Skip to main content

Advertisement

Log in

Inhibition of the RANKL with denosumab has no effect on circulating markers of atherosclerosis in women with postmenopausal osteoporosis: a pilot study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the early effect of denosumab on circulating markers of atherosclerosis in women with postmenopausal osteoporosis.

Methods

Denosumab (60 mg) was administered subcutaneously every 6 months (m) in 27 women (mean age 75 ± 5 years) with postmenopausal osteoporosis and high cardiovascular risk for a total of 24 m. Zoledronic acid was administered in 6 age-matched women as a single intravenous dose. Serum levels of vascular cell adhesion protein 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E and P selectin, CD-40 ligand (CD40L), interleukin-6 (IL-6), matrix metalloproteinase (MMP) 1 and 9, monocyte chemoattractant protein-1 (MCP-1), fibrinogen (FBG), and high sensitivity C-reactive protein (hs-CRP) were measured at baseline, 15 days (d), 2, 6 and 12 m after dosing. In the denosumab group, observation was extended to 24 m as secondary endpoint.

Results

Serum ICAM-1 levels showed significant increase in the zoledronic acid group (+18 ± 0.1%; p < 0.01) at 12 m. In the denosumab group, we observed a significant increase in serum CD40L (+2 ± 0.8%; p < 0.001), MMP-1 (+11 ± 0.4%, p < 0.02), and MMP-9 (+39.4 ± 0.8%, p < 0.01) at 24 m. There was a significant increase in serum FBG and hs-CRP in both groups at 12 m (denosumab:+2.2 ± 0.2% and +50.3 ± 1.6%; zoledronic acid: +9.4 ± 0.1 and +81.8 ± 0.8%; p < 0.01). No significant between-group differences were found.

Conclusions

24-m treatment with denosumab has no effect on the circulating markers of atherosclerosis in women with postmenopausal osteoporosis. Fluctuation of serum ICAM-1, CD40L, MMPs, FBG and hs-CRP can be ascribed to perturbation of immunological mechanisms stimulated by denosumab and zoledronic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The corresponding author will make data and material available upon reasonable request.

References

  1. Z. Szekanecz, H.G. Raterman, Z. Petho, W.F. Lems, Common mechanisms and holistic care in atherosclerosis and osteoporosis. Arthritis Res. Ther. 21(1), 15 (2019). https://doi.org/10.1186/s13075-018-1805-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. L.B. Tanko, C. Christiansen, D.A. Cox, M.J. Geiger, M.A. McNabb, S.R. Cummings, Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res. 20(11), 1912–1920 (2005). https://doi.org/10.1359/JBMR.050711

    Article  Google Scholar 

  3. L.C. Hofbauer, C.C. Brueck, C.M. Shanahan, M. Schoppet, H. Dobnig, Vascular calcification and osteoporosis-from clinical observation towards molecular understanding. Osteoporos. Int. 18(3), 251–259 (2007). https://doi.org/10.1007/s00198-006-0282-z

    Article  CAS  PubMed  Google Scholar 

  4. A.B. Reiss, N. Miyawaki, J. Moon, L.J. Kasselman, I. Voloshyna, R. D’Avino Jr., J. De Leon, CKD, arterial calcification, atherosclerosis and bone health: Inter-relationships and controversies. Atherosclerosis 278, 49–59 (2018). https://doi.org/10.1016/j.atherosclerosis.2018.08.046

    Article  CAS  PubMed  Google Scholar 

  5. M. Wu, C. Rementer, C.M. Giachelli, Vascular calcification: an update on mechanisms and challenges in treatment. Calcif. Tissue Int. 93(4), 365–373 (2013). https://doi.org/10.1007/s00223-013-9712-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Pepe, C. Cipriani, C. Sonato, O. Raimo, F. Biamonte, S. Minisola, Cardiovascular manifestations of primary hyperparathyroidism: a narrative review. Eur. J. Endocrinol. 177(6), R297–R308 (2017). https://doi.org/10.1530/EJE-17-0485

    Article  CAS  PubMed  Google Scholar 

  7. M. Ray, A. Jovanovich, Mineral bone abnormalities and vascular calcifications. Adv. Chronic Kidney Dis. 26(6), 409–416 (2019). https://doi.org/10.1053/j.ackd.2019.09.004

    Article  PubMed  Google Scholar 

  8. L.C. Hofbauer, A.E. Heufelder, Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J. Mol. Med. 79(5-6), 243–253 (2001). https://doi.org/10.1007/s001090100226

    Article  CAS  PubMed  Google Scholar 

  9. A.M. Sattler, M. Schoppet, J.R. Schaefer, L.C. Hofbauer, Novel aspects on RANK ligand and osteoprotegerin in osteoporosis and vascular disease. Calcif. tissue Int. 74(1), 103–106 (2004). https://doi.org/10.1007/s00223-003-0011-y

