Skip to main content
Log in

Novel high molecular weight albumin-conjugated angiotensin II activates β-arrestin and G-protein pathways

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To study the ability of a novel bovine serum albumin-angiotensin II (BSA-Ang II) conjugate to effect responses of the AT1 angiotensin II receptor subtype mediated by the G-protein-coupled and the beta-arrestin pathways.

Methods

Angiotensin II (Ang II) was conjugated with bovine serum albumin and compared with Ang II for competition binding to AT1 receptors, to stimulate aldosterone release from adrenocortical cells, to promote beta-arrestin binding to AT1 receptors, to promote calcium mobilization, and stimulate drinking of water and saline by rats.

Results

The BSA-Ang II conjugate was less potent competing for AT1R binding, but was equally efficacious at stimulating aldosterone release from H295R adrenocortical cells. Both BSA-Ang II and Ang II stimulated calcium mobilization and beta-arrestin binding to AT1 receptors. BSA-Ang II and Ang II stimulated water appetite equivalently but BSA-Ang II stimulated saline appetite more than Ang II. Both BSA-Ang II and Ang II were considerably more potent at causing calcium mobilization than β-arrestin binding.

Conclusions

Addition of a high molecular weight molecule to Ang II reduced its AT1 receptor binding affinity, but did not significantly alter stimulation of aldosterone release or water consumption. The BSA-Ang II conjugate caused a greater saline appetite than Ang II suggesting that it may be a more efficacious agonist of this beta-arrestin-mediated response than Ang II. The higher potency calcium signaling response suggests that the G-protein-coupled responses predominate at physiological concentrations of Ang II, while the beta-arrestin response requires pathophysiological or pharmacological concentrations of Ang II to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ang II:

angiotensin II;

ARBs:

angiotensin receptor blockers;

AT1R:

angiotensin II receptor subtype 1;

AT2R:

angiotensin II receptor subtype 2;

BSA-Ang II:

Ang II conjugated to bovine albumin;

G-protein:

guanine nucleotide binding protein;

GPCR:

G-protein-coupled receptors;

ICV:

intracerebroventricular;

MAPK:

mitogen-activated protein kinase;

SI Ang II:

Sarcosine1 Isoleucine8 angiotensin II;

SII Ang II:

Sarcosine1 Isoleucine4 Isoleucine8 angiotensin II;

SMCC:

succinimydyl 4-[N-maleimidomethyl1]cyclohexane-1-carboxylate.

References

  1. S.D. Crowley, S.B. Gurley, M.I. Oliverio, A.K. Pazmino, R. Griffiths, P.J. Flannery, R.F. Spurney, H.S. Kim, O. Smithies, T.H. Le, T.M. Coffman, Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J. Clin. Invest. 115(4), 1092–1099 (2005)

    Article  CAS  Google Scholar 

  2. S.S. Karnik, H. Unal, J.R. Kemp, K.C. Tirupula, S. Eguchi, P.M. Vanderheyden, W.G. Thomas, International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli. Pharmacol. Rev. 67(4), 754–819 (2015). https://doi.org/10.1124/pr.114.010454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. F. Jaisser, N. Farman, Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol. Rev. 68(1), 49–75 (2016). https://doi.org/10.1124/pr.115.011106

    Article  CAS  PubMed  Google Scholar 

  4. M. Postolache, J. Santollo, D. Daniels, Associative learning contributes to the increased water intake observed after daily injections of angiotensin II. Physiol. Behav. 179, 340–345 (2017). https://doi.org/10.1016/j.physbeh.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Oka, M. Ye, C.S. Zuker, Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520(7547), 349–352 (2015). https://doi.org/10.1038/nature14108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D.A. Booth, Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. J. Pharmacol. Exp. Ther. 160(2), 336–348 (1968)

    CAS  PubMed  Google Scholar 

  7. J.T. Fitzsimons, E.M. Stricker, Sodium appetite and the renin-angiotensin system. Nat.: New Biol. 231(19), 58–60 (1971)

    CAS  Google Scholar 

  8. J.T. Fitzsimons, Angiotensin, thirst, and sodium appetite: retrospect and prospect. Fed. Proc. 37(13), 2669–2675 (1978)

    CAS  PubMed  Google Scholar 

  9. P.J. Harris, Stimulation of proximal tubular sodium reabsorption by Ile5 angiotensin II in the rat kidney. Pflug. Arch. 369, 83–85 (1979)

    Article  Google Scholar 

  10. P.B. Timmermans, P. Benfield, A.T. Chiu, W.F. Herblin, P.C. Wong, R.D. Smith, Angiotensin II receptors and functional correlates. Am. J. Hypertens. 5(12 Pt 2), 221S–235S (1992)

    Article  CAS  Google Scholar 

  11. S. AbdAlla, H. Lother, U. Quitterer, AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407(6800), 94–98 (2000)

    Article  CAS  Google Scholar 

  12. Y. Daaka, L.M. Luttrell, S. Ahn, G.J. Della Rocca, S.S. Ferguson, M.G. Caron, R.J. Lefkowitz, Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273(2), 685–688 (1998)

