Skip to main content

Advertisement

Log in

The genetic polymorphisms of key genes in WNT pathway (LRP5 and AXIN1) was associated with osteoporosis susceptibility in Chinese Han population

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Genetic factors play a critical role in the pathogenesis of osteoporosis. The imbalance of WNT/β-catenin will cause the occurrence of osteoporosis. LRP5 and AXIN1 play an important role in the classical Wnt/β-catenin signaling pathway. Our study was aimed to determine the association between five candidate single nucleotide polymorphisms (SNPs) of LRP5 or AXIN1 and osteoporosis susceptibility in Chinese Han population.

Methods

A total of 599 osteoporosis patients and 599 healthy individuals were recruited for this case-control study. Agena MassARRAY was used to genotype SNPs. The association between SNPs and osteoporosis susceptibility in different genetic models was analyzed by PLINK software. We used false-positive report probability (FPRP) analysis to detect whether the positive results were just chance or noteworthy observations. Multifactor dimension reduction (MDR) was used to analyze the interaction of SNP–SNP in the osteoporosis risk. Finally, haplotype analysis was performed by plink1.07 and Haploview software.

Results

We found that LRP5 rs11228240, AXIN1 rs2301522, and rs9921222 were significantly associated with the osteoporosis susceptibility. The results of subgroup analysis showed that LRP5 rs11228240 (protective factor) and AXIN1 rs2301522 (risk factor) were associated with the susceptibility of osteoporosis among participants who were age >60 years, female or BMI ≤ 24; AXIN1 rs9921222 significantly increased the risk of osteoporosis among participants with BMI ≤ 24. The genotype Ars2301522Crs9921222 could increase the susceptibility of osteoporosis (p = 0.026). The rs11228219LPR5, rs11228240 LPR5, rs2301522AXIN1, and rs9921222AXIN1 four-site model was the best model for predicting the osteoporosis risk (test accuracy = 0.541; CVC = 10/10).

Conclusions

The LRP5-rs11228240, AXIN1-rs2301522, and AXIN1- rs9921222 were associated with osteoporosis susceptibility in Chinese Han population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Levi, M.T. Longaker, Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells 29(4), 576–582 (2011)

    Article  CAS  Google Scholar 

  2. F. Henjes, L. Lourido, C. Ruiz-Romero, J. Fernández-Tajes, J.M. Schwenk, M. Gonzalez-Gonzalez et al. Analysis of autoantibody profiles in osteoarthritis using comprehensive protein array concepts. J. Proteom. Res. 13(11), 5218–5229 (2014)

    Article  CAS  Google Scholar 

  3. M. Okubo, Y. Okada, [Destruction of the articular cartilage in osteoarthritis]. Clin. Calcium 23(12), 1705–1713 (2013)

    CAS  PubMed  Google Scholar 

  4. S. Sampson, A. Botto-van Bemden, D. Aufiero, Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys. Sportsmed. 41(3), 7–18 (2013)

    Article  Google Scholar 

  5. H.W. Deng, M.R. Stegman, K.M. Davies, T. Conway, R.R. Recker, Genetic determination of variation and covariation of peak bone mass at the hip and spine. J. Clin. Densitometr. 2(3), 251–263 (1999)

    Article  CAS  Google Scholar 

  6. S. Otsuru, P.L. Gordon, K. Shimono, R. Jethva, R. Marino, C.L. Phillips et al. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood. 120(9), 1933–1941 (2012)

    Article  CAS  Google Scholar 

  7. M.H. Lim, W.K. Ong, S. Sugii, The current landscape of adipose-derived stem cells in clinical applications. Expert Rev. Mol. Med. 16, e8 (2014)

    Article  Google Scholar 

  8. X. Zhu, W. Bai, H. Zheng, Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res. 9(1), 23 (2021).

    Article  CAS  Google Scholar 

  9. D.P. Kiel, S. Demissie, J. Dupuis, K.L. Lunetta, J.M. Murabito, D. Karasik, Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med. Genet. 8(Suppl 1), S14 (2007)

    Article  Google Scholar 

  10. H.F. Zheng, V. Forgetta, Y.H. Hsu, K. Estrada, A. Rosello-Diez, P.J. Leo et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 526(7571), 112–117 (2015)

    Article  CAS  Google Scholar 

  11. J.B. Richards, F. Rivadeneira, M. Inouye, T.M. Pastinen, N. Soranzo, S.G. Wilson et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371(9623), 1505–1512 (2008)