    Article  CAS  PubMed  Google Scholar 

  10. L. Rochette, A. Meloux, E. Rigal, M. Zeller, Y. Cottin, C. Vergely, The role of osteoprotegerin and its ligands in vascular function. Int. J. Mol. Sci. 20(3) (2019). https://doi.org/10.3390/ijms20030705

  11. H.G. Bone, R.B. Wagman, M.L. Brandi, J.P. Brown, R. Chapurlat, S.R. Cummings, E. Czerwinski, A. Fahrleitner-Pammer, D.L. Kendler, K. Lippuner, J.Y. Reginster, C. Roux, J. Malouf, M.N. Bradley, N.S. Daizadeh, A. Wang, P. Dakin, N. Pannacciulli, D.W. Dempster, S. Papapoulos, 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. lancet Diabetes Endocrinol. 5(7), 513–523 (2017). https://doi.org/10.1016/S2213-8587(17)30138-9

    Article  CAS  PubMed  Google Scholar 

  12. E.L. Simpson, M. Martyn-St James, J. Hamilton, R. Wong, N. Gittoes, P. Selby, S. Davis, Clinical effectiveness of denosumab, raloxifene, romosozumab, and teriparatide for the prevention of osteoporotic fragility fractures: a systematic review and network meta-analysis. Bone 130, 115081 (2020). https://doi.org/10.1016/j.bone.2019.115081

    Article  CAS  PubMed  Google Scholar 

  13. K.C. Sheedy, M.I. Camara, P.M. Camacho, Comparison of the efficacy, adverse effects, and cost of zoledronic acid and denosumab in the treatment of osteoporosis. Endocr. Pract. 21(3), 275–279 (2015). https://doi.org/10.4158/EP14106.OR

    Article  PubMed  Google Scholar 

  14. E. Tsourdi, P. Makras, T.D. Rachner, S. Polyzos, M. Rauner, S. Mandanas, L.C. Hofbauer, A.D. Anastasilakis, Denosumab effects on bone density and turnover in postmenopausal women with low bone mass with or without previous treatment. Bone 120, 44–49 (2019). https://doi.org/10.1016/j.bone.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  15. S. Helas, C. Goettsch, M. Schoppet, U. Zeitz, U. Hempel, H. Morawietz, P.J. Kostenuik, R.G. Erben, L.C. Hofbauer, Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am. J. Pathol. 175(2), 473–478 (2009). https://doi.org/10.2353/ajpath.2009.080957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Sinningen, E. Tsourdi, M. Rauner, T.D. Rachner, C. Hamann, L.C. Hofbauer, Skeletal and extraskeletal actions of denosumab. Endocrine 42(1), 52–62 (2012). https://doi.org/10.1007/s12020-012-9696-x

    Article  CAS  PubMed  Google Scholar 

  17. E.J. Samelson, P.D. Miller, C. Christiansen, N.S. Daizadeh, L. Grazette, M.S. Anthony, O. Egbuna, A. Wang, S.R. Siddhanti, A.M. Cheung, N. Franchimont, D.P. Kiel, RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J. Bone Miner. Res. 29(2), 450–457 (2014). https://doi.org/10.1002/jbmr.2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L. Mosca, E. Barrett-Connor, N.K. Wenger, P. Collins, D. Grady, M. Kornitzer, E. Moscarelli, S. Paul, T.J. Wright, J.D. Helterbrand, P.W. Anderson, Design and methods of the Raloxifene Use for The Heart (RUTH) study. Am. J. Cardiol. 88(4), 392–395 (2001). https://doi.org/10.1016/s0002-9149(01)01685-x

    Article  CAS  PubMed  Google Scholar 

  19. P.W. Wilson, M. Pencina, P. Jacques, J. Selhub, R. D’Agostino Sr., C.J. O’Donnell, C-reactive protein and reclassification of cardiovascular risk in the Framingham Heart Study. Circulation. Cardiovascular Qual. Outcomes 1(2), 92–97 (2008). https://doi.org/10.1161/CIRCOUTCOMES.108.831198

    Article  Google Scholar 

  20. A.H. Thakore, C.Y. Guo, M.G. Larson, D. Corey, T.J. Wang, R.S. Vasan, R.B. D’Agostino Sr., I. Lipinska, J.F. Keaney Jr., E.J. Benjamin, C.J. O’Donnell, Association of multiple inflammatory markers with carotid intimal medial thickness and stenosis (from the Framingham Heart Study). Am. J. Cardiol. 99(11), 1598–1602 (2007). https://doi.org/10.1016/j.amjcard.2007.01.036