    Article  CAS  Google Scholar 

  13. L.M. Luttrell, F.L. Roudabush, E.W. Choy, W.E. Miller, M.E. Field, K.L. Pierce, R.J. Lefkowitz, Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl Acad. Sci. USA 98(5), 2449–2454 (2001). https://doi.org/10.1073/pnas.041604898

    Article  CAS  Google Scholar 

  14. Kohout, T. A., Lin, F. S., Perry, S. J., Conner, D. A., Lefkowitz, R. J.: beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc. Natl Acad. Sci. USA 98(4), 1601–1606 (2001). https://doi.org/10.1073/pnas.041608198

    CAS  Google Scholar 

  15. R.H. Oakley, S.A. Laporte, J.A. Holt, M.G. Caron, L.S. Barak, Differential affinities of visual arrestin, betaarrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275(22), 17201–17210 (2000). https://doi.org/10.1074/jbc.M910348199

    Article  CAS  PubMed  Google Scholar 

  16. R.J. Lefkowitz, K. Rajagopal, E.J. Whalen, New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol. cell 24(5), 643–652 (2006). https://doi.org/10.1016/j.molcel.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  17. M.M. Monasky, D.M. Taglieri, M. Henze, C.M. Warren, M.S. Utter, D.G. Soergel, J.D. Violin, R.J. Solaro, The beta-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium. Am. J. Physiol. Heart Circ. Physiol. 305(6), H856–866 (2013). https://doi.org/10.1152/ajpheart.00327.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D.G. Romero, M.Y. Zhou, L.L. Yanes, M.W. Plonczynski, T.R. Washington, C.E. Gomez-Sanchez, E.P. Gomez-Sanchez, Regulators of G-protein signaling 4 in adrenal gland: localization, regulation, and role in aldosterone secretion. J. Endocrinol. 194(2), 429–440 (2007). https://doi.org/10.1677/joe-07-0153

    Article  CAS  PubMed  Google Scholar 

  19. A. Lymperopoulos, G. Rengo, C. Zincarelli, J. Kim, S. Soltys, W.J. Koch, An adrenal beta-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc. Natl Acad. Sci. USA 106(14), 5825–5830 (2009). https://doi.org/10.1073/pnas.0811706106

    Article  CAS  Google Scholar 

  20. H. Rasmussen, C.M. Isales, R. Calle, D. Throckmorton, M. Anderson, J. Gasalla-Herraiz, R. McCarthy, Diacylglycerol production, Ca2+ influx, and protein kinase C activation in sustained cellular responses. Endocr. Rev. 16(5), 649–681 (1995). https://doi.org/10.1210/edrv-16-5-649

    Article  CAS  PubMed  Google Scholar 

  21. A.C. Holloway, H. Qian, L. Pipolo, J. Ziogas, S. Miura, S. Karnik, B.R. Southwell, M.J. Lew, W.G. Thomas, Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol. Pharmacol. 61(4), 768–777 (2002)

    Article  CAS  Google Scholar 

  22. J.D. Violin, S.M. DeWire, D. Yamashita, D.H. Rominger, L. Nguyen, K. Schiller, E.J. Whalen, M. Gowen, M.W. Lark, Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335(3), 572–579 (2010). https://doi.org/10.1124/jpet.110.173005

    Article  CAS  PubMed  Google Scholar 

  23. B. Greenberg, Novel therapies for heart failure- where do they stand? Circ. J. 80(9), 1882–1891 (2016). https://doi.org/10.1253/circj.CJ-16-0742

    Article  PubMed  Google Scholar 

  24. D. Daniels, D.K. Yee, L.F. Faulconbridge, S.J. Fluharty, Divergent behavioral roles of angiotensin receptor intracellular signaling cascades. Endocrinology 146(12), 5552–5560 (2005)

    Article  CAS  Google Scholar 

  25. D. Daniels, E.G. Mietlicki, E.L. Nowak, S.J. Fluharty, Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats. Exp. Physiol. 94(1), 130–137 (2009)

    Article  CAS  Google Scholar 

  26. J. Liu, G.L. Yosten, H. Ji, D. Zhang, W. Zheng, R. C. Speth, W. K. Samson, K. Sandberg, Selective inhibition of angiotensin receptor signaling through Erk1/2 pathway by a novel peptide. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2014). https://doi.org/10.1152/ajpregu.00562.2013

    Article  CAS  Google Scholar 

  27. D. Torres-Tirado, J. Ramiro-Diaz, M.T. Knabb, R. Rubio, Molecular weight of different angiotensin II polymers directly determines: density of endothelial membrane AT1 receptors and coronary vasoconstriction. Vasc. Pharmacol. 58(5-6), 346–355 (2013). https://doi.org/10.1016/j.vph.2013.03.002

    Article  CAS  Google Scholar 

  28. P.J. Vento, D. Daniels, Repeated administration of angiotensin II reduces its dipsogenic effect without affecting saline intake. Exp. Physiol. 95(6), 736–745 (2010)

