Skip to main content

Advertisement

Log in

Transcriptome analysis of peripheral blood mononuclear cells in patients with type 1 diabetes mellitus

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by the destruction of pancreatic β cells. The goal of this study was to explore potential biological biomarkers for T1DM.

Methods

Two microarray datasets (GSE55098 and GSE156035) about human peripheral blood mononuclear cells (PBMCs) were systematically extracted from the Gene Expression Omnibus (GEO) database. Common genes were identified from the perspective of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) respectively, and hub genes were identified by least absolute shrinkage and selection operator (LASSO) analysis. We also observed the expression of these hub genes in some common autoimmune diseases and predicted transcription factors (TFs) that might be associated with these genes.

Results

Seven hub genes (DDIT4, ESCO2, SH3BP4, PRICKLE1, EPM2AIP1, KCNJ15 and GRM8) were finally identified. Receiver operating characteristic (ROC) analysis showed that the high expression of these genes could well predict the occurrence of T1DM. Gene set enrichment analysis (GSEA) suggested that most of these hub genes may be mainly involved in the changes of biological functions such as inflammation, infection, immunity, cancer, and apoptosis. Further, compared with the control group, the expression levels of these hub genes also changed in some other autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary biliary cholangitis (PBC), etc., indicating that they might be the common targets of these autoimmune diseases.

Conclusions

The present study identified novel genes associated with T1DM from the PBMCs perspective that might provide new ideas for the early diagnosis, monitoring, evaluation, and prediction of T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data was collected from the GEO database.

References

  1. H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan, C. Stein, A. Basit, J.C.N. Chan, J.C. Mbanya, M.E. Pavkov, A. Ramachandaran, S.H. Wild, S. James, W.H. Herman, P. Zhang, C. Bommer, S. Kuo, E.J. Boyko, D.J. Magliano, (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183(109119). https://doi.org/10.1016/j.diabres.2021.109119

  2. A. Katsarou, S. Gudbjörnsdottir, A. Rawshani, D. Dabelea, E. Bonifacio, B.J. Anderson, L.M. Jacobsen, D.A. Schatz, Å Lernmark, Type 1 diabetes mellitus. Nat. Rev. Dis. Primers. 31, 7016 (2017). https://doi.org/10.1038/nrdp.2017.16

  3. R. Barnett, Type 1 diabetes. Lancet 391(10117), 195 (2018). https://doi.org/10.1016/s0140-6736(18)30024-2

    Article  PubMed  Google Scholar 

  4. J.S. Skyler, Hope vs hype: where are we in type 1 diabetes. Diabetologia 61(3), 509–516 (2018). https://doi.org/10.1007/s00125-017-4530-x

    Article  PubMed  Google Scholar 

  5. L.A. DiMeglio, C. Evans-Molina, R.A. Oram, Type 1 diabetes. Lancet 391(10138), 2449–2462 (2018). https://doi.org/10.1016/s0140-6736(18)31320-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. X. Li, M. Liao, J. Guan, L. Zhou, R. Shen, M. Long, J. Shao, Identification of key genes and pathways in peripheral blood mononuclear cells of type 1 diabetes mellitus by integrated bioinformatics analysis. Diabetes Metab. J. (2022). https://doi.org/10.4093/dmj.2021.0018

  7. P. Sen, E. Kemppainen, M. Orešič, Perspectives on systems modeling of human peripheral blood mononuclear cells. Front. Mol. Biosci. 4, 96 (2017). https://doi.org/10.3389/fmolb.2017.00096

  8. R. Bomprezzi, M. Ringnér, S. Kim, M.L. Bittner, J. Khan, Y. Chen, A. Elkahloun, A. Yu, B. Bielekova, P.S. Meltzer, R. Martin, H.F. McFarland, J.M. Trent, Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum. Mol. Genet 12(17), 2191–2199 (2003). https://doi.org/10.1093/hmg/ddg221

    Article  CAS  PubMed  Google Scholar 

  9. S. Axelsson, M. Faresjö, M. Hedman, J. Ludvigsson, R. Casas, Cryopreserved peripheral blood mononuclear cells are suitable for the assessment of immunological markers in type 1 diabetic children. Cryobiology 57(3), 201–208 (2008). https://doi.org/10.1016/j.cryobiol.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  10. E.C. Kaizer, C.L. Glaser, D. Chaussabel, J. Banchereau, V. Pascual, P.C. White, Gene expression in peripheral blood mononuclear cells from children with diabetes. J. Clin. Endocrinol. Metab. 92(9), 3705–3711 (2007). https://doi.org/10.1210/jc.2007-0979

    Article  CAS  PubMed  Google Scholar 

  11. S.C. Kent, Y. Chen, S.M. Clemmings, V. Viglietta, N.S. Kenyon, C. Ricordi, B. Hering, D.A. Hafler, Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells. J. Immunol. 175(7), 4458–4464 (2005). https://doi.org/10.4049/jimmunol.175.7.4458

