Skip to main content
Log in

Gap Junction Channels and Cardiac Impulse Propagation

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barrio LC, Capel J, Jarillo JA, Castro C, Revilla A (1997) Species-specific voltage-gating properties of connexin-45 junctions expressed in Xenopus oocytes. Biophys J 73:757–769

    PubMed  CAS  Google Scholar 

  • Beauchamp P, Yamada KA, Baertschi AJ, Green K, Kanter EM, Saffitz JE, Kleber AG (2006) Relative contributions of connexins 40 and 43 to atrial impulse propagation in synthetic strands of neonatal and fetal murine cardiomyocytes. Circ Res 99:1216–1224

    Article  PubMed  CAS  Google Scholar 

  • Bukauskas FF, Elfgang C, Willecke K, Weingart R (1995) Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys J 68:2289–2298

    PubMed  CAS  Google Scholar 

  • Coppen SR, Kodama I, Boyett MR, Dobrzynski H, Takagishi Y, Honjo H, Yeh HI, Severs NJ (1999a) Connexin45, a major connexin of the rabbit sinoatrial node, is coexpressed with connexin43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem 47:907–918

    Google Scholar 

  • Coppen SR, Severs NJ (2002) Diversity of connexin expression patterns in the atrioventricular node: vestigial consequence or functional specialization? J Cardiovasc Electrophysiol 13:625–626

    Article  PubMed  Google Scholar 

  • Coppen SR, Severs NJ, Gourdie RG (1999b) Connexin45 (a6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet 24:82–90

    Google Scholar 

  • Cottrell GT, Burt JM (2001) Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons. Am J Physiol 281:C1559–C1567

    CAS  Google Scholar 

  • Cottrell TG, Wu Y, Burt JM (2002) Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties. Am J Physiol 282:C1469–C1482

    CAS  Google Scholar 

  • Desplantez T, Halliday D, Dupont E, Weingart R (2004) Cardiac connexins Cx43 and Cx45: formation of diverse gap junction channels with diverse electrical properties. Pfluegers Arch 448:363–375

    CAS  Google Scholar 

  • Desplantez T, Dupont E, Thomas N, Severs NJ, Weingart R (2005) Tandem constructs of Cx40, Cx43 and Cx45 to probe properties of heteromeric channels of known composition. Abstracts of the International Gap Junction Conference, August 13–18, 2005, Whistler, BC, Canada, p 121

  • Dupont E, Matsushita T, Kaba R, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33:359–371

    Article  PubMed  CAS  Google Scholar 

  • Elenes S, Rubart M, Moreno AP (1999) Junctional communication between isolated pairs of canine atrial cells is mediated by homogeneous and heterogeneous gap junction channels. J Cardiovasc Electrophysiol 10:990–1004

    Article  PubMed  CAS  Google Scholar 

  • Elenes S, Martinez AD, Delmar M, Beyer E, Moreno AP (2001) Heterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43. Biophys J 81:1406–1418

    PubMed  CAS  Google Scholar 

  • Gourdie RG, Green CR, Severs NJ (1991) Gap junction distribution in adult mammalian myocardium revealed by an antipeptide antibody and laser scanning confocal microscopy. J Cell Sci 99:41–55

    PubMed  Google Scholar 

  • Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P, Thompson RP (1993) The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of the cardiac atrioventricular conduction system. J Cell Sci 105:985–991

    PubMed  CAS  Google Scholar 

  • Gros D, Jarry-Guichard T, ten Velde I, De Mazière AMGL, Van Kempen MJA, Davoust J, Briand JP, Moorman AFM, Jongsma HJ (1994) Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ Res 74:839–851

    PubMed  CAS  Google Scholar 

  • Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  CAS  Google Scholar 

  • Harris AL, Spray DC, Bennett MVL (1981) Kinetic properties of a voltage-dependent junctional conductance. J Gen Physiol 77:95–117

    Article  PubMed  CAS  Google Scholar 

  • He DS, Jiang JX, Taffet SM, Burt JM (1999) Formation of heteromeric gap junction channels by connexin 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci USA 96:6495–6500

    Article  PubMed  CAS  Google Scholar 

  • Hoyt RH, Cohen ML, Saffitz JE (1989) Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ Res 64:563–574

    PubMed  CAS  Google Scholar 

  • Kaba RA, Yacoub MH, Dupont E, Elneil S, Skepper J, Coppen SR, Pepper JR, Severs NJ (2003) Gap junctions in the atrio-ventricular conduction axis of the human heart. Eur Heart J 24:505

