Skip to main content

Advertisement

Log in

The genetic basis of high-carbohydrate and high-monosodium glutamate diet related to the increase of likelihood of type 2 diabetes mellitus: a review

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Diabetes is one of the most common metabolic diseases. Aside from the genetic factor, previous studies stated that other factors such as environment, lifestyle, and paternal–maternal condition play critical roles in diabetes through DNA methylation in specific areas of the genome. One of diabetic cases is caused by insulin resistance and changing the homeostasis of blood glucose control so glucose concentration stood beyond normal rate (hyperglycemia). High fat diet has been frequently studied and linked to triggering diabetes. However, most Asians consume rice (or food with high carbohydrate) and food with monosodium glutamate (MSG). This habit could lead to pathophysiology of type 2 diabetes mellitus (T2D). Previous studies showed that high-carbohydrate or high-MSG diet could change gene expression or modify protein activity in body metabolism. This imbalanced metabolism can lead to pleiotropic effects of diabetes mellitus. In this study, the authors have attempted to relate various changes in genes expression or protein activity to the high-carbohydrate and high-MSG-induced diabetes. The authors have also tried to relate several genes that contribute to pathophysiology of T2D and proposed several ideas of genes as markers and target for curing people with T2D. These are done by investigating altered activities of various genes that cause or are caused by diabetes. These genes are selected based on their roles in pathophysiology of T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GLUT4:

Glucose transporter 4

PDX1:

Pancreatic and duodenal homeobox 1

NKX6.1:

NK6 homeobox 1

MAFA:

MAF bZIPtranscritpion factor A

FOXO1:

Forkhead box protein O1

GRP-78:

Binding immunoglobulin protein

PERK:

Protein kinase R (PKR)-like endoplasmic reticulum kinase

IRE1α:

Inositol-requiring enzyme 1 α

XBP1:

X-box binding protein 1

CHOP:

C/EBP homologous protein

INSIG1:

Insulin induced gene 1

SREBP-1c:

Sterol regulatory element binding protein 1c

SIRT1:

NAD-dependent deacetylase sirtuin-1

SCD1:

Stearoyl-CoA desaturase-1

PPAR:

Peroxisome proliferator-activated receptor

ATF4:

Activating transcription factor 4

CREB-2:

cAMP-response element binding protein 2

MEG3:

Maternally expressed 3

SLC2A4:

Solute carrier family 2 member 4

H3K9me3:

Trimethylation of lysine 9 on histone H3 protein

PCK1:

Phosphoenolpyruvate carboxykinase 1 (soluble)

ACO:

Acyl-CoA oxidase

CPT1:

Carnitine palmitoyltransferase 1

BIFEZ:

Bifunctionalenzyme

ANGPTL4:

Angiopoietin-like 4

PDK4:

Pyruvate dehydrogenase lipoamide kinase isozyme 4

TIF2:

Transcriptional mediators/intermediary factor 2

UCP3:

Mitochondrial uncoupling protein 3

PGC-1α:

Peroxisome proliferator-activated receptor gamma co-activator 1-alpha

SRC 1:

Steroid Receptor Co-activator 1

aP2:

Adipocyte Protein 2

SHP:

Small Heterodimer Partner

MSG:

Monosodium Glutamate

References

  1. N. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge, B. Malanda, IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018)

    CAS  PubMed  Google Scholar 

  2. S.K. Das, S.C. Elbein, The genetic basis of type 2 diabetes. Cellscience 2(4), 100–131 (2006)

    PubMed  PubMed Central  Google Scholar 

  3. J.C. Jimenez-Chillaron, M. Ramon-Krauel, S. Ribo, R. Diaz, Transgenerational epigenetic inheritance of diabetes risk as a consequence of early nutritional imbalances. Proc. Nutr. Soc. 75(1), 78–89 (2015)

    PubMed  Google Scholar 

  4. A. Alkhatib, C. Tsang, A. Tiss, T. Bahorun, H. Arefanian, R. Barake, Abdelkrim Khadir, J. danTuomilehto, Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients 9(12), 1310 (2017)

    PubMed Central  Google Scholar 

  5. Y. Sun, W. You, F. Almeida, P. Estabrooks, B. Davy, The effectiveness and cost of lifestyle interventions including nutrition education for diabetes prevention: a systematic review and meta-analysis. J. Acad. Nutr. Diet. 117(3), 404–421.e36 (2017)

    PubMed  PubMed Central  Google Scholar 

  6. S.E. Kahn, R.L. Hull, K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121), 840 (2006)

    CAS  PubMed  Google Scholar 

  7. C. Weyer, C. Bogardus, D.M. Mott, R.E. Pratley, The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Investig. 104(6), 787–794 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. M.Y. Donath, J.A. Ehses, K. Maedler, D.M. Schumann, H. Ellingsgaard, E. Eppler, M. Reinecke, Mechanisms of β-cell death in type 2 diabetes. Diabetes 54(Suppl 2), S108–S113 (2005)