    Article  CAS  Google Scholar 

  12. L. Tian, H. Xiao, M. Li, X. Wu, Y. Xie, J. Zhou et al. A novel Sprouty4-ERK1/2-Wnt/β-catenin regulatory loop in marrow stromal progenitor cells controls osteogenic and adipogenic differentiation. Metabolism 105, 154189 (2020)

    Article  CAS  Google Scholar 

  13. Y. Wang, U. Singhal, Y. Qiao, T. Kasputis, J.S. Chung, H. Zhao et al. Wnt Signaling Drives Prostate Cancer Bone Metastatic Tropism and Invasion. Transl. Oncol. 13(4), 100747 (2020)

    Article  Google Scholar 

  14. S. Yuan, F. Tao, X. Zhang, Y. Zhang, X. Sun, D. Wu, Role of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer. Biomed Res Int 2020, 9390878 (2020).

    PubMed  PubMed Central  Google Scholar 

  15. Y.J. Zhou, P. Wang, H.Y. Chen, C. Liu, Q.D. Ji, X.T. Yang et al. [Effect of Pulsed Electromagnetic Fields on Osteogenic Differentiation and Wnt/β-catenin Signaling Pathway in Rat Bone Marrow Mesenchymal Stem Cells]. Sichuan da xue xue bao Yi xue ban = Journal of Sichuan University Medical science edition 46(3), 347–353 (2015)

  16. F. Long, Targeting intercellular signals for bone regeneration from bone marrow mesenchymal progenitors. Cell Cycle. 7(14), 2106–2111 (2008)

    Article  CAS  Google Scholar 

  17. A. Kamiński, M. Karasiewicz, A. Bogacz, K. Dziekan, A. Seremak-Mrozikiewicz, B. Czerny, The importance of the Wnt/β-catenin pathway and LRP5 protein in bone metabolism of postmenopausal women. Adv. Clin. Exp. Med. 28(2), 179–184 (2019)

    Article  Google Scholar 

  18. D. Zhang, Z. Ge, X. Ma, L. Zhi, Y. Zhang, X. Wu et al. Genetic association study identified a 20 kb regulatory element in WLS associated with osteoporosis and bone mineral density in Han Chinese. Scientific Rep. 7(1), 13668 (2017)

    Article  Google Scholar 

  19. W.F. Li, S.X. Hou, B. Yu, D. Jin, C. Férec, J.M. Chen, Genetics of osteoporosis: perspectives for personalized medicine. Personalized Med. 7(6), 655–668 (2010)

    Article  CAS  Google Scholar 

  20. H.F. Zheng, J.H. Tobias, E. Duncan, D.M. Evans, J. Eriksson, L. Paternoster et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 8(7), e1002745 (2012)

    Article  CAS  Google Scholar 

  21. U. Styrkarsdottir, G. Thorleifsson, S.A. Gudjonsson, A. Sigurdsson, J.R. Center, S.H. Lee et al. Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nat. Commun. 7, 10129 (2016)

    Article  CAS  Google Scholar 

  22. M.P. Yavropoulou, P. Kollia, D. Chatzidimitriou, S. Samara, L. Skoura, J.G. Yovos, Severe osteoporosis with multiple spontaneous vertebral fractures in a young male carrying triple polymorphisms in the vitamin D receptor, collagen type 1, and low-density lipoprotein receptor-related peptide 5 genes. Hormones. 15(4), 551–556 (2016)

    Article  Google Scholar 

  23. X.Y. Jiang, Y. Chen, L. Xu, X. Li, F.F. Cao, L. Li, et al. Association of LPR5 polymorphism with bone mass density and cholesterol level in population of Chinese Han. Exp. Clin. Endocrinol. Diabetes. 118(6), 388–391 (2010)

    Article  CAS  Google Scholar 

  24. T. Mizuguchi, I. Furuta, Y. Watanabe, K. Tsukamoto, H. Tomita, M. Tsujihata et al. LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J. Hum. Genet. 49(2), 80–86 (2004)

    Article  CAS  Google Scholar 

  25. G.L. Lin, K.D. Hankenson, Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J. Cell Biochem. 112(12), 3491–3501 (2011)

    Article  CAS  Google Scholar 

  26. Y.J. Liu, L. Zhang, C.J. Papasian, H.W. Deng, Genome-wide Association Studies for Osteoporosis: A 2013 Update. J. Bone Metab. 21(2), 99–116 (2014)

    Article  CAS  Google Scholar 

  27. M.A. Rosales-Reynoso, A.M. Saucedo-Sariñana, K.B. Contreras-Díaz, R.M. Márquez-González, P. Barros-Núñez, T.D. Pineda-Razo et al. Genetic polymorphisms in APC, DVL2, and AXIN1 are associated with susceptibility, advanced TNM stage or tumor location in colorectal cancer. Tohoku J. Exp. Med. 249(3), 173–183 (2019)