    Google Scholar 

  • Kitamura H, Ohnishi Y, Yoshida A, Okajima K, Azumi H, Ishida A, Galeano EJ, Kubo S, Hayashi Y, Itoh H, Yokoyama M (2002) Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. J Cardiovasc Electrophysiol 13:865–870

    Article  PubMed  Google Scholar 

  • Kléber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488

    Article  PubMed  Google Scholar 

  • Kléber AG, Janse MJ, Fast VG (2001) Normal and abnormal conduction in the heart. In: Handbook of Physiology, sect. 2, The Cardiovascular System, vol. 1, The Heart. Oxford: Oxford University Press, pp 455–530

  • Ko YS, Yeh HI, Ko YL, Hsu YC, Chen CF, Wu S, Lee YS, Severs NJ (2004) Three-dimensional reconstruction of the rabbit atrioventricular conduction axis by combining histological, desmin, and connexin mapping data. Circulation 109:1172–1179

    Article  PubMed  Google Scholar 

  • Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62:426–436

    Article  PubMed  CAS  Google Scholar 

  • Kostin S, Rieger M, Dammer S, Hein S, Richter M, Klovekorn WP, Bauer EP, Schaper J (2003) Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol Cell Biochem 242:135–144

    Article  PubMed  CAS  Google Scholar 

  • Kreuzberg MM, Schrickel JW, Ghanem A, Kim JS, Degen J, Janssen-Bienhold U, Lewalter T, Tiemann K, Willecke K (2006) Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proc Natl Acad Sci USA 103:5959–5964

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61:829–913

    PubMed  CAS  Google Scholar 

  • Loewenstein WR, Socolar SJ, Higashino S, Kanno Y, Davidson N (1965) Intercellular communication: renal, urinary bladder, sensory, and salivary gland cells. Science 149:295–298

    Article  PubMed  Google Scholar 

  • Martinez AD, Hayrapetyan V, Moreno AP, Beyer EC (2002) Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ Res 90:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Miquerol L, Meysen S, Mangoni M, Bois P, van Rijen HV, Abran P, Jongsma HJ, Nargeot J, Gros D (2004) Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res 63:77–86

    Article  PubMed  CAS  Google Scholar 

  • Moreno AP, Laing JG, Beyer EC, Spray DC (1995) Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells. Am J Physiol 268:C356–C365

    PubMed  CAS  Google Scholar 

  • Peters NS, Green CR, Poole-Wilson PA, Severs NJ (1993) Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischaemic human hearts. Circulation 88:864–875

    PubMed  CAS  Google Scholar 

  • Polontchouk LD, Valiunas V, Haefliger J-A, Eppenberger HM, Weingart R (2002) Expression and regulation of connexins in cultured ventricular myocytes isolated from adult rat hearts. Pfluegers Arch 443:676–689

    Article  CAS  Google Scholar 

  • Rackauskas M, Kreuzberg MM, Pranevicius M, Willecke K, Verselis VK, Bukauskas FF (2007) Gating properties of heterotypic gap junction channels formed of connexins 40, 43 and 45. Biophys J 92:1952–1965

    Article  PubMed  CAS  Google Scholar 

  • Severs NJ (1989a) Constituent cells of the heart and isolated cell models in cardiovascular research. In: Piper HM, Isenberg G (eds), Isolated Adult Cardiomyocytes, vol. 1. Boca Raton, FL: CRC Press, pp 3–41

  • Severs NJ (1989b) Gap junction shape and orientation at the cardiac intercalated disk. Circ Res 65:1458–1461

    Google Scholar 

  • Severs NJ (1990) The cardiac gap junction and intercalated disc. Int J Cardiol 26:137–173

    Article  PubMed  CAS  Google Scholar 

  • Severs NJ, Rothery S, Dupont E, Coppen SR, Yeh HI, Ko YS, Matsushita T, Kaba R, Halliday D (2001) Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech 52:301–322

    Article  PubMed  CAS  Google Scholar 

  • Severs NJ, Coppen SR, Dupont E, Yeh HI, Ko YS, Matsushita T (2004a) Gap junction alterations in human cardiac disease. Cardiovasc Res 62:368–377

  • Severs NJ, Dupont E, Coppen SR, Halliday D, Inett E, Baylis D, Rothery S (2004b) Remodelling of gap junctions and connexin expression in heart disease. Biochim Biophys Acta 1662:138–148

    Google Scholar 

  • Severs NJ, Dupont E, Kaba RA, Thomas N (2005) Gap junction and connexin remodeling in human heart disease. In: Winterhager E (ed), Gap Junctions in Development and Disease. Berlin: Springer, pp 57–82

