Skip to main content
Log in

Low-after-high glucose down-regulated Cx43 in H9c2 cells by autophagy activation via cross-regulation by the PI3K/Akt/mTOR and MEK/ERK1/2 signal pathways

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Hypoglycemia in diabetes is a strong predictor of cardiovascular events. High-glucose have been reported to alter connexin43 expression and to promote autophagy in cardiomyocytes. We investigated whether low-after-high glucose would influence connexin43 expression and autophagy in H9c2 cells.

Methods

H9c2 cells were incubated in 33.3 mM glucose for 24 h followed by 2.5 mM glucose for 2, 4, 6, or 12 h with or without chloroquine (autophagy inhibitor), U0126 (MEK1/2 inhibitor) or LY294002 (PI3K inhibitor). Cells incubated in 5.5, 33.3, or 2.5 mM glucose with or without inhibitors and in the presence of mannitol were used as controls. Protein expression was assayed by western blot, apoptosis was assayed by flow cytometry, cell proliferation was determined by MTT assays, and cytotoxicity was assayed by lactate dehydrogenase measurement.

Results

Cytotoxicity and early apoptosis were increased and cell proliferation was decreased after exposure to low-after-high glucose, and these results were reversed by chloroquine and U0126 but were aggravated by LY294002. Connexin43 expression was downregulated in a time-dependent manner and was accompanied by upregulated expression of LC3-II, Beclin-1, p62, p-Akt, p-mTOR, and p-ERK1/2. Chloroquine suppressed autophagy and reversed the downregulation of connexin43. U0126 inhibited ERK activation and decreased autophagy proteins expression but increased connexin43 expression. LY294002 suppressed p-Akt, activated autophagy, and decreased connexin43 expression. Interestingly, MEK1/2 inhibition also increased p-Akt expression, but inhibition of PI3K led to p-ERK downregulation.

Conclusion

Culturing H9c2 cells under low-after-high glucose downregulated connexin43 by promoting autophagy through a mechanism involving the PI3K/Akt/mTOR and MEK/ERK1/2 signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.D. Mooradian, Cardiovascular disease in type 2 diabetes mellitus: current management guidelines. Arch. Intern. Med. 163(1), 33–40 (2003)

    Article  PubMed  Google Scholar 

  2. P. Zimmet, K.G. Alberti, J. Shaw, Global and societal implications of the diabetes epidemic. Nature 414(6865), 782–787 (2001). doi:10.1038/414782a.

    Article  CAS  PubMed  Google Scholar 

  3. Z.Y. Fang, J.B. Prins, T.H. Marwick, Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr. Rev. 25(4), 543–567 (2004). doi:10.1210/er.2003-0012.

    Article  CAS  PubMed  Google Scholar 

  4. S. Zoungas, A. Patel, J. Chalmers, B.E. de Galan, Q. Li, L. Billot, M. Woodward, T. Ninomiya, B. Neal, S. MacMahon, D.E. Grobbee, A.P. Kengne, M. Marre, S. Heller, Severe hypoglycemia and risks of vascular events and death. N. Eng. J. Med. 363(15), 1410–1418 (2010). doi:10.1056/NEJMoa1003795.

    Article  CAS  Google Scholar 

  5. R.T. Robinson, N.D. Harris, R.H. Ireland, S. Lee, C. Newman, S.R. Heller, Mechanisms of abnormal cardiac repolarization during insulin-induced hypoglycemia. Diabetes 52(6), 1469–1474 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. P. Dandona, A. Chaudhuri, S. Dhindsa, Proinflammatory and prothrombotic effects of hypoglycemia. Diabetes Care 33(7), 1686–1687 (2010). doi:10.2337/dc10-0503.

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. Mureli, C.P. Gans, D.J. Bare, D.L. Geenen, N.M. Kumar, K. Banach, Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. Am. J. Physiol. Heart. Circ. Physiol. 304(4), H600–609 (2013). doi:10.1152/ajpheart.00533.2012.

    Article  CAS  PubMed  Google Scholar 

  8. T. Desplantez, E. Dupont, N.J. Severs, R. Weingart, Gap junction channels and cardiac impulse propagation. J. Membr. Biol. 218(1–3), 13–28 (2007). doi:10.1007/s00232-007-9046-8.

    Article  CAS  PubMed  Google Scholar 

  9. T. Martins-Marques, S. Catarino, M. Zuzarte, C. Marques, P. Matafome, P. Pereira, H. Girao, Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes. Biochem. J. 467(2), 231–245 (2015). doi:10.1042/bj20141370.

    Article  CAS  PubMed  Google Scholar 

  10. T. Martins-Marques, S. Catarino, C. Marques, P. Pereira, H. Girao, To beat or not to beat: degradation of Cx43 imposes the heart rhythm. Biochem. Soc. Trans. 43(3), 476–481 (2015). doi:10.1042/bst20150046.