    Article  CAS  Google Scholar 

  29. J. Santollo, A.M. Torregrossa, D. Daniels, Sex differences in the drinking response to angiotensin II (AngII): Effect of body weight. Horm. Behav. 93, 128–136 (2017). https://doi.org/10.1016/j.yhbeh.2017.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. K.L. Grove, R.C. Speth, Angiotensin II and non-angiotensin II displaceable binding sites for [3H]losartan in the rat liver. Biochem. Pharmacol. 46(9), 1653–1660 (1993)

    Article  CAS  Google Scholar 

  31. I.M. Bird, R.A. Word, C. Clyne, J.I. Mason, W.E. Rainey, Potassium negatively regulates angiotensin II type 1 receptor expression in human adrenocortical H295R cells. Hypertension 25(6), 1129–1134 (1995)

    Article  CAS  Google Scholar 

  32. I.M. Bird, J.I. Mason, W.E. Rainey, Regulation of type 1 angiotensin II receptor messenger ribonucleic acid expression in human adrenocortical carcinoma H295 cells. Endocrinology 134, 2468–2474 (1994)

    Article  CAS  Google Scholar 

  33. X. Lu, K.L. Grove, W. Zhang, R.C. Speth, Pharmacological characterization of angiotensin II AT(2) receptor subtype heterogeneity in the rat adrenal cortex and medulla. Endocrine 3(4), 255–261 (1995). https://doi.org/10.1007/bf03021402

    Article  CAS  PubMed  Google Scholar 

  34. J. Castillo-Hernandez, D. Torres-Tirado, A. Barajas-Espinosa, E. Chi-Ahumada, J. Ramiro-Diaz, G. Ceballos, R. Rubio, Two dissimilar AT(1) agonists distinctively activate AT(1) receptors located on the luminal membrane of coronary endothelium. Vasc. Pharmacol. 51(5-6), 314–322 (2009). https://doi.org/10.1016/j.vph.2009.07.003

    Article  CAS  Google Scholar 

  35. I.M. Bird, N.A. Hanley, R.A. Word, J.M. Mathis, J.L. McCarthy, J.I. Mason, W.E. Rainey, Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. Endocrinology 133(4), 1555–1561 (1993). https://doi.org/10.1210/endo.133.4.8404594

    Article  CAS  PubMed  Google Scholar 

  36. M. Oppermann, N.J. Freedman, R.W. Alexander, R.J. Lefkowitz, Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C. J. Biol. Chem. 271, 13266–13272 (1996)

    Article  CAS  Google Scholar 

  37. T. Inagami, S. Eguchi, K. Numaguchi, E.D. Motley, H. Tang, T. Matsumoto, T. Yamakawa, Cross-talk between angiotensin II receptors and the tyrosine kinases and phosphatases. J. Am. Soc. Nephrol.: JASN 10(Suppl 11), S57–61 (1999)

    CAS  PubMed  Google Scholar 

  38. C.M. Godin, S.S. Ferguson, Biased agonism of the angiotensin II type 1 receptor. Mini Rev. Med. Chem. 12(9), 812–816 (2012)

    Article  CAS  Google Scholar 

  39. K. Eichel, D. Jullié, B. Barsi-Rhyne, N.R. Latorraca, M. Masureel, J.-B. Sibarita, R.O. Dror, M. von Zastrow, Catalytic activation of β-arrestin by GPCRs. Nature 557(7705), 381–386 (2018). https://doi.org/10.1038/s41586-018-0079-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Eichel, D. Jullie, M. von Zastrow, beta-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat. Cell Biol. 18(3), 303–310 (2016). https://doi.org/10.1038/ncb3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. G. Mariani, S. Ito, R.C. Nayak, J. Baranowska-Kortylewicz, C.N. Venkateshan, A.D. Van den Abbeele, G.S. Eisenbarth, S.J. Adelstein, A.I: Kassis, Capping and internalization of a monoclonal antibody-surface antigen complex: a possible mode of interaction of monoclonal antibodies and tumor cells. J. Nucl. Biol. Med. (Turin, Italy.: 1991) 35(2), 111–119 (1991)

    CAS  Google Scholar 

  42. O. Behnke, Surface membrane clearing of receptor-ligand complexes in human blood platelets. J. cell Sci. 87(Pt 3), 465–472 (1987)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Anastasios Lymperopoulos for assistance in experimental design and Dr. Douglas Lappi and Denise Higgins for editorial suggestions. This study was funded by a President’s Faculty Research Development Grant from Nova Southeastern University and the Cardiovascular Neuroscience Fund, Nova Southeastern University and NIH, HL-113905.

Author contributions

Participated in research design: H.W.P., A.L., L.C., J.S., D.D., and R.C.S.; Conducted experiments and performed data analysis: H.W.P., A.L., L.C., J.S., L.A., D.D., and R.C.S.; Wrote or contributed to the writing of the manuscript: H.W.P., J.S., L.A., D.D., and R.C.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Speth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, H.W., Linares, A., Couling, L. et al. Novel high molecular weight albumin-conjugated angiotensin II activates β-arrestin and G-protein pathways. Endocrine 66, 349–359 (2019). https://doi.org/10.1007/s12020-019-01930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01930-z

Keywords

Navigation