    CAS  PubMed  Google Scholar 

  9. P. Zimmet, Z. Shi, A. El-Osta, L. Ji, Epidemic T2DM, early development and epigenetics: implications of the Chinese Famine. Nat. Rev. Endocrinol. 14(12), 738–746 (2018)

    PubMed  Google Scholar 

  10. M. Tian, C. Reichetzeder, J. Li, B. Hocher, Low birth weight, a risk factor for diseases in later life, is a surrogate of insulin resistance at birth. J. Hypertens. 37(11), 2123–2134 (2019)

    CAS  PubMed  Google Scholar 

  11. E.R. Gilbert, Z. Fu, D. Liu, Development of a nongenetic mouse model of type 2 diabetes. Exp. Diabetes Res. 2011, 416254 (2011)

    PubMed  PubMed Central  Google Scholar 

  12. M. Manco, M. Calvani, G. Mingrone, Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes. Metab. 6(6), 402–413 (2004)

    CAS  PubMed  Google Scholar 

  13. O. Kluth, F. Mirhashemi, S. Scherneck, D. Kaiser, R. Kluge, S. Neschen, H.G. Joost, A. Schürmann, Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Diabetologia 54(3), 605–616 (2011)

    CAS  PubMed  Google Scholar 

  14. Y.B. Kim, S. Iwashita, T. Tamura, K. Tokuyama, M. Suzuki, Effect of high-fat diet on the gene expression of pancreatic GLUT2 and glucokinase in rats. Biochem. Biophys. Res. Commun. 208(3), 1092–1098 (1995)

    CAS  PubMed  Google Scholar 

  15. Z. Liu, I.Y. Patil, T. Jiang, H. Sancheti, J.P. Walsh, B.L. Stiles, F. Yin, E. Cadenas, High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PloS ONE 10(5), e0128274 (2015)

    PubMed  PubMed Central  Google Scholar 

  16. S.E.D. Putra, S. Singajaya, F. Thesman, D.A. Pranoto, R. Sanjaya, Y.M. Vianney, I.B.M. Artadana, Aberrant PDK4 promoter methylation preceding hyperglycemia in a mouse model. Appl. Biochem. Biotechnol. (2019). https://doi.org/10.1007/s12010-019-03143-6

  17. S. Muthayya, J.D. Sugimoto, S. Montgomery, G.F. Maberly, An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 1324(1), 7–14 (2014)

    PubMed  Google Scholar 

  18. Y. Li, D.D. Wang, S.H. Ley, M. Vasanti, A.G. Howard, Y. He, F.B. Hu, Time trends of dietary and lifestyle factors and their potential impact on diabetes burden in China. Diabetes Care 40(12), 1685–1694 (2017)

    PubMed  PubMed Central  Google Scholar 

  19. E.A. Hu, A. Pan, V. Malik, Q. Sun, White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ 344, e1454 (2012)

    PubMed  PubMed Central  Google Scholar 

  20. V. Mohan, G. Radhika, P. Vijayalakshmi, V. Sudha, Can the diabetes/cardiovascular disease epidemic in India be explained, at least in part, by excess refined grain (rice) intake? Indian J. Med. Res. 131, 369–372 (2010)

    CAS  PubMed  Google Scholar 

  21. M. Balakumar, L. Raji, D. Prabhu, C. Sathishkumar, P. Prabu, V. Mohan, M. Balasubramanyam, High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol. Cell. Biochem. 423(1-2), 93–104 (2016)

    CAS  PubMed  Google Scholar 

  22. M.E. Bizeau, M.J. Pagliassotti, Hepatic adaptations to sucrose and fructose. Metabolism 54(9), 1189–1201 (2005)

    CAS  PubMed  Google Scholar 

  23. M. Dirlewanger, P. Schneiter, E. Jéquier, L. Tappy, Effects of fructose on hepatic glucose metabolism in humans. Am. J. Physiol. Endocrinol. Metab. 279(4), E907–E911 (2000)

    CAS  PubMed  Google Scholar 

  24. Y. Sasaki, W. Suzuki, T. Shimada, S. Iizuka, S. Nakamura, M. Nagata, M. Fujimoto, K. Tsuneyama, R. Hokao, K. Miyamoto, M. Aburada, Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamate-induced obese mice. Life Sci. 85(13-14), 490–498 (2009)

    CAS  PubMed  Google Scholar 

  25. J.F. Morrison, S. Shehab, R. Sheen, S. Dhanasekaran, M. Shaffiullah, E. Mensah‐Brown, Sensory and autonomic nerve changes in the monosodium glutamate‐treated rat: a model of type II diabetes. Exp. Physiol. 93(2), 213–222 (2008)