    Article  CAS  PubMed  Google Scholar 

  11. G.G. Hesketh, M.H. Shah, V.L. Halperin, C.A. Cooke, F.G. Akar, T.E. Yen, D.A. Kass, C.E. Machamer, J.E. Van Eyk, G.F. Tomaselli, Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ. Res. 106(6), 1153–1163 (2010). doi:10.1161/circresaha.108.182147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C.A. Rutledge, F.S. Ng, M.S. Sulkin, I.D. Greener, A.M. Sergeyenko, H. Liu, J. Gemel, E.C. Beyer, A.A. Sovari, I.R. Efimov, S.C. Dudley, c-Src kinase inhibition reduces arrhythmia inducibility and connexin43 dysregulation after myocardial infarction. J. Am. Coll. Cardiol. 63(9), 928–934 (2014). doi:10.1016/j.jacc.2013.10.081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Radosinska, L.H. Kurahara, K. Hiraishi, C. Viczenczova, T. Egan Benova, B. Szeiffova Bacova, V. Dosenko, J. Navarova, B. Obsitnik, I. Imanaga, T. Soukup, N. Tribulova, Modulation of cardiac connexin-43 by omega-3 fatty acid ethyl-ester supplementation demonstrated in spontaneously diabetic rats. Physiol. Res. 64(6), 795–806 (2015)

    CAS  PubMed  Google Scholar 

  14. Z. Anna, S. Angela, B. Barbara, R. Jana, B. Tamara, V. Csilla, D. Victor, M. Oleksiy, T. Narcisa, Heart-protective effect of n-3 PUFA demonstrated in a rat model of diabetic cardiomyopathy. Mol. Cell. Biochem. 389(1–2), 219–227 (2014). doi:10.1007/s11010-013-1943-9.

    Article  CAS  PubMed  Google Scholar 

  15. L. Yu, H. Yu, X. Li, C. Jin, Y. Zhao, S. Xu, X. Sheng, P38 MAPK/miR-1 are involved in the protective effect of EGCG in high glucose-induced Cx43 downregulation in neonatal rat cardiomyocytes. Cell. Biol. Int. (2016). doi:10.1002/cbin.10637.

  16. L. Yu, Y. Zhao, Y. Fan, M. Wang, S. Xu, G. Fu, Epigallocatechin-3 gallate, a green tea catechin, attenuated the downregulation of the cardiac gap junction induced by high glucose in neonatal rat cardiomyocytes. Cell. Physiol. Biochem. 26(3), 403–412 (2010). doi:10.1159/000320564.

    Article  CAS  PubMed  Google Scholar 

  17. F.S. Hesari, N. Khajehnasiri, S.M. Khojasteh, F.G. Soufi, A. Dastranj, Attenuation of phosphorylated connexin-43 protein levels in diabetic rat heart by regular moderate exercise. Arch. Iran. Med. 17(8), 569–573 (2014). doi:aim.009/aim.009.

    Article  PubMed  Google Scholar 

  18. B. Levine, G. Kroemer, Autophagy in the pathogenesis of disease. Cell 132(1), 27–42 (2008). doi:10.1016/j.cell.2007.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Wang, M.W. Whiteman, H. Lian, G. Wang, A. Singh, D. Huang, T. Denmark, A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem. 284(32), 21412–21424 (2009). doi:10.1074/jbc.M109.026013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D.J. Klionsky, The molecular machinery of autophagy: unanswered questions. J. Cell. Sci. 118(Pt 1), 7–18 (2005). doi:10.1242/jcs.01620.

    Article  CAS  PubMed  Google Scholar 

  21. J.T. Fong, R.M. Kells, A.M. Gumpert, J.Y. Marzillier, M.W. Davidson, M.M. Falk, Internalized gap junctions are degraded by autophagy. Autophagy 8(5), 794–811 (2012). doi:10.4161/auto.19390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Shinojima, T. Yokoyama, Y. Kondo, S. Kondo, Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3(6), 635–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. A. Wang, H. Zhang, Z. Liang, K. Xu, W. Qiu, Y. Tian, H. Guo, J. Jia, E. Xing, R. Chen, Z. Xiang, J. Liu, U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur. J. Pharmacol. 788, 280–285 (2016). doi:10.1016/j.ejphar.2016.06.038.

    Article  CAS  PubMed  Google Scholar 

  24. B. Roy, A.K. Pattanaik, J. Das, S.K. Bhutia, B. Behera, P. Singh, T.K. Maiti, Role of PI3K/Akt/mTOR and MEK/ERK pathway in Concanavalin A induced autophagy in HeLa cells. Chem. Biol. Interact. 210, 96–102 (2014). doi:10.1016/j.cbi.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  25. L. Yang, W. Guo, Q. Zhang, H. Li, X. Liu, Y. Yang, J. Zuo, W. Liu, Crosstalk between Raf/MEK/ERK and PI3K/AKT in suppression of Bax conformational change by Grp75 under glucose deprivation conditions. J. Mol. Biol. 414(5), 654–666 (2011). doi:10.1016/j.jmb.2011.09.009.

