Skip to main content
Log in

Activation of adipose tissue glycerokinase contributes to increased white adipose tissue mass in mice fed a high-fat diet

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Investigate the pathways of glycerol-3-P (G3P) generation for triacylglycerol (TAG) synthesis in retroperitoneal (RWAT) and epididymal (EWAT) white adipose tissues from high-fat diet (HFD)-fed mice.

Methods

Mice were fed for 8 weeks a HFD and glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into TAG-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol in both tissues.

Results

HFD increased body and adipose tissue mass and serum levels of glucose and insulin, which were accompanied by glucose intolerance. RWAT and EWAT from HFD-fed mice had increased rates of de novo fatty acid (FA) synthesis (52% and 255%, respectively). HFD increased lipoprotein lipase (LPL) activity and content in EWAT (107%), but decreased in RWAT (79%). HFD decreased the lipolytic response to norepinephrine (57%, RWAT and 25%, EWAT), β3-adrenoceptor content (50%), which was accompanied by a decrease in phosphorylated-hormone-sensitive lipase (~80%) and phosphorylated-adipocyte triacylglycerol lipase (~60%) in both tissues. HFD decreased the in vitro rates of glucose uptake (3.5- and 6-fold), as well as in glyceride-glycerol synthesis from pyruvate (~3.5-fold) without changes in PEPCK-C activity and content in RWAT and EWAT, but increased glycerokinase activity(~3-fold) and content (90 and 40%) in both tissues.

Conclusion

The data suggest that direct phosphorylation of glycerol by glycerokinase may be responsible for maintaining the supply of G3P for the existing rates of FA esterification and TAG synthesis in RWAT and EWAT from HFD-fed mice, contributing, along with a lower lipolytic response to norepinephrine, to higher adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.J. Watt, G.R. Steinberg, Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J. 414(3), 313–325 (2008). https://doi.org/10.1042/BJ20080305

    Article  CAS  PubMed  Google Scholar 

  2. C.T. De Souza, E.P. Araujo, P.O. Prada, M.J. Saad, A.C. Boschero, L.A. Velloso, Short-term inhibition of peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression reverses diet-induced diabetes mellitus and hepatic steatosis in mice. Diabetologia 48(9), 1860–1871 (2005). https://doi.org/10.1007/s00125-005-1866-4

    Article  CAS  PubMed  Google Scholar 

  3. C. Pitombo, E.P. Araujo, C.T. De Souza, J.C. Pareja, B. Geloneze, L.A. Velloso, Amelioration of diet-induced diabetes mellitus by removal of visceral fat. J. Endocrinol. 191(3), 699–706 (2006). https://doi.org/10.1677/joe.1.07069

    Article  CAS  PubMed  Google Scholar 

  4. G. Fruhbeck, L. Mendez-Gimenez, J.A. Fernandez-Formoso, S. Fernandez, A. Rodriguez, Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27(1), 63–93 (2014). https://doi.org/10.1017/S095442241400002X

    Article  CAS  PubMed  Google Scholar 

  5. G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091), 87–91 (1993). https://doi.org/10.1126/science.7678183

    Article  CAS  PubMed  Google Scholar 

  6. J.P. Bastard, M. Maachi, J.T. Van Nhieu, C. Jardel, E. Bruckert, A. Grimaldi, J.J. Robert, J. Capeau, B. Hainque, Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J. Clin. Endocrinol. Metab. 87(5), 2084–2089 (2002). https://doi.org/10.1210/jcem.87.5.8450

    Article  CAS  PubMed  Google Scholar 

  7. G. Boden, G.I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur. J. Clin. Investig. 32(Suppl 3), 14–23 (2002). https://doi.org/10.1046/j.1365-2362.32.s3.3.x

    Article  CAS  Google Scholar 

  8. O. Osborn, J.M. Olefsky, The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18(3), 363–374 (2012). https://doi.org/10.1038/nm.2627

