Skip to main content

Advertisement

Log in

Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.O. Goodarzi, D.A. Dumesic, G. Chazenbalk, R. Azziz, Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7(4), 219–231 (2011). doi:10.1038/nrendo.2010.217

    Article  CAS  PubMed  Google Scholar 

  2. C.N. Jayasena, S. Franks, The management of patients with polycystic ovary syndrome. Nat. Rev. Endocrinol. 10(10), 624–636 (2014). doi:10.1038/nrendo.2014.102

    Article  PubMed  Google Scholar 

  3. H.S. Randeva, B.K. Tan, M.O. Weickert, K. Lois, J.E. Nestler, N. Sattar, H. Lehnert, Cardiometabolic aspects of the polycystic ovary syndrome. Endocr. Rev. 33(5), 812–841 (2012). doi:10.1210/er.2012-1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Mani, M.J. Levy, M.J. Davies, D.H. Morris, L.J. Gray, J. Bankart, H. Blackledge, K. Khunti, T.A. Howlett, Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clin. Endocrinol. 78(6), 926–934 (2013). doi:10.1111/cen.12068

    Article  Google Scholar 

  5. P.C. de Groot, O.M. Dekkers, J.A. Romijn, S.W. Dieben, F.M. Helmerhorst, PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Hum. Reprod. Update 17(4), 495–500 (2011). doi:10.1093/humupd/dmr001

    Article  PubMed  Google Scholar 

  6. T. Oka, H. Akazawa, A.T. Naito, I. Komuro, Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ. Res. 114(3), 565–571 (2014). doi:10.1161/circresaha.114.300507

    Article  CAS  PubMed  Google Scholar 

  7. K. Lakhani, N. Constantinovici, W.M. Purcell, R. Fernando, P. Hardiman, Internal carotid artery haemodynamics in women with polycystic ovaries. Clin. Sci. (Lond.) 98(6), 661–665 (2000)

    Article  CAS  Google Scholar 

  8. G. Masszi, E.M. Horvath, R. Tarszabo, R. Benko, A. Novak, A. Buday, A.M. Tokes, G.L. Nadasy, P. Hamar, Z. Benyo, S. Varbiro, Reduced estradiol-induced vasodilation and poly-(ADP-ribose) polymerase (PARP) activity in the aortas of rats with experimental polycystic ovary syndrome (PCOS). PLoS One 8(3), e55589 (2013). doi:10.1371/journal.pone.0055589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Varbiro, L. Sara, P. Antal, A. Monori-Kiss, A.M. Tokes, E. Monos, R. Benko, N. Csibi, M. Szekeres, R. Tarszabo, A. Novak, P. Paragi, G.L. Nadasy, Lower-limb veins are thicker and vascular reactivity is decreased in a rat PCOS model: concomitant vitamin D3 treatment partially prevents these changes. Am. J. Physiol. Heart Circ. Physiol. 307(6), H848–H857 (2014). doi:10.1152/ajpheart.01024.2013

    Article  CAS  PubMed  Google Scholar 

  10. R. Calderon-Margalit, D. Siscovick, S.S. Merkin, E. Wang, M.L. Daviglus, P.J. Schreiner, B. Sternfeld, O.D. Williams, C.E. Lewis, R. Azziz, S.M. Schwartz, M.F. Wellons, Prospective association of polycystic ovary syndrome with coronary artery calcification and carotid-intima-media thickness: the Coronary Artery Risk Development in Young Adults Women’s study. Arterioscler. Thromb. Vasc. Biol. 34(12), 2688–2694 (2014). doi:10.1161/atvbaha.114.304136

    Article  CAS  PubMed  Google Scholar 

  11. E.O. Talbott, D.S. Guzick, K. Sutton-Tyrrell, K.P. McHugh-Pemu, J.V. Zborowski, K.E. Remsberg, L.H. Kuller, Evidence for association between polycystic ovary syndrome and premature carotid atherosclerosis in middle-aged women. Arterioscler. Thromb. Vasc. Biol. 20(11), 2414–2421 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. S. Tepavcevic, D.V. Milutinovic, D. Macut, M. Stojiljkovic, M. Nikolic, I. Bozic-Antic, T. Culafic, J. Bjekic-Macut, G. Matic, G. Koricanac, Cardiac fatty acid uptake and metabolism in the rat model of polycystic ovary syndrome. Endocrine (2015). doi:10.1007/s12020-015-0558-1