    Article  CAS  PubMed  Google Scholar 

  26. N. Martinez-Lopez, D. Athonvarangkul, P. Mishall, S. Sahu, R. Singh, Autophagy proteins regulate ERK phosphorylation. Nat. Commun. 4, 2799 (2013). doi:10.1038/ncomms3799.

    Article  CAS  PubMed  Google Scholar 

  27. A. Lichtenstein, P.J. Minogue, E.C. Beyer, V.M. Berthoud, Autophagy: a pathway that contributes to connexin degradation. J. Cell. Sci. 124(Pt 6), 910–920 (2011). doi:10.1242/jcs.073072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Zalesak, P. Blazicek, I. Gablovsky, V. Ledvenyiova, M. Bartekova, A. Ziegelhoffer, T. Ravingerova, Impaired PI3K/Akt signaling as a potential cause of failure to precondition rat hearts under conditions of simulated hyperglycemia. Physiol. Res. 64(5), 633–641 (2015).

    CAS  PubMed  Google Scholar 

  29. K. Chojnacka, M. Zarzycka, A. Hejmej, D.D. Mruk, E. Gorowska, M. Kotula-Balak, M. Klimek, B. Bilinska, Hydroxyflutamide affects connexin 43 via the activation of PI3K/Akt-dependent pathway but has no effect on the crosstalk between PI3K/Akt and ERK1/2 pathways at the Raf-1 kinase level in primary rat Sertoli cells. Toxicol. in vitro 31, 146–157 (2016). doi:10.1016/j.tiv.2015.09.027.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zhao, L. Yu, S. Xu, F. Qiu, Y. Fan, G. Fu, Down-regulation of connexin43 gap junction by serum deprivation in human endothelial cells was improved by (-)-Epigallocatechin gallate via ERK MAP kinase pathway. Biochem. Biophys. Res. Commun. 404(1), 217–222 (2011). doi:10.1016/j.bbrc.2010.11.096.

    Article  CAS  PubMed  Google Scholar 

  31. O.K. Mirzoeva, D. Das, L.M. Heiser, S. Bhattacharya, D. Siwak, R. Gendelman, N. Bayani, N.J. Wang, R.M. Neve, Y. Guan, Z. Hu, Z. Knight, H.S. Feiler, P. Gascard, B. Parvin, P.T. Spellman, K.M. Shokat, A.J. Wyrobek, M.J. Bissell, F. McCormick, W.L. Kuo, G.B. Mills, J.W. Gray, W.M. Korn, Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res. 69(2), 565–572 (2009). doi:10.1158/0008-5472.can-08-3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Zhou, T. Du, B. Li, Y. Rong, A. Verkhratsky, L. Peng, Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN. Neuro. 7(5), (2015). doi:10.1177/1759091415602463.

  33. S. Yu, X. Cai, C. Wu, L. Wu, Y. Wang, Y. Liu, Z. Yu, S. Qin, F. Ma, J.P. Thiery, L. Chen, Adhesion glycoprotein CD44 functions as an upstream regulator of a network connecting ERK, AKT and Hippo-YAP pathways in cancer progression. Oncotarget 6(5), 2951–2965 (2015). doi:10.18632/oncotarget.3095.

    Article  PubMed  Google Scholar 

  34. F. Zhang, T. Ding, L. Yu, Y. Zhong, H. Dai, M. Yan, Dexmedetomidine protects against oxygen-glucose deprivation-induced injury through the I2 imidazoline receptor-PI3K/AKT pathway in rat C6 glioma cells. J. Pharm. Pharmacol. 64(1), 120–127 (2012). doi:10.1111/j.2042-7158.2011.01382.x.

    Article  CAS  PubMed  Google Scholar 

  35. J. DeSalvo, J.N. Kuznetsov, J. Du, G.M. Leclerc, G.J. Leclerc, T.J. Lampidis, J.C. Barredo, Inhibition of Akt potentiates 2-DG-induced apoptosis via downregulation of UPR in acute lymphoblastic leukemia. Mol. Cancer Res. 10(7), 969–978 (2012). doi:10.1158/1541-7786.mcr-12-0125.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Shanghai Committee of Science and Technology, China (grant No. 13ZR1431500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Y., Wang, G., Liu, X. et al. Low-after-high glucose down-regulated Cx43 in H9c2 cells by autophagy activation via cross-regulation by the PI3K/Akt/mTOR and MEK/ERK1/2 signal pathways. Endocrine 56, 336–345 (2017). https://doi.org/10.1007/s12020-017-1251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1251-3

Keywords

Navigation