    Article  CAS  PubMed  Google Scholar 

  9. C. Saponaro, M. Gaggini, F. Carli, A. Gastaldelli, The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 7(11), 9453–9474 (2015). https://doi.org/10.3390/nu7115475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V.E. Chaves, D. Frasson, N.H. Kawashita, Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93(10), 1631–1640 (2011). https://doi.org/10.1016/j.biochi.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  11. M. Schweiger, R. Schreiber, G. Haemmerle, A. Lass, C. Fledelius, P. Jacobsen, H. Tornqvist, R. Zechner, R. Zimmermann, Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem. 281(52), 40236–40241 (2006). https://doi.org/10.1074/jbc.M608048200

    Article  CAS  PubMed  Google Scholar 

  12. R.W. Hanson, L. Reshef, Glyceroneogenesis revisited. Biochimie 85(12), 1199–1205 (2003). https://doi.org/10.1016/j.biochi.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  13. S.L. Buzelle, M.P. Santos, A.M. Baviera, C.F. Lopes, M.A. Garofalo, L.C. Navegantes, I.C. Kettelhut, V.E. Chaves, N.H. Kawashita, A low-protein, high-carbohydrate diet increases the adipose lipid content without increasing the glycerol-3-phosphate or fatty acid content in growing rats. Can. J. Physiol. Pharmacol. 88(12), 1157–1165 (2010). https://doi.org/10.1139/Y10-096

    Article  CAS  PubMed  Google Scholar 

  14. V.E. Chaves, D. Frasson, M.E. Martins-Santos, R.P. Boschini, M.A. Garofalo, W.T. Festuccia, I.C. Kettelhut, R.H. Migliorini, Glyceroneogenesis is reduced and glucose uptake is increased in adipose tissue from cafeteria diet-fed rats independently of tissue sympathetic innervation. J. Nutr. 136(10), 2475–2480 (2006). https://doi.org/10.1093/jn/136.10.2475

    Article  CAS  PubMed  Google Scholar 

  15. D. Frasson, R.P. Boschini, V.E. Chaves, M.E. dos Santos, S. Paula Gomes, R.R. Valentim, M.A. Garofalo, L.C. Navegantes, R.H. Migliorini, C. Kettelhut Ido, The sympathetic nervous system regulates the three glycerol-3P generation pathways in white adipose tissue of fasted, diabetic and high-protein diet-fed rats. Metabolism 61(10), 1473–1485 (2012). https://doi.org/10.1016/j.metabol.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  16. L.M. Botion, M.N. Brito, N.A. Brito, S.R. Brito, I.C. Kettelhut, R.H. Migliorini, Glucose contribution to in vivo synthesis of glyceride-glycerol and fatty acids in rats adapted to a high-protein, carbohydrate-free diet. Metabolism 47(10), 1217–1221 (1998). https://doi.org/10.1016/s0026-0495(98)90326-2

    Article  CAS  PubMed  Google Scholar 

  17. S.C. Brito, W.L. Festuccia, N.H. Kawashita, M.F. Moura, A.R. Xavier, M.A. Garofalo, I.C. Kettelhut, R.H. Migliorini, Increased glyceroneogenesis in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet: role of dietary fatty acids. Metabolism 55(1), 84–89 (2006). https://doi.org/10.1016/j.metabol.2005.07.010

    Article  CAS  PubMed  Google Scholar 

  18. S.R. Brito, M.A. Moura, N.H. Kawashita, M.N. Brito, I.C. Kettelhut, R.H. Migliorini, Glucose uptake and glycolytic flux in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet. Metabolism 50(10), 1208–1212 (2001). https://doi.org/10.1053/meta.2001.25645