    Chapter  Google Scholar 

  • Severs NJ, Dupont E, Thomas N, Kaba R, Rothery S, Jain R, Sharpey K, Fry CH (2006) Alterations in cardiac connexin expression in cardiomyopathies. Adv Cardiol 42:228–242

    Article  PubMed  CAS  Google Scholar 

  • Smith JH, Green CR, Peters NS, Rothery S, Severs NJ (1991) Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol 139:801–821

    PubMed  CAS  Google Scholar 

  • Valiunas V (2002) Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119:147–164

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V, Weingart R (2000) Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pfluegers Arch 440:366–379

    Article  CAS  Google Scholar 

  • Valiunas V, Bukauskas FF, Weingart R (1997) Conductances and selective permeability of connexin43 gap junction channels examined in neonatal rat heart cells. Circ Res 80:708–719

    PubMed  CAS  Google Scholar 

  • Valiunas V, Weingart R, Brink PR (2000) Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 86:e42–e49

    PubMed  CAS  Google Scholar 

  • Valiunas V, Gemel J, Brink PR, Beyer EC (2001) Gap junction channels formed by coexpressed connexin40 and connexin43. Am J Physiol 281:H1675–H1689

    CAS  Google Scholar 

  • Van Kempen MJA, ten Velde I, Wessels A, Oosthoek PW, Gros D, Jongsma HJ, Moorman AFM, Lamers WH (1995) Differential connexin distribution accommodates cardiac function in different species. Microsc Res Tech 31:420–436

    Article  PubMed  Google Scholar 

  • Van Rijen HVM, Wilders R, Van Ginneken ACG, Jongsma HJ (1998) Quantitative analysis of dual whole-cell voltage-clamp determinations of gap junction conductance. Pfluegers Arch 436:141–151

    Article  Google Scholar 

  • Van Veen TA, van Rijen HV, Jongsma HJ (2000) Electrical conductance of mouse connexin45 gap junction channels is modulated by phosphorylation. Cardiovasc Res 46:496–510

    Article  PubMed  Google Scholar 

  • Veenstra RD (1990) Voltage-dependent gating of gap junction channels in embryonic chick ventricular rat heart cells. Am J Physiol 258:C662–C672

    PubMed  CAS  Google Scholar 

  • Vogel R, Weingart R (1998) Mathematical model of vertebrate gap junctions derived from electrical measurements on homotypic and heterotypic channels. J Physiol 510.1:177–189

    Article  Google Scholar 

  • Vogel R, Weingart R (2002) The electrophysiology of gap junctions and gap junction channels and their mathematical modelling. Biol Cell 94:501–510

    Article  PubMed  CAS  Google Scholar 

  • Vozzi C, Dupont E, Coppen SR, Yeh HI, Severs NJ (1999) Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 31:991–1003

    Article  PubMed  CAS  Google Scholar 

  • Wang HZ, Li J, Lemanski LF, Veenstra RD (1992) Gating of mammalian cardiac gap junction channels by transjunctional voltage. Biophys J 63:139–151

    Article  PubMed  CAS  Google Scholar 

  • Weidmann S (1952) The electrical constants of Purkinje fibres. J Physiol 118:348–360

    PubMed  CAS  Google Scholar 

  • Weidmann S (1966) The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J Physiol 187:323–342

    PubMed  CAS  Google Scholar 

  • Weidmann S (1967) Cardiac electrophysiology in the light of recent morphological findings. Harvey Lect 61:1–15

    PubMed  CAS  Google Scholar 

  • Weingart R, Desplantez T, Thomas N, Severs NJ, Dupont E (2006) Cardiac gap junctions: properties of heteromeric channels probing connexin-tandem constructs. Proceedings of the abstracts of the International Conference on Physiological and Pathological Importance of Gap Junctions, Tokyo, Japan, November 20–22, 2006, p 26

  • Willecke K, Eiberger J, Degen J, Eckhardt D, Romualdi A, Güldenagel M, Deutsch U, Söhl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  PubMed  CAS  Google Scholar 

  • Yamada KA, Rogers JG, Sundset R, Steinberg TH, Saffitz JE (2003) Up-regulation of connexin45 in heart failure. J Cardiovasc Electrophysiol 14:1205–1212

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review is dedicated to Prof. Werner Loewenstein on the occasion of his eightieth birthday. Supported by Swiss National Science Foundation (SNSF) (grant 3100A0–108175 to R. W.) and the British Heart Foundation (grant PG/02/083 to N. S. and E. D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Weingart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desplantez, T., Dupont, E., Severs, N.J. et al. Gap Junction Channels and Cardiac Impulse Propagation. J Membrane Biol 218, 13–28 (2007). https://doi.org/10.1007/s00232-007-9046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9046-8

Keywords

Navigation