    CAS  PubMed  Google Scholar 

  26. M. Nagata, W. Suzuki, S. Iizuka, M. Tabuchi, H. Maruyama, S. Takeda, M. Aburada, K.I. Miyamoto, Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp. Anim. 55(2), 109–115 (2006)

    CAS  PubMed  Google Scholar 

  27. K. Beyreuther, H.K. Biesalski, J.D. Fernstrom, P. Grimm, W.P. Hammes, U. Heinemann, O. Kempski, P. Stehle, H. Steinhart, R. Walker, Consensus meeting: monosodium glutamate–an update. Eur. J. Clin. Nutr. 61(3), 304–313 (2007)

    CAS  PubMed  Google Scholar 

  28. W. Prawirohardjono, I. Dwiprahasto, I. Astuti, S. Hadiwandowo, E. Kristin, M. Muhammad, M.F. Kelly, The administration to Indonesians of monosodium L-glutamate in Indonesian foods: an assessment of adverse reactions in a randomized double-blind, crossover, placebo-controlled study. J. Nutr. 130(4), 1074S–1076S (2000)

    CAS  PubMed  Google Scholar 

  29. M. Srinivasan, R. Aalinkeel, F. Song, M.S. Patel, Programming of islet functions in the progeny of hyperinsulinemic/obese rats. Diabetes 52(4), 984–990 (2003)

    CAS  PubMed  Google Scholar 

  30. R.A. Miranda, C.C. da Silva Franco, J.C. de Oliveira, L.F. Barella, L.P. Tófolo, T.A. Ribeiro, P.C. Lisboa, Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats. Endocrine 55(1), 101–112 (2017)

    CAS  PubMed  Google Scholar 

  31. T. Kitamura, J. Nakae, Y. Kitamura, Y. Kido, W.H. Biggs, C.V. Wright, M.F. White, K.C. Arden, D. Accili, The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J. Clin. Investig. 110(12), 1839–1847 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. U. Ahlgren, J. Jonsson, L. Jonsson, K. Simu, H. Edlund, β-Cell-specific inactivation of the mouseIpf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 12(12), 1763–1768 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. G. Sethi, M.K. Shanmugam, A.P. Kumar, SREBP-1c as a molecular bridge between lipogenesis and cell cycle progression of clear cell renal carcinoma. Biosci. Rep. 37(6), BSR20171270 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. J.Y. Kim-Muller, Y.J.R. Kim, J. Fan, S. Zhao, A.S. Banks, M. Prentki, D. Accili, FoxO1 deacetylation decreases fatty acid oxidation in β-cells and sustains insulin secretion in diabetes. J. Biol. Chem. 291(19), 10162–10172 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. J.M. Ntambi, Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J. Biol. Chem. 267(15), 10925–10930 (1992)

    CAS  PubMed  Google Scholar 

  36. K.M. Waters, J.M. Ntambi, Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J. Biol. Chem. 269(44), 27773–27777 (1994)

    CAS  PubMed  Google Scholar 

  37. J.M. Ntambi, The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 34(2), 139–150 (1995)

    CAS  PubMed  Google Scholar 

  38. M.E. Pape, F. Lopez-Casillas, K.H. Kim, Physiological regulation of acetyl-CoA carboxylase gene expression: effects of diet, diabetes, and lactation on acetyl-CoA carboxylase mRNA. Arch. Biochem. Biophys. 267(1), 104–109 (1988)

    CAS  PubMed  Google Scholar 

  39. M.P. Rogowski, M.T. Flowers, A.D. Stamatikos, J.M. Ntambi, C.M. Paton, SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice. J. Lipid Res. 54(10), 2636–2646 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. J. Drąg, A. Goździalska, M. Knapik-Czajka, A. Gawędzka, K. Gawlik, J. Jaśkiewicz, Effect of high carbohydrate diet on elongase and desaturase activity and accompanying gene expression in rat’s liver. Genes Nutr. 12(1), 1–8 (2017)

    Google Scholar 

  41. M. Miyazaki, M.T. Flowers, H. Sampath, K. Chu, C. Otzelberger, X. Liu, J.M. Ntambi, Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab. 6(6), 484–496 (2007)

    CAS  PubMed  Google Scholar 

  42. R. Gutiérrez-Juárez, A. Pocai, C. Mulas, H. Ono, S. Bhanot, B.P. Monia, L. Rossetti, Critical role of stearoyl-CoA desaturase–1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J. Clin. Investig. 116, 1686–1695 (2006)