    Article  CAS  PubMed  Google Scholar 

  19. O.S. Osman, J.L. Selway, M.A. Kepczynska, C.J. Stocker, J.F. O’Dowd, M.A. Cawthorne, J.R. Arch, S. Jassim, K. Langlands, A novel automated image analysis method for accurate adipocyte quantification. Adipocyte 2(3), 160–164 (2013). https://doi.org/10.4161/adip.24652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A.M. Johnson, J.M. Olefsky, The origins and drivers of insulin resistance. Cell 152(4), 673–684 (2013). https://doi.org/10.1016/j.cell.2013.01.041

    Article  CAS  PubMed  Google Scholar 

  21. M. Rodbell, Metabolism of isolated fat cells. I. effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239, 375–380 (1964)

    CAS  PubMed  Google Scholar 

  22. J.E. Foley, A.L. Laursen, O. Sonne, J. Gliemann, Insulin binding and hexose transport in rat adipocytes. Relation to cell size. Diabetologia 19(3), 234–241 (1980). https://doi.org/10.1007/bf00275275

    Article  CAS  PubMed  Google Scholar 

  23. N.H. Kawashita, W.T. Festuccia, M.N. Brito, M.A. Moura, S.R. Brito, M.A. Garofalo, I.C. Kettelhut, R.H. Migliorini, Glycerokinase activity in brown adipose tissue: a sympathetic regulation? Am. J. Physiol. Regul. Integr. Comp. Physiol. 282(4), R1185–R1190 (2002). https://doi.org/10.1152/ajpregu.00419.2001

    Article  CAS  PubMed  Google Scholar 

  24. E.A. Newsholme, J. Robinson, K. Taylor, A radiochemical enzymatic activity assay for glycerol kinase and hexokinase. Biochim. Biophys. Acta 132(2), 338–346 (1967). https://doi.org/10.1016/0005-2744(67)90153-2

    Article  CAS  PubMed  Google Scholar 

  25. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)

    CAS  PubMed  Google Scholar 

  26. H.C. Chang, M.D. Lane, The enzymatic carboxylation of phosphoenolpyruvate. II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J. Biol. Chem. 241(10), 2413–2420 (1966)

    CAS  PubMed  Google Scholar 

  27. M.N. Brito, N.A. Brito, S.R. Brito, M.A. Moura, N.H. Kawashita, I.C. Kettelhut, R.H. Migliorini, Brown adipose tissue triacylglycerol synthesis in rats adapted to a high-protein, carbohydrate-free diet. Am. J. Physiol. 276(4), R1003–R1009 (1999). https://doi.org/10.1152/ajpregu.1999.276.4.R1003

    Article  CAS  PubMed  Google Scholar 

  28. P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid. Anal. Biochem. 150(1), 76–85 (1985). https://doi.org/10.1016/0003-2697(85)90442-7

    Article  CAS  PubMed  Google Scholar 

  29. P. Nilsson-Ehle, M.C. Schotz, A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J. Lipid Res. 17(5), 536–541 (1976)

    CAS  PubMed  Google Scholar 

  30. S. Cikos, A. Bukovska, J. Koppel, Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol. Biol. 8, 113 (2007). https://doi.org/10.1186/1471-2199-8-113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. T. Koschinsky, F.A. Gries, L. Herberg, Regulation of glycerol kinase by insulin in isolated fat cells and liver of Bar Harbor obese mice. Diabetologia 7(5), 316–322 (1971). https://doi.org/10.1007/bf01219464

    Article  CAS  PubMed  Google Scholar 

  32. D.H. Treble, J. Mayer, Glycerolkinase activity in white adipose tissue of obese-hyperglycaemic mice. Nature 200, 363–364 (1963). https://doi.org/10.1038/200363a0

    Article  CAS  PubMed  Google Scholar 

  33. H.P. Guan, Y. Li, M.V. Jensen, C.B. Newgard, C.M. Steppan, M.A. Lazar, A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8(10), 1122–1128 (2002). https://doi.org/10.1038/nm780