    PubMed  Google Scholar 

  13. S. Tepavčević, D.V. Milutinović, D. Macut, Z. Žakula, M. Nikolić, I. Božić-Antić, S. Romic, J. Bjekic-Macut, G. Matic, G. Korićanac, Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome. J. Steroid Biochem. Mol. Biol. 141, 71–76 (2014). doi:10.1016/j.jsbmb.2014.01.006

    Article  PubMed  Google Scholar 

  14. D. Levy, R.J. Garrison, D.D. Savage, W.B. Kannel, W.P. Castelli, Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322(22), 1561–1566 (1990). doi:10.1056/nejm199005313222203

    Article  CAS  PubMed  Google Scholar 

  15. N. Raja-Khan, J. Shah, C.M. Stetter, M.E. Lott, A.R. Kunselman, W.C. Dodson, R.S. Legro, High-dose vitamin D supplementation and measures of insulin sensitivity in polycystic ovary syndrome: a randomized, controlled pilot trial. Fertil. Steril. 101(6), 1740–1746 (2014). doi:10.1016/j.fertnstert.2014.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Selimoglu, C. Duran, S. Kiyici, C. Ersoy, M. Guclu, G. Ozkaya, E. Tuncel, E. Erturk, S. Imamoglu, The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J. Endocrinol. Invest. 33(4), 234–238 (2010). doi:10.3275/6560

    Article  CAS  PubMed  Google Scholar 

  17. T. Yao, X. Ying, Y. Zhao, A. Yuan, Q. He, H. Tong, S. Ding, J. Liu, X. Peng, E. Gao, J. Pu, B. He, Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid. Redox Signal. 22(8), 633–650 (2015). doi:10.1089/ars.2014.5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Freundlich, Y.C. Li, Y. Quiroz, Y. Bravo, W. Seeherunvong, C. Faul, J.R. Weisinger, B. Rodriguez-Iturbe, Paricalcitol downregulates myocardial renin-angiotensin and fibroblast growth factor expression and attenuates cardiac hypertrophy in uremic rats. Am. J. Hypertens. 27(5), 720–726 (2014). doi:10.1093/ajh/hpt177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. L.M. Meems, M.V. Cannon, H. Mahmud, A.A. Voors, W.H. van Gilst, H.H. Sillje, W.P. Ruifrok, R.A. de Boer, The vitamin D receptor activator paricalcitol prevents fibrosis and diastolic dysfunction in a murine model of pressure overload. J. Steroid Biochem. Mol. Biol. 132(3–5), 282–289 (2012). doi:10.1016/j.jsbmb.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  20. B.P. Rafacho, P. Santos, H.B. Assalin, L.P. Ardisson, M.G. Roscani, B.F. Polegato, F. Chiuso-Minicucci, A.A. Fernandes, P.S. Azevedo, M.F. Minicucci, L.A. Zornoff, S. Paiva, Role of vitamin D in the cardiac remodeling induced by tobacco smoke exposure. Int. J. Cardiol. 155(3), 472–473 (2012). doi:10.1016/j.ijcard.2011.12.078

    Article  PubMed  Google Scholar 

  21. A.S. Caldwell, L.J. Middleton, M. Jimenez, R. Desai, A.C. McMahon, C.M. Allan, D.J. Handelsman, K.A. Walters, Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 155(8), 3146–3159 (2014). doi:10.1210/en.2014-1196

    Article  CAS  PubMed  Google Scholar 

  22. E.L. van Houten, P. Kramer, A. McLuskey, B. Karels, A.P. Themmen, J.A. Visser, Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology 153(6), 2861–2869 (2012). doi:10.1210/en.2011-1754

    Article  PubMed  Google Scholar 

  23. G. Masszi, A. Novak, R. Tarszabo, E.M. Horvath, A. Buday, E. Ruisanchez, A.M. Tokes, L. Sara, R. Benko, G.L. Nadasy, C. Revesz, P. Hamar, Z. Benyo, S. Varbiro, Effects of vitamin D3 derivative–calcitriol on pharmacological reactivity of aortic rings in a rodent PCOS model. Pharmacol. Rep. 65(2), 476–483 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Q. He, J. Pu, A. Yuan, W.B. Lau, E. Gao, W.J. Koch, X.L. Ma, B. He, Activation of liver-X-receptor alpha but not liver-X-receptor beta protects against myocardial ischemia/reperfusion injury. Circ. Heart Fail. 7(6), 1032–1041 (2014). doi:10.1161/circheartfailure.114.001260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. P. Shan, J. Pu, A. Yuan, L. Shen, L. Shen, D. Chai, B. He, RXR agonists inhibit oxidative stress-induced apoptosis in H9c2 rat ventricular cells. Biochem. Biophys. Res. Commun. 375(4), 628–633 (2008). doi:10.1016/j.bbrc.2008.08.074

    Article  CAS  PubMed  Google Scholar 

  26. J. Pu, A. Yuan, P. Shan, E. Gao, X. Wang, Y. Wang, W.B. Lau, W. Koch, X.L. Ma, B. He, Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur. Heart J. 34(24), 1834–1845 (2013). doi:10.1093/eurheartj/ehs011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Franczyk, K. Stolarz-Skrzypek, A. Wesolowska, D. Czarnecka, Vitamin D and vitamin D receptor activators in treatment of hypertension and cardiovascular disease. Cardiovasc. Hematol. Disord. Drug Targets 14(1), 34–44 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. K. Yoneyama, O. Gjesdal, E.Y. Choi, C.O. Wu, W.G. Hundley, A.S. Gomes, C.Y. Liu, R.L. McClelland, D.A. Bluemke, J.A. Lima, Age, sex, and hypertension-related remodeling influences left ventricular torsion assessed by tagged cardiac magnetic resonance in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation 126(21), 2481–2490 (2012). doi:10.1161/circulationaha.112.093146

    Article  PubMed  PubMed Central  Google Scholar 

  29. X. Xu, Y. Hua, S. Nair, R. Bucala, J. Ren, Macrophage migration inhibitory factor deletion exacerbates pressure overload-induced cardiac hypertrophy through mitigating autophagy. Hypertension 63(3), 490–499 (2014). doi:10.1161/hypertensionaha.113.02219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M.M. Mihaylova, R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13(9), 1016–1023 (2011). doi:10.1038/ncb2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. Echeverry, G. Ziltener, D. Barbone, W. Weder, R.A. Stahel, V.C. Broaddus, E. Felley-Bosco, Inhibition of autophagy sensitizes malignant pleural mesothelioma cells to dual PI3 K/mTOR inhibitors. Cell Death Dis. 6, e1757 (2015). doi:10.1038/cddis.2015.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Albu, S. Radian, S. Fica, C.G. Barbu, Biochemical hyperandrogenism is associated with metabolic syndrome independently of adiposity and insulin resistance in Romanian polycystic ovary syndrome patients. Endocrine 48(2), 696–704 (2015). doi:10.1007/s12020-014-0340-9

    Article  CAS  PubMed  Google Scholar 

  33. B. Dilbaz, E. Ozkaya, M. Cinar, E. Cakir, S. Dilbaz, Cardiovascular disease risk characteristics of the main polycystic ovary syndrome phenotypes. Endocrine 39(3), 272–277 (2011). doi:10.1007/s12020-011-9437-6

    Article  CAS  PubMed  Google Scholar 

  34. S. Wild, T. Pierpoint, H. Jacobs, P. McKeigue, Long-term consequences of polycystic ovary syndrome: results of a 31 year follow-up study. Hum. Fertil. (Cam) 3(2), 101–105 (2000)

    Article  Google Scholar 

  35. S. Wild, T. Pierpoint, P. McKeigue, H. Jacobs, Cardiovascular disease in women with polycystic ovary syndrome at long-term follow-up: a retrospective cohort study. Clin. Endocrinol. 52(5), 595–600 (2000)

    Article  CAS  Google Scholar 

  36. F. Orio Jr, S. Palomba, L. Spinelli, T. Cascella, L. Tauchmanova, F. Zullo, G. Lombardi, A. Colao, The cardiovascular risk of young women with polycystic ovary syndrome: an observational, analytical, prospective case-control study. J. Clin. Endocrinol. Metab. 89(8), 3696–3701 (2004). doi:10.1210/jc.2003-032049

    Article  CAS  PubMed  Google Scholar 

  37. G. Muscogiuri, V. Nuzzo, A. Gatti, A. Zuccoli, S. Savastano, C. Di Somma, R. Pivonello, F. Orio, A. Colao, Hypovitaminosis D: a novel risk factor for coronary heart disease in type 2 diabetes? Endocrine (2015). doi:10.1007/s12020-015-0609-7

    Google Scholar 

  38. S.E. Judd, S.N. Raiser, M. Kumari, V. Tangpricha, 1,25-dihydroxyvitamin D3 reduces systolic blood pressure in hypertensive adults: a pilot feasibility study. J. Steroid Biochem. Mol. Biol. 121(1–2), 445–447 (2010). doi:10.1016/j.jsbmb.2010.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H.U. Simon, Autophagy in myocardial differentiation and cardiac development. Circ. Res. 110(4), 524–525 (2012). doi:10.1161/circresaha.112.265157

    Article  CAS  PubMed  Google Scholar 

  40. M. Xie, Y. Kong, W. Tan, H. May, P.K. Battiprolu, Z. Pedrozo, Z.V. Wang, C. Morales, X. Luo, G. Cho, N. Jiang, M.E. Jessen, J.J. Warner, S. Lavandero, T.G. Gillette, A.T. Turer, J.A. Hill, Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129(10), 1139–1151 (2014). doi:10.1161/circulationaha.113.002416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Moscat, M.T. Diaz-Meco, p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137(6), 1001–1004 (2009). doi:10.1016/j.cell.2009.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J.T. Fassett, X. Hu, X. Xu, Z. Lu, P. Zhang, Y. Chen, R.J. Bache, AMPK attenuates microtubule proliferation in cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 304(5), H749–H758 (2013). doi:10.1152/ajpheart.00935.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Z. Xie, K. Lau, B. Eby, P. Lozano, C. He, B. Pennington, H. Li, S. Rathi, Y. Dong, R. Tian, D. Kem, M.H. Zou, Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60(6), 1770–1778 (2011). doi:10.2337/db10-0351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Q.D. Zhao, S. Viswanadhapalli, P. Williams, Q. Shi, C. Tan, X. Yi, B. Bhandari, H.E. Abboud, NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFkappaB signaling pathways. Circulation 131(7), 643–655 (2015). doi:10.1161/circulationaha.114.011079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. T.S. Lisse, T. Liu, M. Irmler, J. Beckers, H. Chen, J.S. Adams, M. Hewison, Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB J. 25(3), 937–947 (2011). doi:10.1096/fj.10-172577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. G. Wu, Y. Liu, H. Huang, Y. Tang, W. Liu, Y. Mei, N. Wan, X. Liu, C. Huang, SH2B1 is critical for the regulation of cardiac remodelling in response to pressure overload. Cardiovasc. Res. 107(2), 203–215 (2015). doi:10.1093/cvr/cvv170

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Basic Research Program of China (No. 2012CB944900), the National Science and Technology Support Program (No. 2012BAI32B01), Natural Science Foundation of China (Nos. 31171444, 30973209 and 81270708), and Major Scientific and Technological Special Focus on Social Development Project of the Science and Technology Department of Zhejiang province (No. 2010C13028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Feng Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Cao, JT., Liang, Y. et al. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome. Endocrine 52, 363–373 (2016). https://doi.org/10.1007/s12020-015-0797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0797-1

Keywords

Navigation