    PubMed  PubMed Central  Google Scholar 

  43. G. Jiang, Z. Li, F. Liu, K. Ellsworth, Q. Dallas-Yang, M. Wu, R. Bergeron, Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase–1. J. Clin. Investig. 115(4), 1030–1038 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. J.M. Ntambi, M. Miyazaki, J.P. Stoehr, H. Lan, C.M. Kendziorski, B.S. Yandell, Y. Song, P. Cohen, J.M. Friedman, A.D. Attie, Loss of stearoyl–CoA desaturase-1 function protects mice against adiposity. Proc. Natl Acad. Sci. 99(17), 11482–11486 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. M.T. Flowers, L. Ade, M.S. Strable, J.M. Ntambi, Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity. J. Lipid Res. 53(8), 1646–1653 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. H. Li, Q. Meng, F. Xiao, S. Chen, Y. Du, J. Yu, C. Wang, F. Guo, ATF4 deficiency protects mice from high-carbohydrate-diet-inducced liver steatosis. Biochem. J. 438(2), 283–289 (2011)

    CAS  PubMed  Google Scholar 

  47. J. Seo, E.S. Fortuno, J.M. Suh, D. Stenesen, W. Tang, E.J. Parks, C.M. Adams, T. Townes, J.M. Graff, Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 58(11), 2565–2573 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. G. Xiao, T. Zhang, S. Yu, S. Lee, V. Calabuig-Navarro, J. Yamauchi, S. Ringquist, H.H. Dong, ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J. Biol. Chem. 288(35), 25350–25361 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. K. Li, J. Zhang, J. Yu, B. Liu, Y. Guo, J. Deng, S. Chen, S. Wang, F. Guo, MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J. Biol. Chem. 290(13), 8185–8195 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. X. Zhu, H. Li, Y. Wu, J. Zhou, G. Yang, W. Wang, lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int. J. Mol. Med. 43(1), 345–357 (2019)

    CAS  PubMed  Google Scholar 

  51. D.G. Burrin, B. Stoll, Metabolic fate and function of dietary glutamate in the gut. Am. J. Clin. Nutr. 90(3), 850S–856S (2009)

    CAS  PubMed  Google Scholar 

  52. L.D. Stegink, W.A. Reynolds, L.J. Filer Jr, R.M. Pitkin, D.P. Boaz, M.C. Brummel, Monosodium glutamate metabolism in the neonatal monkey. Am. J. Physiol. 229(1), 246–250 (1975)

    CAS  PubMed  Google Scholar 

  53. M. Shannon, J. Wilson, Y. Xie, L. Connolly, In vitro bioassay investigations of suspected obesogen monosodium glutamate at the level of nuclear receptor binding and steroidogenesis. Toxicol. Lett. 301, 11–16 (2019)

    CAS  PubMed  Google Scholar 

  54. L.L. Kjems, J.J. Holst, A. Vølund, S. Madsbad, The influence of GLP-1 on glucose-stimulated insulin secretion: effects on β-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52(2), 380–386 (2003)

    CAS  PubMed  Google Scholar 

  55. M. Shannon, B. Green, G. Willars, J. Wilson, N. Matthews, J. Lamb, A. Gillespie, L. Connolly, The endocrine disrupting potential of monosodium glutamate (MSG) on secretion of the glucagon-like peptide-1 (GLP-1) gut hormone and GLP-1 receptor interaction. Toxicol. Lett. 265, 97–105 (2017)

    CAS  PubMed  Google Scholar 

  56. G.S. Hotamisligil, B.M. Spiegelman, Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes 43(11), 1271–1278 (1994)

    CAS  PubMed  Google Scholar 

  57. G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091), 87–91 (1993)

    CAS  PubMed  Google Scholar 

  58. U.F. Machado, Y. Shimizu, M. Saito, Decreased glucose transporter (GLUT 4) content in insulin-sensitive tissues of obese aurothioglucose-and monosodium glutamate-treated mice. Horm. Metab. Res. 25(09), 462–465 (1993)

    CAS  PubMed  Google Scholar 

  59. C.Y. Yonamine, A.B. Alves-Wagner, J.V. Esteves, M.M. Okamoto, M.L. Correa-Giannella, D. Giannella-Neto, U.F. Machado, Diabetes induces tri-methylation at lysine 9 of histone 3 at Slc2a4 gene in skeletal muscle: A new target to improve glycemic control. Mol. Cell. Endocrinol. 481, 26–34 (2019)

    CAS  PubMed  Google Scholar 

  60. C. Yonamine, E. Pinheiro-Machado, M. Michalani, A. Alves-Wagner, J. Esteves, H. Freitas, U. Machado, Resveratrol improves glycemic control in type 2 diabetic obese mice by regulating glucose transporter expression in skeletal muscle and liver. Molecules 22(7), 1180 (2017)

    PubMed Central  Google Scholar 

  61. S. vio Brandelero Jr, M.L. ciaBonfleur, R.A. Ribeiro, E.C. Vanzela, C.A. Nassar, P.O. Nassar, S.L. Balbo, Decreased TNF-a gene expression in periodontal ligature in MSG-obese rats: A possible protective effect of hypothalamic obesity against periodontal disease?. Arch. Oral. Biol. 57(3), 300–306 (2011)

    Google Scholar 

  62. M.S. Islam, T. du Loots, Experimental rodent models of type 2 diabetes: a review. Methods Find. Exp. Clin. Pharmacol. 31(4), 249–261 (2009)

    CAS  PubMed  Google Scholar 

  63. A.E. Hirata, I.S.D. Andrade, P. Vaskevicius, M.S. Dolnikoff, Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz. J. Med. Biol. Res. 30, 671–67 (1997)

    CAS  PubMed  Google Scholar 

  64. S.N. Liu, Q. Liu, L.Y. Li, Y. Huan, S.J. Sun, Z.F. Shen, Long-term fenofibrate treatment impaired glucose-stimulated insulin secretion and up-regulated pancreatic NF-kappa B and iNOS expression in monosodium glutamate-induced obese rats: Is that a latent disadvantage? J. Transl. Med. 9(1), 176 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. P.P. Li, S. Shan, Y.T. Chen, Z.Q. Ning, S.J. Sun, Q. Liu, X.P. Lu, M.Z. Xie, Z.F. Shen, The PPARα/γ dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats. Br. J. Pharmacol. 148(5), 610–618 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. R. Roman-Ramos, J.C. Almanza-Perez, R. Garcia-Macedo, G. Blancas-Flores, A. Fortis-Barrera, E.I. Jasso, M. Garcia-Lorenzana, A.E. Campos-Sepulveda, M. Cruz, F.J. Alarcon-Aguilar, Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mrna expression of peroxisome proliferator-activated receptors in mice. Basic Clin. Pharmacol. Toxicol. 108(6), 406–413 (2011)

    CAS  PubMed  Google Scholar 

  67. D.S. Pan, W. Wang, N.S. Liu, Q.J. Yang, K. Zhang, J.Z. Zhu, S. Shan, Z.B. Li, Z.Q. Ning, L. Huang, X.P. Lu, Chiglitazar preferentially regulates gene expression via configuration-restricted binding and phosphorylation inhibition of PPARγ. PPAR Res. 2017, 4313561 (2017)

    PubMed  PubMed Central  Google Scholar 

  68. K.A. Burns, J.P.V. Heuvel, Modulation of PPAR activity via phosphorylation. Biochim. Biophys. Acta. 1771(8), 952–960 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. E. Hu, J.B. Kim, P. Sarraf, B.M. Spiegelman, Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 274(5295), 2100–2103 (1996)

    CAS  PubMed  Google Scholar 

  70. M.J. Lafferty, K.C. Bradford, D.A. Erie, S.B. Neher, Angiopoietin-like protein 4 inhibition of lipoprotein lipase evidence for reversible complex formation. J. Biol. Chem. 288(40), 28524–28534 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. S.D. van Otterdijk, A.M. Binder, K.S. vel Szic, J. Schwald, K.B. Michels, DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PloS ONE 12(7), e0180955 (2017)

    PubMed  PubMed Central  Google Scholar 

  72. A.J. McAinch, L.M. Cornall, R. Watts, D.H. Hryciw, P.E. O’Brien, D. Cameron-Smith, Increased pyruvate dehydrogenase kinase expression in cultured myotubes from obese and diabetic individuals. Eur. J. Nutr. 54(7), 1033–1043 (2015)

    CAS  PubMed  Google Scholar 

  73. A. Georgiadi, L. Lichtenstein, T. Degenhardt, M. Boekschoten, M. van Bilsen, B. Desvergne, M. Müller, S. Kersten, Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor β/δ and protects against fatty acid-inducedoxidative stress. Circ. Res. 106(11), 1712–1721 (2009)

    Google Scholar 

  74. K. Chokkalingam, K. Jewell, L. Norton, J. Littlewood, L.J.C. Van Loon, P. Mansell, I.A. Macdonald, K. Tsintzas, High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans: an important role for skeletal muscle pyruvate dehydrogenase kinase 4. J. Clin. Endocrinol. Metab. 92(1), 284–292 (2007)

    CAS  PubMed  Google Scholar 

  75. F. Picard, M. Géhin, J.S. Annicotte, S. Rocchi, M.F. Champy, B.W. O’Malley, P. Chambon, J. Auwerx, SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111(7), 931–941 (2002)