    Article  CAS  PubMed  Google Scholar 

  34. E.P. Mottillo, P. Balasubramanian, Y.H. Lee, C. Weng, E.E. Kershaw, J.G. Granneman, Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J. Lipid Res. 55(11), 2276–2286 (2014). https://doi.org/10.1194/jlr.M050005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M.P. Santos, S.A. Franca, J.T. Santos, S.L. Buzelle, G.L. Bertolini, M.A. Garofalo, I.C. Kettelhut, D. Frasson, V.E. Chaves, N.H. Kawashita, A low-protein, high-carbohydrate diet increases fatty acid uptake and reduces norepinephrine-induced lipolysis in rat retroperitoneal white adipose tissue. Lipids 47(3), 279–289 (2012). https://doi.org/10.1007/s11745-011-3648-8

    Article  CAS  PubMed  Google Scholar 

  36. T. Hibuse, N. Maeda, T. Funahashi, K. Yamamoto, A. Nagasawa, W. Mizunoya, K. Kishida, K. Inoue, H. Kuriyama, T. Nakamura, T. Fushiki, S. Kihara, I. Shimomura, Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc. Natl Acad. Sci. USA 102(31), 10993–10998 (2005). https://doi.org/10.1073/pnas.0503291102

    Article  CAS  PubMed  Google Scholar 

  37. M.E. Martins-Santos, V.E. Chaves, D. Frasson, R.P. Boschini, M.A. Garofalo, C. Kettelhut Ido, R.H. Migliorini, Glyceroneogenesis and the supply of glycerol-3-phosphate for glyceride-glycerol synthesis in liver slices of fasted and diabetic rats. Am. J. Physiol. Endocrinol. Metab. 293(5), E1352–E1357 (2007). https://doi.org/10.1152/ajpendo.00394.2007

    Article  CAS  PubMed  Google Scholar 

  38. G.N. Ferreira, R. Rossi-Valentim, S.L. Buzelle, S. Paula-Gomes, N.M. Zanon, M.A.R. Garofalo, D. Frasson, L.C.C. Navegantes, V.E. Chaves, I.D.C. Kettelhut, Differential regulation of glyceroneogenesis by glucocorticoids in epididymal and retroperitoneal white adipose tissue from rats. Endocrine 57(2), 287–297 (2017). https://doi.org/10.1007/s12020-017-1315-4

    Article  CAS  PubMed  Google Scholar 

  39. Y. Ng, G. Ramm, D.E. James, Dissecting the mechanism of insulin resistance using a novel heterodimerization strategy to activate Akt. J. Biol. Chem. 285(8), 5232–5239 (2010). https://doi.org/10.1074/jbc.M109.060632

    Article  CAS  PubMed  Google Scholar 

  40. E.L. Whiteman, H. Cho, M.J. Birnbaum, Role of Akt/protein kinase B in metabolism. Trends Endocrinol. Metab. 13(10), 444–451 (2002). https://doi.org/10.1016/s1043-2760(02)00662-8

    Article  CAS  Google Scholar 

  41. L. Qi, M. Saberi, E. Zmuda, Y. Wang, J. Altarejos, X. Zhang, R. Dentin, S. Hedrick, G. Bandyopadhyay, T. Hai, J. Olefsky, M. Montminy, Adipocyte CREB promotes insulin resistance in obesity. Cell Metab. 9(3), 277–286 (2009). https://doi.org/10.1016/j.cmet.2009.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Matsumoto, A. Pocai, L. Rossetti, R.A. Depinho, D. Accili, Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6(3), 208–216 (2007). https://doi.org/10.1016/j.cmet.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  43. D.J. Shin, P. Joshi, S.H. Hong, K. Mosure, D.G. Shin, T.F. Osborne, Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res. 40(22), 11499–11509 (2012). https://doi.org/10.1093/nar/gks932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J.H. Devine, D.W. Eubank, D.E. Clouthier, P. Tontonoz, B.M. Spiegelman, R.E. Hammer, E.G. Beale, Adipose expression of the phosphoenolpyruvate carboxykinase promoter requires peroxisome proliferator-activated receptor gamma and 9-cis-retinoic acid receptor binding to an adipocyte-specific enhancer in vivo. J. Biol. Chem. 274(19), 13604–13612 (1999). https://doi.org/10.1074/jbc.274.19.13604

