Skip to main content

Advertisement

Log in

Pituitary magnetic resonance imaging in Cushing’s disease

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Adrenocorticotropin-secreting pituitary tumor represents about 10 % of pituitary adenomas and at the time of diagnosis most of them are microadenomas. Transsphenoidal surgery is the first-line treatment of Cushing’s disease and accurate localization of the tumor within the gland is essential for selectively removing the lesion and preserving normal pituitary function. Magnetic resonance imaging is the best imaging modality for the detection of pituitary tumors, but adrenocorticotropin-secreting pituitary microadenomas are not correctly identified in 30–50 % of cases, because of their size, location, and enhancing characteristics. Several recent studies were performed with the purpose of better localizing the adrenocorticotropin-secreting microadenomas through the use in magnetic resonance imaging of specific sequences, reduced contrast medium dose and high-field technology. Therefore, an improved imaging technique for pituitary disease is mandatory in the suspect of Cushing’s disease. The aims of this paper are to present an overview of pituitary magnetic resonance imaging in the diagnosis of Cushing’s disease and to provide a magnetic resonance imaging protocol to be followed in case of suspicion adrenocorticotropin-secreting pituitary adenoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J. Trouillas, Pathology and pathogenesis of pituitary corticotroph adenoma. Neurochirurgie 48(2–3 Pt 2), 149–162 (2002)

    CAS  PubMed  Google Scholar 

  2. R.Y. Osamura, H. Kajiya, M. Takei, N. Egashira, M. Tobita, S. Takekoshi, A. Teramoto, Pathology of the human pituitary adenomas. Histochem. Cell. Biol. 130(3), 495–507 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Solak, I. Kraljevic, T. Dusek, A. Melada, M.M. Kavanagh, V. Peterkovic, D. Ozretic, D. Kastelan, Management of Cushing’s disease: a single-center experience. Endocrine 51(3), 517–523 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. A. Colao, M. Boscaro, D. Ferone, F.F. Casanueva, Managing Cushing’s disease: the state of the art. Endocrine 47(1), 9–20 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. H. Escourolle, J.P. Abecassis, X. Bertagna, B. Guilhaume, D. Pariente, P. Derome, A. Bonnin, J.P. Luton, Comparison of computerized tomography and magnetic resonance imaging for the examination of the pituitary gland in patients with Cushing’s disease. Clin. Endocrinol. 39(3), 307–313 (1993)

    Article  CAS  Google Scholar 

  6. N. Colombo, P. Loli, F. Vignati, G. Scialfa, MR of corticotropin-secreting pituitary microadenomas. Am. J. Neuroradiol. 15, 1591–1595 (1994)

    CAS  PubMed  Google Scholar 

  7. J.L. Doppman, J.A. Frank, A.J. Dwyer, E.H. Oldfield, D.L. Miller, L.K. Nieman, G.P. Chrousos, G.B. Cutler Jr., D.L. Loriaux, Gadolinium DTPA enhanced MR imaging of ACTH-secreting microadenomas of the pituitary gland. J. Comput. Assist. Tomo. 12, 728–735 (1988)

    Article  CAS  Google Scholar 

  8. A. Tabarin, F. Laurent, B. Catargi, F. Olivier-Puel, R. Lescene, J. Berge, F.S. Galli, J. Drouillard, P. Roger, J. Guerin, Comparative evaluation of conventional and dynamic magnetic resonance imaging of the pituitary gland for the diagnosis of Cushing’s disease. Clin. Endocrinol. 49, 293–300 (1998)

    Article  CAS  Google Scholar 

  9. W.W. Peck, W.P. Dillon, D. Norman, T.H. Newton, C.B. Wilson, High resolution MR imaging of pituitary microadenomas at 1.5 T: experience with Cushing disease. Am. J. Roentgenol. 152, 145–151 (1989)

    Article  CAS  Google Scholar 

  10. A. Lienhardt, A.B. Grossman, J.E. Dacie, J. Evanson, A. Huebner, F. Afshar, P.N. Plowman, G.M. Besser, M.O. Savage, Relative contributions of inferior petrosal sinus sampling and pituitary imaging in the investigation of children and adolescents with ACTH-dependent Cushing’s syndrome. J. Clin. Endocr. Metab 86, 5711–5714 (2001)

    CAS  PubMed  Google Scholar 

  11. G.L. Booth, D.A. Redelmeier, H. Grosman, K. Kovacs, H.S. Smyth, S. Ezzat, Improved diagnostic accuracy of inferior petrosal sinus sampling over imaging for localizing pituitary pathology in patients with Cushing’s disease. J. Clin. Endocr. Metab 83, 2291–2295 (1998)

    CAS  PubMed  Google Scholar 

  12. W.W. de Herder, P. Uitterlinden, H. Pieterman, H.L. Tanghe, D.J. Kwekkeboom, H.A. Pols, R. Singh, J.H. van de Berge, S.W. Lamberts, Pituitary tumour localization in patients with Cushing’s disease by magnetic resonance imaging. Is there a place for petrosal sinus sampling? Clin. Endocrinol. 40, 87–89 (1994)