    Article  PubMed  Google Scholar 

  21. S. Okazaki, M. Sakaguchi, K. Miwa, S. Furukado, H. Yamagami, Y. Yagita, H. Mochizuki, K. Kitagawa, Association of interleukin-6 with the progression of carotid atherosclerosis: a 9-year follow-up study. Stroke 45(10), 2924–2929 (2014). https://doi.org/10.1161/STROKEAHA.114.005991

    Article  CAS  PubMed  Google Scholar 

  22. A. Kalampogias, G. Siasos, E. Oikonomou, S. Tsalamandris, K. Mourouzis, V. Tsigkou, M. Vavuranakis, T. Zografos, S. Deftereos, C. Stefanadis, D. Tousoulis, Basic mechanisms in atherosclerosis: the role of calcium. Medicinal Chem. 12(2), 103–113 (2016). https://doi.org/10.2174/1573406411666150928111446

    Article  CAS  Google Scholar 

  23. H. Min, S. Morony, I. Sarosi, C.R. Dunstan, C. Capparelli, S. Scully, G. Van, S. Kaufman, P.J. Kostenuik, D.L. Lacey, W.J. Boyle, W.S. Simonet, Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med. 192(4), 463–474 (2000). https://doi.org/10.1084/jem.192.4.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Panizo, A. Cardus, M. Encinas, E. Parisi, P. Valcheva, S. Lopez-Ongil, B. Coll, E. Fernandez, J.M. Valdivielso, RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circulation Res. 104(9), 1041–1048 (2009). https://doi.org/10.1161/CIRCRESAHA.108.189001

    Article  CAS  PubMed  Google Scholar 

  25. C. L. Chen, N. C. Chen, F. Z. Wu, M. T. Wu, Impact of denosumab on cardiovascular calcification in patients with secondary hyperparathyroidism undergoing dialysis: a pilot study. Osteoporos. Int. (2020). https://doi.org/10.1007/s00198-020-05391-3

  26. E.F. Eriksen, S.F. Hodgson, R. Eastell, S.L. Cedel, W.M. O’Fallon, B.L. Riggs, Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J. Bone Miner. Res. 5(4), 311–319 (1990). https://doi.org/10.1002/jbmr.5650050402

    Article  CAS  PubMed  Google Scholar 

  27. C. Cipriani, J. Pepe, L. Colangelo, S. Minisola, Vitamin D and secondary hyperparathyroid states. Front. Horm. Res. 50, 138–148 (2018). https://doi.org/10.1159/000486077

    Article  CAS  PubMed  Google Scholar 

  28. A. Zmyslowski, A. Szterk, Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis. 16(1), 188 (2017). https://doi.org/10.1186/s12944-017-0579-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J.S. Leere, J. Karmisholt, M. Robaczyk, S. Lykkeboe, A. Handberg, E. Steinkohl, J. Brondum Frokjaer, P. Vestergaard, Denosumab and cinacalcet for primary hyperparathyroidism (DENOCINA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 8(5), 407–417 (2020). https://doi.org/10.1016/S2213-8587(20)30063-2

    Article  CAS  PubMed  Google Scholar 

  30. S. Kiechl, J. Wittmann, A. Giaccari, M. Knoflach, P. Willeit, A. Bozec, A.R. Moschen, G. Muscogiuri, G.P. Sorice, T. Kireva, M. Summerer, S. Wirtz, J. Luther, D. Mielenz, U. Billmeier, G. Egger, A. Mayr, F. Oberhollenzer, F. Kronenberg, M. Orthofer, J.M. Penninger, J.B. Meigs, E. Bonora, H. Tilg, J. Willeit, G. Schett, Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 19(3), 358–363 (2013). https://doi.org/10.1038/nm.3084

    Article  CAS  PubMed  Google Scholar 

  31. N. Napoli, N. Pannacciulli, E. Vittinghoff, D. Crittenden, J. Yun, A. Wang, R. Wagman, A.V. Schwartz, Effect of denosumab on fasting glucose in women with diabetes or prediabetes from the FREEDOM trial. Diabetes/Metab. Res. Rev. 34(4), e2991 (2018). https://doi.org/10.1002/dmrr.2991

    Article  CAS  Google Scholar 

  32. S. Ferrari, R. Eastell, N. Napoli, A. Schwartz, L.C. Hofbauer, A. Chines, A. Wang, N. Pannacciulli, S.R. Cummings, Denosumab in postmenopausal women with osteoporosis and diabetes: Subgroup analysis of FREEDOM and FREEDOM extension. Bone 134, 115268 (2020). https://doi.org/10.1016/j.bone.2020.115268