    Article  CAS  PubMed  Google Scholar 

  12. P.A. Ott, B.R. Berner, B.A. Herzog, R. Guerkov, N.L. Yonkers, I. Durinovic-Bello, M. Tary-Lehmann, P.V. Lehmann, D.D. Anthony, CD28 costimulation enhances the sensitivity of the ELISPOT assay for detection of antigen-specific memory effector CD4 and CD8 cell populations in human diseases. J. Immunol. Methods 285(2), 223–235 (2004). https://doi.org/10.1016/j.jim.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  13. P. Sen, A.M. Dickens, M.A. López-Bascón, T. Lindeman, E. Kemppainen, S. Lamichhane, T. Rönkkö, J. Ilonen, J. Toppari, R. Veijola, H. Hyöty, T. Hyötyläinen, M. Knip, M. Orešič, Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia 63(5), 1017–1031 (2020). https://doi.org/10.1007/s00125-020-05107-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.T. Leek, W.E. Johnson, H.S. Parker, A.E. Jaffe, J.D. Storey, The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6), 882–883 (2012). https://doi.org/10.1093/bioinformatics/bts034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, G.K. Smyth, limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7), e47 (2015). https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. Yu, L.G. Wang, Y. Han, Q.Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16(5), 284–287 (2012). https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559

  18. D. Szklarczyk, A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, C. von Mering, The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1), D605–d612 (2021). https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  19. P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11), 2498–2504 (2003). https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Engebretsen, J. Bohlin, Statistical predictions with glmnet. Clin. Epigenetics 11(1), 123 (2019). https://doi.org/10.1186/s13148-019-0730-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. A.J. McEligot, V. Poynor, R. Sharma, A. Panangadan, Logistic LASSO Regression for Dietary Intakes and Breast Cancer. Nutrients 12, 9 (2020). https://doi.org/10.3390/nu12092652

  22. O. Fornes, J.A. Castro-Mondragon, A. Khan, R. van der Lee, X. Zhang, P.A. Richmond, B.P. Modi, S. Correard, M. Gheorghe, D. Baranašić, W. Santana-Garcia, G. Tan, J. Chèneby, B. Ballester, F. Parcy, A. Sandelin, B. Lenhard, W.W. Wasserman, A. Mathelier, JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1), D87–d92 (2020). https://doi.org/10.1093/nar/gkz1001

    Article  CAS  PubMed  Google Scholar 

  23. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102(43), 15545–15550 (2005). https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A.S. Santos, E. Cunha-Neto, N.V. Gonfinetti, F.B. Bertonha, P. Brochet, A. Bergon, C.A. Moreira-Filho, C. Chevillard, M.E.R. da Silva, Prevalence of Inflammatory Pathways Over Immuno-Tolerance in Peripheral Blood Mononuclear Cells of Recent-Onset Type 1 Diabetes. Front Immunol 12, 765264 (2021). https://doi.org/10.3389/fimmu.2021.765264

  25. G.S. Eisenbarth, Type 1 diabetes: molecular, cellular and clinical immunology. Adv. Exp. Med. Biol. 552, 306–10 (2004).

  26. Y.J. Lan, N.B. Sam, M.H. Cheng, H.F. Pan, J. Gao, Progranulin as a Potential Therapeutic Target in Immune-Mediated Diseases. J. Inflamm. Res. 14, 6543–146556 (2021). https://doi.org/10.2147/jir.S339254

  27. G. Geng, Z. Zhang, L. Cheng, Identification of a Multi-Long Noncoding RNA Signature for the Diagnosis of Type 1 Diabetes Mellitus. Front. Bioeng. Biotechnol. 8, 553 (2020). https://doi.org/10.3389/fbioe.2020.00553

  28. Y. Gao, R. Zhang, S. Dai, X. Zhang, X. Li, C. Bai, Role of TGF-β/Smad pathway in the transcription of pancreas-specific genes during Beta cell differentiation. Front. Cell Dev. Biol. 7, 351 (2019). https://doi.org/10.3389/fcell.2019.00351

  29. W.P. Miller, C. Yang, M.L. Mihailescu, J.A. Moore, W. Dai, A.J. Barber, M.D. Dennis, Deletion of the Akt/mTORC1 repressor REDD1 prevents visual dysfunction in a rodent model of type 1 diabetes. Diabetes 67(1), 110–119 (2018). https://doi.org/10.2337/db17-0728

    Article  CAS  PubMed  Google Scholar 

  30. G. Wang, Y. Yan, Z. Zheng, T., Zhang The mechanism of hsa-miR-424-5 combining PD-1 through mTORC signaling pathway to stimulate immune effect and participate in Type 1 diabetes. Biosci. Rep. 40, 3 (2020). https://doi.org/10.1042/bsr20193800

  31. Y.M. Kim, D.H. Kim, dRAGging amino acid-mTORC1 signaling by SH3BP4. Mol. Cells 35(1), 1–6 (2013). https://doi.org/10.1007/s10059-013-2249-1