    CAS  PubMed  Google Scholar 

  76. D. Duteil, C. Chambon, F. Ali, R. Malivindi, J. Zoll, S. Kato, B. Geny, P. Chambon, D. Metzger, The transcriptional coregulators TIF2 and SRC-1 regulate energy homeostasis by modulating mitochondrial respiration in skeletal muscles. Cell Metab. 12(5), 496–508 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. C. Tiraby, G. Tavernier, F. Capel, A. Mairal, F. Crampes, J. Rami, C. Pujol, J.A. Boutin, D. Langin, Resistance to high-fat-diet-induced obesity and sexual dimorphism in the metabolic responses of transgenic mice with moderate uncoupling protein 3 overexpression in glycolytic skeletal muscles. Diabetologia 50(10), 2190–2199 (2007)

    CAS  PubMed  Google Scholar 

  78. A. Besseiche, J.P. Riveline, J.F. Gautier, B. Breant, B. Blondeau, Metabolic roles of PGC-1α and its implications for type 2 diabetes. Diabetes Metab. 41(5), 347–357 (2015)

    CAS  PubMed  Google Scholar 

  79. A. Coste, J.F. Louet, M. Lagouge, C. Lerin, M.C. Antal, H. Meziane, K. Schoonjans, P. Puigserver, B.W. O’Malley, J. Auwerx, The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α. Proc. Natl Acad. Sci. 105(44), 17187–17192 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. B. Valtat, J.P. Riveline, P. Zhang, A. Singh-Estivalet, M. Armanet, N. Venteclef, A. Besseiche, D.P. Kelly, F. Tronche, P. Ferré, J.F. Gautier, B. Bréant, J.F. Gautier, Fetal PGC-1α overexpression programs adult pancreatic β-cell dysfunction. Diabetes 62(4), 1206–1216 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Y. Cao, X. Jiang, H. Ma, Y. Wang, P. Xue, Y. Liu, SIRT1 and insulin resistance. J. Diabetes Complic. 30(1), 178–183 (2016)

    Google Scholar 

  82. T. Yoshizaki, S. Schenk, T. Imamura, J.L. Babendure, N. Sonoda, E.J. Bae, D.Y. Oh, M. Lu, J.C. Milne, C. Westphal, G. Bandyopadhyay, G. Bandyopadhyay, SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 298(3), E419–E428 (2009)

    PubMed  PubMed Central  Google Scholar 

  83. R.H. Wang, H.S. Kim, C. Xiao, X. Xu, O. Gavrilova, C.X. Deng, Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Investig. 121(11), 4477–4490 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. M.J. Kim, H.J. An, D.H. Kim, B. Lee, H.J. Lee, S. Ullah, S.J. Kim, H.O. Jeong, K.M. Moon, E.K. Lee, J. Yang, J. Akter, P. Chun, H.R. Moon, J. Yang, Novel SIRT1 activator MHY2233 improves glucose tolerance and reduces hepatic lipid accumulation in db/db mice. Bioorg. Med. Chem. Lett. 28(4), 684–688 (2018)

    CAS  PubMed  Google Scholar 

  85. Y. Yamazaki, I. Usui, Y. Kanatani, Y. Matsuya, K. Tsuneyama, S. Fujisaka, A. Bukhari, H. Suzuki, S. Senda, S. Imanishi, K. Hirata, M. Ishiki, R. Hayashi, M. Urakaze, H. Nemoto, M. Kobayashi, K. Hirata, Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am. J. Physiol. Endocrinol. Metab. 297(5), E1179–E1186 (2009)

    CAS  PubMed  Google Scholar 

  86. R.E. Gilbert, K. Thai, S.L. Advani, C.L. Cummins, D.M. Kepecs, S.A. Schroer, M. Woo, Y. Zhang, SIRT1 activation ameliorates hyperglycaemia by inducing a torpor-like state in an obese mouse model of type 2 diabetes. Diabetologia 58(4), 819–827 (2015)

    CAS  PubMed  Google Scholar 

  87. D.M. Erion, S. Yonemitsu, Y. Nie, Y. Nagai, M.P. Gillum, J.J. Hsiao, T. Iwasaki, R. Stark, D. Weismann, X.X. Yu, S.F. Murray, S. Bhanot, B.P. Monia, T.L. Horvath, Q. Gao, V.T. Samuel, S.F. Murray, SIRT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl Acad. Sci. 106(27), 11288–11293 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  88. J.T. Rodgers, P. Puigserver, Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl Acad. Sci. 104(31), 12861–12866 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. D. Wei, R. Tao, Y. Zhang, M.F. White, X.C. Dong, Feedback regulation of hepatic gluconeogenesis through modulation of SHP/Nr0b2 gene expression by Sirt1 and FoxO1. Am. J. Physiol. Endocrinol. Metab. 300(2), E312–E320 (2010)

    PubMed  PubMed Central  Google Scholar 

  90. N. Sud, H. Zhang, K. Pan, X. Cheng, J. Cui, Q. Su, Aberrant expression of microRNA induced by high-fructose diet: implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance. J. Nutr. Biochem. 43, 125–131 (2017). https://doi.org/10.1016/j.jnutbio.2017.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. N.M. Leguisamo, A.M. Lehnen, U.F. Machado, M.M. Okamoto, M.M. Markoski, G.H. Pinto, B.D. Schaan, GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome. Cardiovasc Diabetol. 11(1), 100 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. A.C. Poletto, A. David-Silva, A.P. Yamamoto, M. de, U.F. Machado, D.T. Furuya, Reduced Slc2a4/GLUT4 expression in subcutaneous adipose tissue of monosodium glutamate obese mice is recovered after atorvastatin treatment. Diabetol. Metab. Syndr. 7(1), 18 (2015)

    PubMed  PubMed Central  Google Scholar 

  93. A.D. Silva, R.R. Favaro, D.T. Furuya, P.E. Silva, L.T. Belpiede, H.S. Freitas, M.M. Okamoto, F. Barrance, T.M. Zorn, U.F. Machado, Overexpression of GLUT2/ Slc2a2 are accompanied by Hnf-1α, Hnf-4α and Hnf-3β transcriptional. J. Liver, 4(3) (2015)

  94. K.S. Collison, M.Z. Zaidi, S.M. Saleh, N.J. Makhoul, A. Inglis, J. Burrows, J.A. Araujo, F.A. Al-Mohanna, Nutrigenomics of hepatic steatosis in a feline model: effect of monosodium glutamate, fructose, and trans-fat feeding. Genes Nutr. 7(2), 265–280 (2011)

    PubMed  PubMed Central  Google Scholar 

  95. E.G. Beale, R.E. Hammer, B. Antoine, C. Forest, Disregulatedglyceroneogenesis: PCK1 as a candidate diabetes and obesity gene. Trends Endocrinol. Metab. 15(3), 129–135 (2004)

    CAS  PubMed  Google Scholar 

  96. K.S. Collison, Z. Maqbool, S.M. Saleh, A. Inglis, N.J. Makhoul, R. Bakheet, M. Al-Johi, R. Al-Rabiah, M.Z. Zaidi, F.A. Al-Mohanna, Effect of dietary monosodium glutamate ontransfat-induced nonalcoholic fatty liver disease. J. Lipid Res. 50(8), 1521–1537 (2008)

    PubMed  Google Scholar 

  97. K.S. Collison, N.J. Makhoul, M.Z. Zaidi, A. Inglis, B.L. Andres, R. Ubungen, S. Saleh, F.A. Al-Mohanna, Prediabetic changes in gene expression induced by aspartame and monosodium glutamate in trans fat-fed C57Bl/6 J mice. Nutr. Metab. 10(1), 44 (2013)

    CAS  Google Scholar 

  98. K.S. Collison, Z.M. Maqbool, A.L. Inglis, N.J. Makhoul, S.M. Saleh, R.H. Bakheet, M.A. Al-Johi, R.K. Al-Rabiah, M.Z. Zaidi, F.A. Al-Mohanna, Effect of dietary monosodium glutamate on HFCS-induced hepatic steatosis: expression profiles in the liver and visceral fat. Obesity 18(6), 1122–1134 (2010)

    CAS  PubMed  Google Scholar 

  99. H. Wu, X. Deng, Y. Shi, Y. Su, J. Wei, H. Duan, PGC-1α, glucose metabolism and type 2 diabetes mellitus. J. Endocrinol. 229(3), R99–R115 (2016)

    CAS  PubMed  Google Scholar 

  100. Y. Zheng, S.H. Ley, F.B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14(2), 88 (2018)

    PubMed  Google Scholar 

  101. M. Sakurai, K. Nakamura, K. Miura, T. Takamura, K. Yoshita, S.Y. Nagasawa, H. Nakagawa, Dietary carbohydrate intake, presence of obesity and the incident risk of type 2 diabetes in Japanese men. J. Diabetes Investig. 7(3), 343–351 (2016)

    CAS  PubMed  Google Scholar 

  102. A. Khawaja, S. Qassim, N. Hassan, E.S.A. Arafa, Added sugar: nutritional knowledge and consumption pattern of a principal driver of obesity and diabetes among undergraduates in UAE. Diabetes Metab. Syndr. Clin. Res. Rev. 13(4), 2579–2584 (2019)

    Google Scholar 

  103. A. Nanditha, R.C. Ma, A. Ramachandran, C. Snehalatha, J.C. Chan, K.S. Chia, J.E. Shaw, P.Z. Zimmet, Diabetes in Asia and the Pacific: implications for the global epidemic. Diabetes Care 39(3), 472–485 (2016)

    CAS  PubMed  Google Scholar 

  104. A. Ramachandran, C. Snehalatha, S. Mary, B. Mukesh, A.D. Bhaskar, V. Vijay, The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49(2), 289–297 (2006)