    Article  CAS  PubMed  Google Scholar 

  33. A. Sykiotis, G. Papaioannou, J. Mavropoulos, M. Triantaphyllopoulou, F. Papandroulaki, V. Ktena, S. Thanou, A. Pardalakis, A. Kaltsa, H. Karga, Markers of inflammation after zoledronic acid redosing. J. Bone Miner. Metab. 32(1), 72–77 (2014). https://doi.org/10.1007/s00774-013-0467-4

    Article  CAS  PubMed  Google Scholar 

  34. A.D. Anastasilakis, S.A. Polyzos, P. Makras, G.T. Sakellariou, I. Bisbinas, A. Gkiomisi, S. Delaroudis, S. Gerou, I. Ballaouri, D. Oikonomou, S.E. Papapoulos, Acute phase response following intravenous zoledronate in postmenopausal women with low bone mass. Bone 50(5), 1130–1134 (2012). https://doi.org/10.1016/j.bone.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  35. T. Diker-Cohen, D. Rosenberg, T. Avni, D. Shepshelovich, G. Tsvetov, A. Gafter-Gvili, Risk for infections during treatment with denosumab for osteoporosis: a systematic review and meta-analysis. J. Clin. Endocrinol. Metabol. 105(5) (2020). https://doi.org/10.1210/clinem/dgz322

  36. S. Ferrari-Lacraz, S. Ferrari, Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos. Int. 22(2), 435–446 (2011). https://doi.org/10.1007/s00198-010-1326-y

    Article  CAS  PubMed  Google Scholar 

  37. V.H. Rao, V. Kansal, S. Stoupa, D.K. Agrawal, MMP-1 and MMP-9 regulate epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells. Physiol. Rep. 2(2), e00224 (2014). https://doi.org/10.1002/phy2.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. Quercioli, F. Mach, M. Bertolotto, S. Lenglet, N. Vuilleumier, K. Galan, S. Pagano, V. Braunersreuther, G. Pelli, V. Pistoia, G. Bianchi, G. Cittadini, G.L. Viviani, A. Pende, P. Roux-Lombard, A. Thomas, C. Staub, O. Ratib, F. Dallegri, T.H. Schindler, F. Montecucco, Receptor activator of NF- kappaB ligand (RANKL) increases the release of neutrophil products associated with coronary vulnerability. Thrombosis Haemost. 107(1), 124–139 (2012). https://doi.org/10.1160/TH11-05-0324

    Article  CAS  Google Scholar 

  39. S. Casimiro, K.S. Mohammad, R. Pires, J. Tato-Costa, I. Alho, R. Teixeira, A. Carvalho, S. Ribeiro, A. Lipton, T.A. Guise, L. Costa, RANKL/RANK/MMP-1 molecular triad contributes to the metastatic phenotype of breast and prostate cancer cells in vitro. PLoS ONE 8(5), e63153 (2013). https://doi.org/10.1371/journal.pone.0063153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. P.F. Zhang, L. Pan, Z.Y. Luo, H.J. Zhao, S.X. Cai, Interrelationship of circulating matrix metalloproteinase-9, TNF-alpha, and OPG/RANK/RANKL systems in COPD patients with osteoporosis. COPD 10(6), 650–656 (2013). https://doi.org/10.3109/15412555.2013.813928

    Article  PubMed  Google Scholar 

  41. N.K. Choi, D.H. Solomon, T.N. Tsacogianis, J.E. Landon, H.J. Song, S.C. Kim, Comparative safety and effectiveness of denosumab versus zoledronic acid in patients with osteoporosis: a cohort study. J. Bone Miner. Res. 32(3), 611–617 (2017). https://doi.org/10.1002/jbmr.3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

C.C. and S.P. equally contributed to study design, data collection, analysis, drafting and revision of the manuscript. L.C., D.D. and V.P. contributed to data collection. V.D.M., F.F. and V.F. contributed to laboratory assessment. L.N. contributed to data analysis and revision of the manuscript. S.M. and J.P. contributed to data collection and analysis and final revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Cipriani.

Ethics declarations

Conflict of interest

S.M. served as speaker for Abiogen, Amgen, Bruno Farmaceutici, Diasorin, Eli Lilly, Shire, Sandoz, Takeda. He served in advisory board of Abiogen, Kyowa Kirin, Pfizer, UCB. All other authors declare no conflict of interests.

Ethics approval

Ethics approval was provided by the independent ethics committee of the “Policlinico Umberto I”.

Consent to participate

Written informed consent was obtained from all patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipriani, C., Piemonte, S., Colangelo, L. et al. Inhibition of the RANKL with denosumab has no effect on circulating markers of atherosclerosis in women with postmenopausal osteoporosis: a pilot study. Endocrine 71, 199–207 (2021). https://doi.org/10.1007/s12020-020-02483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02483-2

Keywords

Navigation