    Article  CAS  PubMed  Google Scholar 

  32. B. Xu, M. Gogol, K. Gaudenz, J.L. Gerton, Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genomics 17, 25 (2016). https://doi.org/10.1186/s12864-015-2354-y

  33. A.M. Daulat, F. Bertucci, S. Audebert, A. Sergé, P. Finetti, E. Josselin, R. Castellano, D. Birnbaum, S. Angers, J.P. Borg, PRICKLE1 contributes to cancer cell dissemination through its interaction with mTORC2. Dev. Cell 37(4), 311–325 (2016). https://doi.org/10.1016/j.devcel.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  34. M. Blandino-Rosano, R. Barbaresso, M. Jimenez-Palomares, M. Bozadjieva N., J.P. Werneck-de-Castro, M. Hatanaka, R.G. Mirmira, N. Sonenberg, M. Liu, M.A. Rüegg, M.N. Hall, E. Bernal-Mizrachi, Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nat. Commun. 8, 16014 (2017). https://doi.org/10.1038/ncomms16014

  35. T. Suto, T. Karonitsch, The immunobiology of mTOR in autoimmunity. J Autoimmun 110, 102373 (2020). https://doi.org/10.1016/j.jaut.2019.102373

  36. C.P. Martins, L.A. New, E.C. O’Connor, D.M. Previte, K.R. Cargill, I.L. Tse, S. Sims-Lucas, J.D. Piganelli, Glycolys is inhibition induces functional and metabolic exhaustion of CD4(+) T cells in Type 1 Diabetes. Front. Immunol. 12, 669456 (2021). https://doi.org/10.3389/fimmu.2021.669456

  37. X. Bi, F. Li, S. Liu, Y. Jin, X. Zhang, T. Yang, Y. Dai, X. Li, A.Z. Zhao, ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J. Clin. Invest 127(5), 1757–1771 (2017). https://doi.org/10.1172/jci87388

    Article  PubMed  PubMed Central  Google Scholar 

  38. K.M. Irvine, P. Gallego, X. An, S.E. Best, G. Thomas, C. Wells, M. Harris, A. Cotterill, R. Thomas, Peripheral blood monocyte gene expression profile clinically stratifies patients with recent-onset type 1 diabetes. Diabetes 61(5), 1281–1290 (2012). https://doi.org/10.2337/db11-1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Turnbull, E. Tiberia, S. Pereira, X. Zhao, N. Pencea, A.L. Wheeler, W.Q. Yu, A. Ivovic, T. Naranian, N. Israelian, A. Draginov, M. Piliguian, P.W. Frankland, P. Wang, C.A. Ackerley, A. Giacca, B.A. Minassian, Deficiency of a glycogen synthase-associated protein, Epm2aip1, causes decreased glycogen synthesis and hepatic insulin resistance. J. Biol. Chem. 288(48), 34627–34637 (2013). https://doi.org/10.1074/jbc.M113.483198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Okamoto, N. Iwasaki, C. Nishimura, K. Doi, E. Noiri, S. Nakamura, M. Takizawa, M. Ogata, R. Fujimaki, N. Grarup, C. Pisinger, K. Borch-Johnsen, T. Lauritzen, A. Sandbaek, T. Hansen, K. Yasuda, H. Osawa, K. Nanjo, T. Kadowaki, M. Kasuga, O. Pedersen, T. Fujita, N. Kamatani, Y. Iwamoto, K. Tokunaga, Identification of KCNJ15 as a susceptibility gene in Asian patients with type 2 diabetes mellitus. Am. J. Hum. Genet 86(1), 54–64 (2010). https://doi.org/10.1016/j.ajhg.2009.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Okamoto, N. Iwasaki, K. Doi, E. Noiri, Y. Iwamoto, Y. Uchigata, T. Fujita, K. Tokunaga, Inhibition of glucose-stimulated insulin secretion by KCNJ15, a newly identified susceptibility gene for type 2 diabetes. Diabetes 61(7), 1734–1741 (2012). https://doi.org/10.2337/db11-1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Z. Hawi, T.D. Cummins, J. Tong, B. Johnson, R. Lau, W. Samarrai, M.A. Bellgrove, The molecular genetic architecture of attention deficit hyperactivity disorder. Mol. Psychiatry 20(3), 289–297 (2015). https://doi.org/10.1038/mp.2014.183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to acknowledge all participants of this study and the technical support provided by the Affiliated Hospital of Jiangsu University.

Funding

This study was funded by the National Natural Science Foundation of China (81870548 and 81570721), the Social Development Project of Jiangsu Province (BE2018692), the Natural Science Foundation of Jiangsu Province, China (BK20191222), the Key project for Medical Education Collaborative Innovation Fund of Jiangsu University (JDY2022005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao Zhong or Guoyue Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, L., Tang, F. et al. Transcriptome analysis of peripheral blood mononuclear cells in patients with type 1 diabetes mellitus. Endocrine 78, 270–279 (2022). https://doi.org/10.1007/s12020-022-03163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03163-z

Keywords

Navigation