    Article  Google Scholar 

  28. L.A. Armas, R.R. Recker, Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol. Metab. Clin. N. Am. 41(3), 475–486 (2012)

    Article  CAS  Google Scholar 

  29. C.J. Crandall, V.O. Yildiz, J. Wactawski-Wende, K.C. Johnson, Z. Chen, S.B. Going et al. Postmenopausal weight change and incidence of fracture: post hoc findings from Women’s Health Initiative Observational Study and Clinical Trials. BMJ. 350, h25 (2015)

    Article  Google Scholar 

  30. O. de Matos, D.J. Lopes da Silva, J. Martinez de Oliveira, C. Castelo-Branco, Effect of specific exercise training on bone mineral density in women with postmenopausal osteopenia or osteoporosis. Gynecol. Endocrinol. 25(9), 616–620 (2009)

    Article  Google Scholar 

  31. A.M. Parfitt, Z.H. Han, S. Palnitkar, D.S. Rao, M.S. Shih, D. Nelson, Effects of ethnicity and age or menopause on osteoblast function, bone mineralization, and osteoid accumulation in iliac bone. J. Bone Miner. Res. 12(11), 1864–1873 (1997)

    Article  CAS  Google Scholar 

  32. V. Krishnan, H.U. Bryant, O.A. Macdougald, Regulation of bone mass by Wnt signaling. J. Clin. Investig. 116(5), 1202–1209 (2006)

    Article  CAS  Google Scholar 

  33. J.J. Westendorf, R.A. Kahler, T.M. Schroeder, Wnt signaling in osteoblasts and bone diseases. Gene. 341, 19–39 (2004)

    Article  CAS  Google Scholar 

  34. V.S. Li, S.S. Ng, P.J. Boersema, T.Y. Low, W.R. Karthaus, J.P. Gerlach et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 149(6), 1245–1256 (2012)

    Article  CAS  Google Scholar 

  35. W. Huang, Q. Li, M. Amiry-Moghaddam, M. Hokama, S.H. Sardi, M. Nagao et al. Critical endothelial regulation by LRP5 during retinal vascular development. PloS One 11(3), e0152833 (2016)

    Article  Google Scholar 

  36. C.C. Malbon, Wnt signalling: the case of the ‘missing’ G-protein. Biochem. J. 433(3), e3–e5 (2011)

    Article  CAS  Google Scholar 

  37. G. Haugeberg, R.E. Ørstavik, T. Uhlig, J.A. Falch, J.I. Halse, T.K. Kvien, Comparison of ultrasound and X-ray absorptiometry bone measurements in a case control study of femaler heumatoid arthritis patients and randomly selected subjects in the population. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. Osteoporos Int. 14(4), 312–319 (2003)

    Article  CAS  Google Scholar 

  38. L.Q. Bian, R.Z. Li, Z.Y. Zhang, Y.J. Jin, H.W. Kang, Z.Z. Fang et al. Effects of total bilirubin on the prevalence of osteoporosis in postmenopausal women without potential liver disease. J. Bone Miner. Metab. 31(6), 637–643 (2013)

    Article  CAS  Google Scholar 

  39. S.M. Kweon, D.H. Sohn, J.H. Park, J.H. Koh, E.K. Park, H.N. Lee et al. Male patients with rheumatoid arthritis have an increased risk of osteoporosis: frequency and risk factors. Medicine. 97(24), e11122 (2018)

    Article  Google Scholar 

  40. J. An, H. Yang, Q. Zhang, C. Liu, J. Zhao, L. Zhang et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci.147, 46–58 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all authors for their contributions and supports. We are also grateful to all participants for providing blood samples.

Author contributions

Conceptualization, K.W. and C.Z.; methodology, Y.C.; software, Y.C. and X.H.; data curation, Y.C. and X.H.; writing, review and editing, Y.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Zhang or Kunzheng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to publication

All the authors agreed to publish the manuscript.

Ethics approval and consent to participate

This study was conducted under the standard approved by the the Second Affiliated Hospital of Xi’an Jiaotong University, and conformed to the ethical principles for medical research involving humans of the World Medical Association Declaration of Helsinki. All participants signed informed consent forms before participating in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Hu, X., Zhang, C. et al. The genetic polymorphisms of key genes in WNT pathway (LRP5 and AXIN1) was associated with osteoporosis susceptibility in Chinese Han population. Endocrine 75, 560–574 (2022). https://doi.org/10.1007/s12020-021-02866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02866-z

Keywords

Navigation