    Article  CAS  PubMed  Google Scholar 

  45. C. Nunn, P. Zhao, M.X. Zou, K. Summers, C.G. Guglielmo, P. Chidiac, Resistance to age-related, normal body weight gain in RGS2 deficient mice. Cell. Signal. 23(8), 1375–1386 (2011). https://doi.org/10.1016/j.cellsig.2011.03.020

    Article  CAS  PubMed  Google Scholar 

  46. U. Rozovski, S. Grgurevic, C. Bueso-Ramos, D.M. Harris, P. Li, Z. Liu, J.Y. Wu, P. Jain, W. Wierda, J. Burger, S. O’Brien, N. Jain, A. Ferrajoli, M.J. Keating, Z. Estrov, Aberrant LPL expression, driven by STAT3, mediates free fatty acid metabolism in CLL cells. Mol. Cancer Res. 13(5), 944–953 (2015). https://doi.org/10.1158/1541-7786.MCR-14-0412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. H. Sun, T. Jiang, S. Wang, B. He, Y. Zhang, D. Piao, C. Yu, N. Wu, P. Han, The effect of LXRalpha, ChREBP and Elovl6 in liver and white adipose tissue on medium- and long-chain fatty acid diet-induced insulin resistance. Diabetes Res. Clin. Pract. 102(3), 183–192 (2013). https://doi.org/10.1016/j.diabres.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  48. M. Deak, A.D. Clifton, L.M. Lucocq, D.R. Alessi, Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17(15), 4426–4441 (1998). https://doi.org/10.1093/emboj/17.15.4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. Pagnon, M. Matzaris, R. Stark, R.C. Meex, S.L. Macaulay, W. Brown, P.E. O’Brien, T. Tiganis, M.J. Watt, Identification and functional characterization of protein kinase A phosphorylation sites in the major lipolytic protein, adipose triglyceride lipase. Endocrinology 153(9), 4278–4289 (2012). https://doi.org/10.1210/en.2012-1127

    Article  CAS  PubMed  Google Scholar 

  50. H. Kanda, S. Tateya, Y. Tamori, K. Kotani, K. Hiasa, R. Kitazawa, S. Kitazawa, H. Miyachi, S. Maeda, K. Egashira, M. Kasuga, MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Investig. 116(6), 1494–1505 (2006). https://doi.org/10.1172/JCI26498

    Article  CAS  PubMed  Google Scholar 

  51. B. De Taeye, L.H. Smith, D.E. Vaughan, Plasminogen activator inhibitor-1: a common denominator in obesity, diabetes and cardiovascular disease. Curr. Opin. Pharmacol. 5(2), 149–154 (2005). https://doi.org/10.1016/j.coph.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  52. A.J. Richard, J.M. Stephens, The role of JAK-STAT signaling in adipose tissue function. Biochim. Biophys. Acta 1842(3), 431–439 (2014). https://doi.org/10.1016/j.bbadis.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  53. P.G. Reeves, F.H. Nielsen, G.C. Fahey Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123(11), 1939–1951 (1993). https://doi.org/10.1093/jn/123.11.1939

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Neusa M. Zanon, Elza A. Filippin, Lilian C. Heck and Victor D. Galban for their technical assistance.

Author contributions

All authors contributed to the development, analysis and drafting of this article.

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (310700/2011-6 and 302820/2015-9). S.L.B. received a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). R.R.V. and G.N.F. received a fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria Ernestânia Chaves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzelle, S.L., Przygodda, F., Rossi-Valentim, R. et al. Activation of adipose tissue glycerokinase contributes to increased white adipose tissue mass in mice fed a high-fat diet. Endocrine 69, 79–91 (2020). https://doi.org/10.1007/s12020-020-02288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02288-3

Keywords

Navigation