, T. Kondo, K. Ono, S. Kitano, N. Miyakawa, T. Watanabe, et al. Mineralocorticoid receptor may regulate glucose homeostasis through the induction of interleukin-6 and glucagon-like peptide-1 in pancreatic islets. J. Clin. Med. (2019). https://doi.org/10.3390/jcm8050674

  60. G. Sindelka, J. Widimsky, T. Haas, M. Prazny, J. Hilgertova, J. Skrha, Insulin action in primary hyperaldosteronism before and after surgical or pharmacological treatment. Exp. Clin. Endocrinol. Diabetes 108, 21–25 (2000)

    CAS  Google Scholar 

  61. B. Strauch, J. Widimsky, G. Sindelka, J. Skrha, Does the treatment of primary hyperaldosteronism influence glucose tolerance? Physiol. Res. 52, 503–506 (2003)

    CAS  Google Scholar 

  62. M. Okazaki-Hada, A. Moriya, M. Nagao, S. Oikawa, I. Fukuda, H. Sugihara, Different pathogenesis of glucose intolerance in two subtypes of primary aldosteronism: aldosterone-producing adenoma and idiopathic hyperaldosteronism. J. Diabetes Investig. 11, 1511–1519 (2020)

    Article  CAS  Google Scholar 

  63. Y.F. Lin, K.Y. Peng, C.H. Chang, Y.H. Hu, V.C. Wu, S.D. Chung, Changes in glucose metabolism after adrenalectomy or treatment with a mineralocorticoid receptor antagonist for primary aldosteronism. Endocrinol. Metab. 35, 838–846 (2020)

    Article  CAS  Google Scholar 

  64. V.C. Wu, S.C.J. Chueh, L. Chen, C.H. Chang, Y.H. Hu, Y.H. Lin et al. Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. J. Hypertens. 35, 1698–1708 (2017)

    Article  CAS  Google Scholar 

  65. G.L. Hundemer, G.C. Curhan, N. Yozamp, M. Wang, A. Vaidya, Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 6, 51–59 (2018)

    Article  Google Scholar 

  66. J.V. Zhao, L. Xu, S.L. Lin, C.M. Schooling, Spironolactone and glucose metabolism, a systematic review and meta-analysis of randomized controlled trials. J. Am. Soc. Hypertens. (2016). https://doi.org/10.1016/j.jash.2016.05.013

  67. M. Lin, M. Heizati, L. Wang, M. Nurula, Z. Yang, Z. Wang et al. A systematic review and meta-analysis of effects of spironolactone on blood pressure, glucose, lipids, renal function, fibrosis and inflammation in patients with hypertension and diabetes. Blood Press 30, 145–153 (2021)

    Article  CAS  Google Scholar 

  68. D. Preiss, D.J. van Veldhuisen, N. Sattar, H. Krum, K. Swedberg, H. Shi et al. Eplerenone and new-onset diabetes in patients with mild heart failure: results from the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF). Eur. J. Heart Fail. 14, 909–915 (2012)

    Article  CAS  Google Scholar 

  69. E.M. McMurray, I.R. Wallace, C. Ennis, S.J. Hunter, A.B. Atkinson, P.M. Bell, Effect of eplerenone on insulin action in essential hypertension: a randomised, controlled, crossover study. J. Hum. Hypertens. 28, 575–578 (2014)

    Article  CAS  Google Scholar 

  70. T. Homma, M. Fujisawa, K. Arai, M. Ishii, T. Sada, M. Ikeda, Spironolactone, but not eplerenone, impairs glucose tolerance in a rat model of metabolic syndrome. J. Vet. Med. Sci. 74, 1015–1022 (2012)

    Article  CAS  Google Scholar 

  71. T. Saito, S. Satoh, S. Kawasaki, K. Mukasa, S. Itoh, T. Yamakawa et al. Three patients with adrenal tumors having been treated simply for diabetes mellitus. 54. Biomed. Pharmacother. 54(Suppl 1), 198–202 (2000)

    Article  Google Scholar 

  72. K.J. Ioakim, G.I. Sydney, S.A. Paschou, Glucose metabolism disorders in patients with adrenal gland disorders: pathophysiology and management. Hormones 19, 135–143 (2020)

    Article  Google Scholar 

  73. Y. Kashiwagi, Y. Mizuno, E. Harada, M. Shono, S. Morita, M. Yoshimura et al. Suppression of primary aldosteronism and resistant hypertension by the peroxisome proliferator-activated receptor gamma agonist pioglitazone. Am. J. Med. Sci. 345, 497–500 (2013)

    Article  Google Scholar 

  74. S. Fountoulakis, L. Papanastasiou, N. Voulgaris, T. Kounadi, A. Markou, G.P. Chrousos et al. Salt intake in mineralocorticoid receptor antagonist-treated primary aldosteronism: foe or ally? Hormones 19, 223–232 (2020)

    Article  Google Scholar 

  75. T. Sawamura, S. Karashima, S. Nagase, H. Nambo, E. Shimizu, T. Higashitani, et al. Effect of sodium–glucose cotransporter-2 inhibitors on aldosterone-to-renin ratio in diabetic patients with hypertension: a retrospective observational study. BMC Endocr. Disord. (2020). https://doi.org/10.1186/s12902-020-00656-8

  76. J.B. Buse, D.J. Wexler, A. Tsapas, P. Rossing, G. Mingrone, C. Mathieu et al. 2019 update to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 63, 221–228 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.A.P. and A.V. conceived the idea of this review article. Literature search and data analysis was performed by M.M. and E.C.V. The first draft of the manuscript was written by M.M. and all the authors commented on previous versions of the manuscript. The manuscript was critically revised for intellectual content by S.A.P. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Stavroula A. Paschou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustaki, M., Paschou, S.A., Vakali, E.C. et al. Secondary diabetes mellitus due to primary aldosteronism. Endocrine 79, 17–30 (2023). https://doi.org/10.1007/s12020-022-03168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03168-8

Keywords

Navigation