    Article  Google Scholar 

  13. A. Dwyer, J.A. Frank, J.L. Doppman, E.H. Oldfield, A.M. Hickey, G.B. Cutler, D.L. Loriaux, T.F. Schiable, Pituitary adenomas in patients with Cushing’s disease: initial experience with gadolinium-DTPA-enhanced MR imaging. Radiology 163, 421–426 (1987)

    Article  CAS  PubMed  Google Scholar 

  14. C. Invitti, F. Pecori Giraldi, M. de Martin, F. Cavagnini, Diagnosis and management of Cushing’s syndrome: results of an Italian multicentre study. Study Group of the Italian Society of Endocrinology on the Pathophysiology of the Hypothalamic-Pituitary-Adrenal Axis. J. Clin. Endocr. Metab. 84(2), 440–448 (1999)

    CAS  PubMed  Google Scholar 

  15. I.N. Chowdhury, N. Sinaii, E.H. Oldfield, N. Patronas, L.K. Nieman, A change in pituitary magnetic resonance imaging protocol detects ACTH-secreting tumours in patients with previously negative results. Clin. Endocrinol. 72, 502–506 (2010)

    Article  Google Scholar 

  16. A.D. Elster, Sellar susceptibility artifacts: theory and implications. Am. J. Neuroradiol 14, 129–136 (1993)

    CAS  PubMed  Google Scholar 

  17. S. Yamada, N. Fukuhara, H. Nishioka, A. Takeshita, N. Inoshita, J. Ito, Y. Takeuchi, Surgical management and outcomes in patients with Cushing disease with negative pituitary magnetic resonance imaging. World Neurosurg. 77(3–4), 525–532 (2012)

    Article  PubMed  Google Scholar 

  18. N. Patronas, N. Bulakbasi, C.A. Stratakis, A. Lafferty, E.H. Oldfield, J. Doppman, L.K. Nieman, Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J. Clin. Endocr. Metab. 88(4), 1565–1569 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. E. Ono, A. Ozawa, K. Matoba, T. Motoki, A. Tajima, I. Miyata, J. Ito, N. Inoshita, S. Yamada, H. Ida, Diagnostic usefulness of 3 tesla MRI of the brain for cushing disease in a child. Clin. Pediatr. Endocrinol. 20(4), 89–93 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  20. L. Portocarrero-Ortiz, D. Bonifacio-Delgadillo, A. Sotomayor-González, A. Garcia-Marquez, R. Lopez-Serna, A modified protocol using half-dose gadolinium in dynamic 3-Tesla magnetic resonance imaging for detection of ACTH-secreting pituitary tumors. Pituitary 13(3), 230–235 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. S. Atlas, Magnetic Resonance Imaging of the Brain and Spine. 4th edn. (Lippincott, Williams and Wilkins, Philadelphia, 2009) pp. 1124–1126

    Google Scholar 

  22. T.C. Friedman, E. Zuckerbraun, M.L. Lee, M.S. Kabil, H. Shahinian, Dynamic pituitary MRI has high sensitivity and specificity for the diagnosis of mild Cushing’s syndrome and should be part of the initial workup. Horm. Metab. Res. 39, 451–456 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. K. Forbes, J. Karis, W.L. White, Imaging of the pituitary gland. Barrow Quarterly 18, 9–19 (2002)

    Google Scholar 

  24. H.P. Niendorf, M. Laniado, W. Semmler, W. Schorner, R. Felix, Dose administration of gadolinium-DTPA in MR imaging of intracranial tumors. Am. J. Neuroradiol. 8, 803–815 (1987)

    CAS  PubMed  Google Scholar 

  25. P.C. Davis, K.A. Gokhale, G.J. Joseph, S.B. Peterman, D.A. Adams, G.T. Tindall, P.A. Hudgins, J.C. Hoffman Jr., Pituitary adenoma: correlation of half-dose gadolinium-enhanced MR imaging with surgical findings in 26 patients. Radiology 180, 779–784 (1991)

    Article  CAS  PubMed  Google Scholar 

  26. A.R. Giacometti, G.J. Joseph, J.E. Peterson, P.C. Davis, Comparison of full- and half-dose gadolinium-DTPA: MR imaging of the normal sella. Am. J. Neuroradiol. 14, 123–127 (1993)

    CAS  PubMed  Google Scholar 

  27. W.S. Bartynski, J.F. Boardman, S.Z. Grahovac, The effect of MR contrast medium dose on pituitary gland enhancement, microlesion enhancement and pituitary gland-to-lesion contrast conspicuity. Neuroradiology 48, 449–459 (2006)

    Article  PubMed  Google Scholar 

  28. T. Stadnik, A. Stevenaert, A. Beckers, R. Luypaert, T. Buisseret, M. Osteaux, Pituitary microadenomas: diagnosis with two-and three-dimensional MR imaging at 1.5 T before and after injection of gadolinium. Radiology 176, 419–428 (1990)

