Skip to main content

Genes Associated With Free Fatty Acid Levels and Dyslipidemia in Type 2 Diabetes Patients

  • Conference paper
  • First Online:
CMBEBIH 2019 (CMBEBIH 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 73))

Included in the following conference series:

  • 2285 Accesses

Abstract

Type 2 diabetes mellitus (T2D) is a complex metabolic disorder associated with disturbances not only in carbohydrates and proteins but also with impairment of lipid metabolism. It is largely influenced by complex interactions of environmental and genetic factors, or both. High prevalence and increasing number of patients with T2D in the world, represent constant challenge for better elucidation of pathophysiological processes that lead to development of disease. In this paper, I have tried to summarize the results of my research and new findings from recent analyses of genome-wide association studies (GWAS) which helped us in the identification of common and rare genetic variants associated with insulin resistance (IR), dyslipidemia, Metabolic syndrome (MetS) and Type 2 diabetes. Many variants of certain genes are directly involved in glucose metabolism; however, functional and additional studies are suggested in order to be able to understand the contribution of other variants associated with impaired lipid and lipoprotein metabolism. New technologies such as metabolomics, proteomics, genomics, a more recently, lipidomics clearly point out directions in identification and detection of good/best biological gene candidates involved in fatty acid and lipoprotein metabolism. Mutational sequencing for these genes i.e. genetic regions associated with T2D, obesity, dyslipidemia and IR, could serve as a protective measure for not only insulin sensitivity but also, insulin secretion, obesity and other glycemic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pankow, J.S., Duncan, B.B., Schmidt, M.I., Ballantyne, C.M., Couper, D.J., Hoogeveen, R.C., Golden, S.H.: Fasting plasma free fatty acids and risk of type 2 diabetes. Diabetes Care 27, 77–82 (2004)

    Article  Google Scholar 

  2. Boden, G.: Free fatty acids as target for therapy. Curr. Opin. Endocrinol. Diabetes 11(5), 258–263 (2004)

    Article  Google Scholar 

  3. Cnop, M.: Fatty acids and glucolipotoxicity in the pathogenesis of type 2 diabetes. Biochem. Soc. Trans. 36(3), 348–352 (2008)

    Article  Google Scholar 

  4. Randle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A.: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1(7285), 785–789 (1963)

    Article  Google Scholar 

  5. Boden, G.: Free fatty acids and insulin secretion in humans. Curr. Diab. Rep. 5, 167–170 (2005)

    Article  Google Scholar 

  6. Boden, G.: Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 18(2), 139–143 (2011)

    Article  Google Scholar 

  7. Ragheb, R., Medhat, A.M.: Mechanisms of fatty acid-induced insulin resistance in muscle and liver. J. Diabetes Metab. 2, 127–132 (2011)

    Article  Google Scholar 

  8. Oh, Y.S., Bae, G.D., Baek, D.J., Park, E.-Y., Jun, H.-S.: Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front. Endocrinol. 9(384), 1–10 (2018)

    Google Scholar 

  9. Wolf, G.: Role of fatty acids in the development of insulin resistance and type 2 diabetes mellitus. Nutr. Rev. 66(10), 597–600 (2008)

    Article  Google Scholar 

  10. Lobo, S., Wiczer, B.M., Smith, A.J., Hall, A.M., Bernlohr, D.A.: Fatty acid metabolism in adipocytes: functional analysis of fatty acid transport proteins 1 and 4. J. Lipid Res. 48, 609–620 (2007)

    Article  Google Scholar 

  11. So, W.Y., Ng, M.C.Y., Lee, S.C., Sanke, T., Lee, H.K., Chan, J.C.N.: Genetics of type 2 diabetes mellitus. HKMJ 6(1), 69–76 (2000)

    Google Scholar 

  12. Brown, A.E., Walker, M.: Genetics of insulin resistance and the metabolic syndrome. Curr. Cardiol. Rep. 18(75), 1–8 (2016)

    Google Scholar 

  13. Fall, T., Xie, W., Poon, W., Yaghootkar, H., Mägi, R., Knowles, J.W., Lyssenko, V., et al.: Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes 64, 2676–2684 (2015)

    Article  Google Scholar 

  14. Georgiadi, A., Kersten, S.: Mechanisms of gene regulation by fatty acids. Adv. Nutr. 3, 127–134 (2012)

    Article  Google Scholar 

  15. Huang, M.C., Chang, W.T., Chang, H.Y., Chung, H.F., Chen, F.P., Huang, Y.F., et al.: FADS gene polymorphisms, fatty acid desaturase activities, and HDL-C in type 2 diabetes. Int. J. Environ. Res. Public Health 28(6), E572 (2017)

    Article  Google Scholar 

  16. Kommoju, U.J., Maruda, J., Kadarkarai Samy, S., Irgam, K., Kotla, J.P., Reddy, B.M.: Association of IRS1, CAPN10, and PPARG gene polymorphisms with type 2 diabetes mellitus in the high-risk population of Hyderabad India. J. Diabetes 6(6), 564–573 (2014)

    Article  Google Scholar 

  17. Moore, K.J., Goldberg, I.J.: The emerging roles of PCSK9: more than a one trick pony. Arter. Thromb. Vasc. Biol. 36(2), 211–212

    Google Scholar 

  18. Kong, H., Liu, Y., Zheng, L., Wang, Q., Zhang, Y.: One of the crucial proteins to influence type 2 diabetes: the high mobility group A1. Biosci. Biotech. Res. Comm. 9(4), 580–586 (2016)