    CAS  PubMed  Google Scholar 

  105. L.S. Gross, L. Li, E.S. Ford, S. Liu, Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am. J. Clin. Nutr. 79(5), 774–779 (2004)

    CAS  PubMed  Google Scholar 

  106. M.B. Schulze, J.E. Manson, D.S. Ludwig, G.A. Colditz, M.J. Stampfer, W.C. Willett, F.B. Hu, Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 292(8), 927–934 (2004)

    CAS  PubMed  Google Scholar 

  107. J.C. Chan, V. Malik, W. Jia, T. Kadowaki, C.S. Yajnik, K.H. Yoon, F.B. Hu, Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301(20), 2129–2140 (2009)

    CAS  PubMed  Google Scholar 

  108. K. Tsushita, A.S. Hosler, K. Miura, Y. Ito, T. Fukuda, A. Kitamura, K. Tatara, Rationale and descriptive analysis of specific health guidance: the nationwide lifestyle intervention program targeting metabolic syndrome in Japan. J. Atheroscler. Thromb 25(4), 308–322 (2018)

    PubMed  PubMed Central  Google Scholar 

  109. K. Kosaka, M. Noda, T. Kuzuya, Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res. Clin. Pract. 67(2), 152–162 (2005)

    PubMed  Google Scholar 

  110. X. Liu, Y. Zheng, M. Guasch-Ferré, M. Ruiz-Canela, E. Toledo, C. Clish, L. Liang, C. Razquin, D. Corella, R. Estruch, M. Fito, E. Gómez-Gracia, F. Arós, E. Ros, J. Lapetra, M. Fiol, L. Serra-Majem, C. Papandreou, M.A. Martínez-González, F.B. Hu, J. Salas-Salvadó, High plasma glutamate and low glutamine-to-glutamate ratio are associated with type 2 diabetes: case-cohort study within the PREDIMED trial. Nutr. Metab. Cardiovasc. Dis. 29(10), 1040–1049 (2019)

    CAS  PubMed  Google Scholar 

  111. T. Insawang, C. Selmi, U. Cha’on, S. Pethlert, P. Yongvanit, P. Areejitranusorn, P. Boonsiri, T. Khampitak, R. Tangrassameeprasert, C. Pinitsoontorn, V. Prasongwattana, M.E. Gershwin, V. Prasongwattana, Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutr. Metab. 9(1), 50 (2012)

    CAS  Google Scholar 

  112. K. He, S. Du, P. Xun, S. Sharma, H. Wang, F. Zhai, B. Popkin, Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). Am. J. Clin. Nutr. 93(6), 1328–1336 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Z. Shi, N.D. Luscombe-Marsh, G.A. Wittert, B. Yuan, Y. Dai, X. Pan, A.W. Taylor, Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults. Br. J. Nutr. 104(3), 457–463 (2010)

    CAS  PubMed  Google Scholar 

  114. Z. Shi, A.W. Taylor, B. Yuan, H. Zuo, G.A. Wittert, Monosodium glutamate intake is inversely related to the risk of hyperglycemia. Clin. Nutr. 33(5), 823–828 (2014)

    CAS  PubMed  Google Scholar 

  115. J.T. Brosnan, A. Drewnowski, M.I. Friedman, Is there a relationship between dietary MSG obesity in animals or humans? Amino Acids 46(9), 2075–2087 (2014)

    CAS  PubMed  Google Scholar 

  116. R. Hernández-Bautista, F. Alarcón-Aguilar, D.C. Escobar-Villanueva, J. Almanza-Pérez, H. Merino-Aguilar, M. Fainstein, N. López-Diazguerrero, Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice. Int. J. Mol. Sci. 15(7), 11473–11494 (2014)

    PubMed  PubMed Central  Google Scholar 

  117. V. Chavasit, W. Kriengsinyos, J. Photi, K. Tontisirin, Trends of increases in potential risk factors and prevalence rates of diabetes mellitus in Thailand. Eur. J. Clin. Nutr. 71(7), 839 (2017)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research and writing of this paper was funded by Indonesia Ministry of Research, Technology, and Higher Education (021/SP-Lit/LPPM-01/DRPM/Multi/FTB/III/2019). We thank Helen Hendaria Kamandhari, Ph.D. for her editing and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulistyo Emantoko Dwi Putra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The studies conducted in this article do not involve human participants or animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathanael, J., Harsono, H.C.A., Wibawa, A.D. et al. The genetic basis of high-carbohydrate and high-monosodium glutamate diet related to the increase of likelihood of type 2 diabetes mellitus: a review. Endocrine 69, 18–29 (2020). https://doi.org/10.1007/s12020-020-02256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02256-x

Keywords

Navigation