    Article  CAS  PubMed  Google Scholar 

  29. R. Kasaliwal, S.S. Sankhe, A.R. Lila, S.R. Budyal, V.S. Jagtap, V. Sarathi, H. Kakade, T. Bandgar, P.S. Menon, N.S. Shah, Volume interpolated 3D-spoiled gradient echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary microadenomas. Clin. Endocrinol. 78, 825–830 (2013)

    Article  CAS  Google Scholar 

  30. S. Shah, A.D. Waldman, A. Mehta, Advances in pituitary imaging technology and future prospects. Best Pract. Res. Cl. En. 26(1), 35–46 (2012)

    Article  Google Scholar 

  31. K. Pinker, A. Ba-Ssalamah, S. Wolfsberger, V. Mlynarik, E. Knosp, S. Trattnig, The value of high-field MRI (3T) in the assessment of sellar lesions. Eur. J. Radiol. 54, 327–334 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. S. Wolfsberger, A. Ba-Ssalamah, K. Pinker, V. Mlynárik, T. Czech, E. Knosp, S. Trattnig, Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. J. Neurosurg. 100, 278–286 (2004)

    Article  PubMed  Google Scholar 

  33. L.J. Kim, G.P. Lekovic, W.L. White, J. Karis, Preliminary experience with 3-Tesla MRI and Cushing’s disease. Skull Base 17, 273–278 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  34. D. Erickson, B. Erickson, R. Watson, R. Patton, J. Atkinson, F. Meyer, T. Nippoldt, P. Carpenter, N. Natt, A. Vella, P. Thapa, 3 tesla magnetic resonance imaging with and without corticotropin releasing hormone stimulation for the detection of microadenomas in Cushing’s syndrome. Clin. Endocrinol. 72, 795–799 (2010)

    Google Scholar 

  35. D.B. Stobo, R.S. Lindsay, J.M. Connell, L. Dunn, K.P. Forbes, Initial experience of 3 Tesla versus conventional field strength magnetic resonance imaging of small functioning pituitary tumours. Clin. Endocrinol. 75(5), 673–677 (2011)

    Article  Google Scholar 

  36. R.J. Lien, I. Corcuera-Solano, P.S. Pawha, T.P. Naidich, L.N. Tanenbaum, Three-tesla imaging of the pituitary and parasellar region: t1-weighted 3-dimensional fast spin echo cube outperforms conventional 2-dimensional magnetic resonance imaging. J. Comput. Assist. Tomo. 39(3), 329–333 (2015)

    Google Scholar 

  37. A.A. de Rotte, A.G. van der Kolk, D. Rutgers, P.M. Zelissen, F. Visser, P.R. Luijten, J. Hendrikse, Feasibility of high-resolution pituitary MRI at 7.0 tesla. Eur. Radiol. 24(8), 2005–2011 (2014)

    Article  PubMed  Google Scholar 

  38. A.A. de Rotte, A. Groenewegen, D.R. Rutgers, T. Witkamp, P.M. Zelissen, F.J. Meijer, E.J. van Lindert, A. Hermus, P.R. Luijten, J. Hendrikse, High resolution pituitary gland MRI at 7.0 tesla: a clinical evaluation in Cushing’s disease. Eur. Radiol. 26(1), 271–277 (2016)

    Article  PubMed  Google Scholar 

  39. H. Ikeda, T. Abe, K. Watanabe, Usefulness of composite methionine-positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma. J. Neurosurg. 112(4), 750–755 (2010)

    Article  PubMed  Google Scholar 

  40. G.A. Scangas, E.R. Laws Jr., Pituitary incidentalomas. Pituitary 17, 486–491 (2014)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This review is part of the “Altogether to Beat Cushing’s Syndrome Group” led by Prof Annamaria Colao, which aims at increasing the knowledge on Cushing’s Syndrome. The authors would like to acknowledge all the Collaborators of this project: Albani A., Albiger N., Ambrogio A., Arnaldi G., Arvat E., Baldelli R., Barbot M., Boscaro M., Campo M., Cannavò S., Canu L. Cappabianca Paolo, Castinetti F., Cavagnini F., Cavallo L.M., Chiodini I., Ciresi A., Cirillo S., Cocchiara F., Colao A., Corsello S.M., Cozzolino A., Damiani L., De Leo M., De Martino M.C., Farese A., Feelders R., Ferone D., Gatto F., Graziadio C., Grimaldi F., Iacuaniello D., Isidori A.M., Karamouzis I., Lenzi A., Loli P., Mannelli M., Mantovani G., Marcelli G., Marzullo P., Minniti G., Palmieri S., Paragliola R.M., Pasquali R., Pecori Giraldi F., Pivonello C., Pivonello R., Reincke M., Sbardella E., Scaroni C., Simeoli C., Spada A., Stigliano A., Tortora F., Toscano V., Trementino L., Vitale G., Zampetti B., Zatelli M.C., and Zhukouskaya O.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Giovanni Vitale.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitale, G., Tortora, F., Baldelli, R. et al. Pituitary magnetic resonance imaging in Cushing’s disease. Endocrine 55, 691–696 (2017). https://doi.org/10.1007/s12020-016-1038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1038-y

Keywords

Navigation