    Google Scholar 

  19. Boucher, J., Kleinridders, A., Kahn, C.R.: Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, 1–23 (2014)

    Article  Google Scholar 

  20. Smith, C.E., Ordovás, J.M.: Fatty acid interactions with genetic polymorphisms for cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 13(2), 139–144 (2010)

    Article  Google Scholar 

  21. Hayakawa, J., Wang, M., Wang, C., Han, R.H., Jiang, Z.-Y., Han, X.: Lipidomic analysis reveals significant lipogenesis and accumulation of lipotoxic components in ob/ob mouse organs. PLEFA 136, 161–169 (2017)

    Google Scholar 

  22. Jump, D.B.: Dietary polyunsaturated fatty acid regulation of hepatic gene transcription. Scand. J. Nutr. 46(2), 59–67 (2002)

    Article  Google Scholar 

  23. Abbas, S., Raza, S.T., Ahmed, F., Ahmad, A., Rizvi, S., Mahdi, F.: Association of genetic polymorphism of PPARγ-2, ACE, MTHFR, FABP-2 and FTO genes in risk prediction of type 2 diabetes mellitus. J. Biomed. Sci. 20(80), 1–8 (2013)

    Google Scholar 

  24. Rousseaux, J., Duhamel, A., Dumont, J., Dallongeville, J., Molnar, D., Widhalm, K., et al.: The n-3 long-chain PUFAs modulate the impact of the GCKR Pro446Leu polymorphism on triglycerides in adolescents. J. Lipid Res. 56, 1774–1780 (2015)

    Article  Google Scholar 

  25. Billings, L.K., Florez, J.C.: The genetics of type 2 diabetes: what we learned from GWAS? Ann. N. Y. Acad. Sci. 1212, 59–77 (2010)

    Article  Google Scholar 

  26. Prasad, R.B., Groop, L.: Genetics of type 2 diabetes—pitfalls and possibilities. Genes 6, 87–123 (2015)

    Article  Google Scholar 

  27. Goh, G.Y.S., Winter, J.J., Bhanshali, F., Doering, K.R.S., Lai, R., Lee, K., et al.: NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell 17, 1–14 (2018)

    Article  Google Scholar 

  28. Wu, J.H.Y., Lemaitre, R.N., Manichaikul, A., Guan, W., Tanaka, T., Foy, M., et al.: Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway. Circ. Cardiovasc. Genet. 6, 171–183 (2017)

    Google Scholar 

  29. Schofield, J.D., Liu, Y., Rao-Balakrishna, P., Malik, R.A., Soran, H.: Diabetes dyslipidemia. Diabetes Ther. 7, 203–219 (2016)

    Article  Google Scholar 

  30. Taskinen, M.-R., Borén, J.: New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239, 483–495 (2015)

    Article  Google Scholar 

  31. Simopoulos, A.: The FTO gene, browning of adipose tissue and omega-3 fatty acids. J. Nutrigent. Nutrigenomics 9, 123–126 (2016)

    Article  Google Scholar 

  32. Bełtowski, J.: Liver X receptors (LXR) as therapeutic targets in dyslipidemia. Cardiovasc. Ther. 6, 297–316 (2008)

    Article  Google Scholar 

  33. Schoenborn, V., Heid, I.M., Vollmert, C., Lingenhel, A., Adams, T.D., Hopkins, P.N., et al.: The ATGL gene is associated with free fatty acids, triglycerides, and type 2 diabetes. Diabetes 55, 1270–1275 (2006)

    Article  Google Scholar 

  34. Zhu, J., Sun, Q., Zong, G., Si, Y., Liu, C., Qi, Q., et al.: Interaction between a common variant in FADS1 and erythrocyte polyunsaturated fatty acids on lipid profile in Chinese Hans. J. Lipid Res. 54, 1477–1483 (2013)

    Article  Google Scholar 

  35. Bardini, G., Rotella, C.M., Giannini, S.: Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and beta-cell dysfunction on micro- and macrovascular complications. Rev. Diab. Stud. 9(2–3), 82–93 (2012)

    Article  Google Scholar 

  36. Chen, Y.-C., Xu, C., Zhang, J.-G., Zeng, C.-P., Wang, X.-F., Zhou, R., et al.: Multivariate analysis of genomic data to identify potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia using Meta-CCA and gene-based approach. PLoS ONE 13(8), 1–16 (2018)

    Google Scholar 

  37. Scott, R.A., Scott, L.J., Mägi, R., Marullo, L., Gaulton, K.J., Kaakinen, M., et al.: An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017)

    Article  Google Scholar 

  38. Bego, T., Mandal, S., Dujic, T., Mlina, B., Semiz, S., Malenica, M., et al.: Association of LPIN1 gene variants with fatty acids in Bosnian population with metabolic syndrome. Biochim. Clin. (Special Supplement) 37 (2013)

    Google Scholar 

  39. Lokvancic, H., Mandal, S., Adilovic, M., Sterner, M., Gremsperger, G., Ahqvist, E., et al.: Association of FADS1 genetic variation with free fatty acid levels and type 2 diabetes-related traits. Diabetologia 61(Suppl:1), 559 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandal, S. (2020). Genes Associated With Free Fatty Acid Levels and Dyslipidemia in Type 2 Diabetes Patients. In: Badnjevic, A., Škrbić, R., Gurbeta Pokvić, L. (eds) CMBEBIH 2019. CMBEBIH 2019. IFMBE Proceedings, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-17971-7_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17971-7_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17970-0

  • Online ISBN: 978-3-030-17971-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics