Skip to main content
Log in

Cardiac fatty acid uptake and metabolism in the rat model of polycystic ovary syndrome

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is associated with an altered plasma lipid profile and increased risk for cardiovascular diseases. We hypothesized that molecular mechanisms underlying cardiac pathology in PCOS involve changes in expression and subcellular localization of several key proteins involved in cardiac lipid transport and metabolism, such as fatty acid transporter CD36, lipin 1, peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1 (PGC1), and carnitine palmitoyltransferase 1 (CPT1). We used the animal model of PCOS obtained by treating female rats with dihydrotestosterone (DHT). Protein levels of CD36, lipin 1, PPARα, PGC1, and antioxidative enzymes were assessed by Western blot in different cardiac cell compartments. Cardiac triglycerides (TG) and lipid peroxidation were also measured. The content of CD36 was decreased in both the cardiac plasma membranes and intracellular pool. On the other hand, total content of cardiac lipin 1 in DHT-treated rats was elevated, in contrast to decreased microsomal lipin 1 content. An increase in nuclear content of lipin 1 was observed together with elevation of nuclear PPARα and PGC1, and an increase in CPT1 expression. However, lipid peroxidation was reduced in the heart, without alterations in antioxidative enzymes expression and cardiac TG content. The results indicate that treatment of female rats with DHT is accompanied by a decrease of fatty acid uptake and a reduction of lipid peroxidation in the heart. The observed elevation of lipin 1, PPARα, PGC1, and CPT1 expression suggests that cardiac fatty acid metabolism is shifted toward mitochondrial beta oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Garruti, R. Depalo, M.G. Vita, F. Lorusso, F. Giampetruzzi, A.B. Damato, F. Giorgino, Adipose tissue, metabolic syndrome and polycystic ovary syndrome: from pathophysiology to treatment. Reprod. Biomed. Online 19(4), 552–563 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. H. Teede, A. Deeks, L. Moran, Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 8, 41 (2010). doi:10.1186/1741-7015-8-41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. R.A. Wild, E. Carmina, E. Diamanti-Kandarakis, A. Dokras, H.F. Escobar-Morreale, W. Futterweit, R. Lobo, R.J. Norman, E. Talbott, D.A. Dumesic, Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 95(5), 2038–2049 (2010). doi:10.1210/jc.2009-2724

    Article  CAS  PubMed  Google Scholar 

  4. E. Talbott, A. Clerici, S.L. Berga, L. Kuller, D. Guzick, K. Detre, T. Daniels, R.A. Engberg, Adverse lipid and coronary heart disease risk profiles in young women with polycystic ovary syndrome: results of a case-control study. J. Clin. Epidemiol. 51(5), 415–422 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. R.A. Wild, Dyslipidemia in PCOS. Steroids 77(4), 295–299 (2012). doi:10.1016/j.steroids.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  6. A. Baranova, T.P. Tran, A. Birerdinc, Z.M. Younossi, Systematic review: association of polycystic ovary syndrome with metabolic syndrome and non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 33(7), 801–814 (2011). doi:10.1111/j.1365-2036.2011.04579.x

    Article  CAS  PubMed  Google Scholar 

  7. D. Macut, D. Panidis, B. Glisic, N. Spanos, M. Petakov, J. Bjekic, O. Stanojlovic, D. Rousso, A. Kourtis, I. Bozic, S. Damjanovic, Lipid and lipoprotein profile in women with polycystic ovary syndrome. Can. J. Physiol. Pharmacol. 86(4), 199–204 (2008). doi:10.1139/Y08-014

    Article  CAS  PubMed  Google Scholar 

  8. H.E. Westerveld, M. Hoogendoorn, A.W. de Jong, A.J. Goverde, B.C. Fauser, G.M. Dallinga-Thie, Cardiometabolic abnormalities in the polycystic ovary syndrome: pharmacotherapeutic insights. Pharmacol. Ther. 119(3), 223–241 (2008). doi:10.1016/j.pharmthera.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  9. I.F. Kodde, J. van der Stok, R.T. Smolenski, J.W. de Jong, Metabolic and genetic regulation of cardiac energy substrate preference. Comp. Biochem. Physiol. 146(1), 26–39 (2007). doi:10.1016/j.cbpa.2006.09.014

    Article  Google Scholar 

  10. J.J. Luiken, S.L. Coort, D.P. Koonen, D.J. van der Horst, A. Bonen, A. Zorzano, J.F. Glatz, Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch. 448(1), 1–15 (2004). doi:10.1007/s00424-003-1199-4

    Article  CAS  PubMed  Google Scholar 

  11. J.F. Glatz, A. Bonen, D.M. Ouwens, J.J. Luiken, Regulation of sarcolemmal transport of substrates in the healthy and diseased heart. Cardiovasc. Drugs Ther. 20(6), 471–476 (2006). doi:10.1007/s10557-006-0582-8

    Article  CAS  PubMed  Google Scholar 

  12. J.G. Nickerson, I. Momken, C.R. Benton, J. Lally, G.P. Holloway, X.X. Han, J.F. Glatz, A. Chabowski, J.J. Luiken, A. Bonen, Protein-mediated fatty acid uptake: regulation by contraction, AMP-activated protein kinase, and endocrine signals. Appl. Physiol. Nutr. Metab. 32(5), 865–873 (2007). doi:10.1139/H07-084

    Article  CAS  PubMed  Google Scholar 

  13. D.N. Brindley, B.P. Kok, P.C. Kienesberger, R. Lehner, J.R. Dyck, Shedding light on the enigma of myocardial lipotoxicity: the involvement of known and putative regulators of fatty acid storage and mobilization. Am. J. Physiol. Endocrinol. Metab. 298(5), E897–E908 (2010). doi:10.1152/ajpendo.00509.2009

    Article  CAS  PubMed  Google Scholar 

  14. J.J. Luiken, D.P. Koonen, J. Willems, A. Zorzano, C. Becker, Y. Fischer, N.N. Tandon, G.J. Van Der Vusse, A. Bonen, J.F. Glatz, Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51(10), 3113–3119 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. S.L. Coort, A. Bonen, G.J. van der Vusse, J.F. Glatz, J.J. Luiken, Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: role of sarcolemmal substrate transporters. Mol. Cell. Biochem. 299(1–2), 5–18 (2007). doi:10.1007/s11010-005-9030-5

    Article  CAS  PubMed  Google Scholar 

  16. K. Reue, D.N. Brindley, Thematic review series: glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J. Lipid Res. 49(12), 2493–2503 (2008). doi:10.1194/jlr.R800019-JLR200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. C. Burgdorf, L. Hansel, M. Heidbreder, O. Johren, F. Schutte, H. Schunkert, T. Kurz, Suppression of cardiac phosphatidate phosphohydrolase 1 activity and lipin mRNA expression in Zucker diabetic fatty rats and humans with type 2 diabetes mellitus. Biochem. Biophys. Res. Commun. 390(1), 165–170 (2009). doi:10.1016/j.bbrc.2009.09.108

    Article  CAS  PubMed  Google Scholar 

  18. M.S. Mitra, J.D. Schilling, X. Wang, P.Y. Jay, J.M. Huss, X. Su, B.N. Finck, Cardiac lipin 1 expression is regulated by the peroxisome proliferator activated receptor gamma coactivator 1α/estrogen related receptor axis. J. Mol. Cell. Cardiol. 51(1), 120–128 (2011). doi:10.1016/j.yjmcc.2011.04.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. B.P. Kok, P.C. Kienesberger, J.R. Dyck, D.N. Brindley, Relationship of glucose and oleate metabolism to cardiac function in lipin-1 deficient (fld) mice. J. Lipid Res. 53(1), 105–118 (2012). doi:10.1194/jlr.M019430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. T.E. Harris, B.N. Finck, Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol. Metab. 22(6), 226–233 (2011). doi:10.1016/j.tem.2011.02.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. D. Shi, D.F. Vine, Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk. Fertil. Steril. 98(1), 185–193 (2012). doi:10.1016/j.fertnstert.2012.04.006

    Article  PubMed  Google Scholar 

  22. L. Manneras, S. Cajander, A. Holmang, Z. Seleskovic, T. Lystig, M. Lonn, E. Stener-Victorin, A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology 148(8), 3781–3791 (2007). doi:10.1210/en.2007-0168

    Article  PubMed  Google Scholar 

  23. D.M. Ouwens, M. Diamant, M. Fodor, D.D. Habets, M.M. Pelsers, M. El Hasnaoui, Z.C. Dang, C.E. van den Brom, R. Vlasblom, A. Rietdijk, C. Boer, S.L. Coort, J.F. Glatz, J.J. Luiken, Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50(9), 1938–1948 (2007). doi:10.1007/s00125-007-0735-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. E.L. van Houten, P. Kramer, A. McLuskey, B. Karels, A.P. Themmen, J.A. Visser, Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology 153(6), 2861–2869 (2012). doi:10.1210/en.2011-1754

    Article  PubMed  Google Scholar 

  25. A.S. Caldwell, L.J. Middleton, M. Jimenez, R. Desai, A.C. McMahon, C.M. Allan, D.J. Handelsman, K.A. Walters, Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 155(8), 3146–3159 (2014). doi:10.1210/en.2014-1196

    Article  CAS  PubMed  Google Scholar 

  26. S. Tepavcevic, D.V. Milutinovic, D. Macut, Z. Zakula, M. Nikolic, I. Bozic-Antic, S. Romic, J. Bjekic-Macut, G. Matic, G. Koricanac, Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome. J. Steroid Biochem. Mol. Biol. 142, 71–76 (2014). doi:10.1016/j.jsbmb.2014.01.006

    Article  Google Scholar 

  27. E.T. Wang, I.A. Ku, S.J. Shah, M.L. Daviglus, P.J. Schreiner, S.H. Konety, O.D. Williams, D. Siscovick, K. Bibbins-Domingo, Polycystic ovary syndrome is associated with higher left ventricular mass index: the CARDIA women’s study. J Clin. Endocrinol. Metab. 97(12), 4656–4662 (2012). doi:10.1210/jc.2012-1597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. F. Orio Jr, S. Palomba, L. Spinelli, T. Cascella, L. Tauchmanova, F. Zullo, G. Lombardi, A. Colao, The cardiovascular risk of young women with polycystic ovary syndrome: an observational, analytical, prospective case-control study. J. Clin. Endocrinol. Metab. 89(8), 3696–3701 (2004). doi:10.1210/jc.2003-032049

    Article  CAS  PubMed  Google Scholar 

  29. B.G. Stuckey, N. Opie, A.J. Cussons, G.F. Watts, V. Burke, Clustering of metabolic and cardiovascular risk factors in the polycystic ovary syndrome: a principal component analysis. Metabolism 63(8), 1071–1077 (2014). doi:10.1016/j.metabol.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  30. M. Fassnacht, N. Schlenz, S.B. Schneider, S.A. Wudy, B. Allolio, W. Arlt, Beyond adrenal and ovarian androgen generation: increased peripheral 5 alpha-reductase activity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88(6), 2760–2766 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. M.E. Silfen, M.R. Denburg, A.M. Manibo, R.A. Lobo, R. Jaffe, M. Ferin, L.S. Levine, S.E. Oberfield, Early endocrine, metabolic, and sonographic characteristics of polycystic ovary syndrome (PCOS): comparison between nonobese and obese adolescents. J. Clin. Endocrinol. Metab. 88(10), 4682–4688 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. J. Folch, M. Lees, G.H. Sloane-Stanley, A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)

    CAS  PubMed  Google Scholar 

  33. G. Koricanac, S. Tepavcevic, S. Romic, M. Zivkovic, M. Stojiljkovic, T. Milosavljevic, A. Stankovic, M. Petkovic, T. Kamceva, Z. Zakula, Estradiol enhances effects of fructose rich diet on cardiac fatty acid transporter CD36 and triglycerides accumulation. Eur. J. Pharmacol. 694(1–3), 127–134 (2012). doi:10.1016/j.ejphar.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  34. M.J. Fletcher, A colorimetric method for estimating serum triglycerides. Clin. Chim. Acta 22(3), 393–397 (1968)

    Article  CAS  PubMed  Google Scholar 

  35. S. Romic, S. Tepavcevic, Z. Zakula, T. Milosavljevic, M. Kostic, M. Petkovic, G. Koricanac, Gender differences in the expression and cellular localization of lipin 1 in the hearts of fructose-fed rats. Lipids (2014). doi:10.1007/s11745-014-3909-4

    PubMed  Google Scholar 

  36. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970)

    Article  CAS  PubMed  Google Scholar 

  37. S. Tepavcevic, G. Koricanac, Z. Zakula, T. Milosavljevic, M. Stojiljkovic, E.R. Isenovic, Interaction between insulin and estradiol in regulation of cardiac glucose and free fatty acid transporters. Horm. Metab. Res. 43(8), 524–530 (2011). doi:10.1055/s-0031-1280784

    Article  CAS  PubMed  Google Scholar 

  38. R.W. Evans, A.P. Farwell, L.E. Braverman, Nuclear thyroid hormone receptor in the rat uterus. Endocrinology 113(4), 1459–1463 (1983)

    Article  CAS  PubMed  Google Scholar 

  39. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)

    CAS  PubMed  Google Scholar 

  40. J.A. Buege, S.D. Aust, Microsomal lipid peroxidation. Methods Enzymol. 52, 302–310 (1978)

    Article  CAS  PubMed  Google Scholar 

  41. I. Lambrinoudaki, Cardiovascular risk in postmenopausal women with the polycystic ovary syndrome. Maturitas 68(1), 13–16 (2011). doi:10.1016/j.maturitas.2010.09.005

    Article  PubMed  Google Scholar 

  42. V. Skov, D. Glintborg, S. Knudsen, T. Jensen, T.A. Kruse, Q. Tan, K. Brusgaard, H. Beck-Nielsen, K. Hojlund, Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes 56(9), 2349–2355 (2007). doi:10.2337/db07-0275

    Article  CAS  PubMed  Google Scholar 

  43. K.M. Seow, Y.L. Tsai, J.L. Hwang, W.Y. Hsu, L.T. Ho, C.C. Juan, Omental adipose tissue overexpression of fatty acid transporter CD36 and decreased expression of hormone-sensitive lipase in insulin-resistant women with polycystic ovary syndrome. Hum. Reprod. 24(8), 1982–1988 (2009). doi:10.1093/humrep/dep122

    Article  CAS  PubMed  Google Scholar 

  44. B. Mlinar, M. Pfeifer, E. Vrtacnik-Bokal, M. Jensterle, J. Marc, Decreased lipin 1 beta expression in visceral adipose tissue is associated with insulin resistance in polycystic ovary syndrome. Eur. J. Endocrinol. 159(6), 833–839 (2008). doi:10.1530/EJE-08-0387

    Article  CAS  PubMed  Google Scholar 

  45. R. Azziz, E. Carmina, D. Dewailly, E. Diamanti-Kandarakis, H.F. Escobar-Morreale, W. Futterweit, O.E. Janssen, R.S. Legro, R.J. Norman, A.E. Taylor, S.F. Witchel, The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91(2), 456–488 (2009). doi:10.1016/j.fertnstert.2008.06.035

    Article  PubMed  Google Scholar 

  46. M. Nikolic, D. Macut, A. Djordjevic, N. Velickovic, N. Nestorovic, B. Bursac, I.B. Antic, J.B. Macut, G. Matic, D.V. Milutinovic, Possible involvement of glucocorticoids in 5α-dihydrotestosterone-induced PCOS-like metabolic disturbances in the rat visceral adipose tissue. Mol. Cell. Endocrinol. 399, 22–31 (2015). doi:10.1016/j.mce.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  47. J. Smith, X. Su, R. El-Maghrabi, P.D. Stahl, N.A. Abumrad, Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. J. Biol. Chem. 283(20), 13578–13585 (2008). doi:10.1074/jbc.M800008200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. B.P. Kok, J.R. Dyck, T.E. Harris, D.N. Brindley, Differential regulation of the expressions of the PGC-1α splice variants, lipins, and PPARα in heart compared to liver. J. Lipid Res. 54(6), 1662–1677 (2013). doi:10.1194/jlr.M036624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. C.R. Benton, X.X. Han, M. Febbraio, T.E. Graham, A. Bonen, Inverse relationship between PGC-1α protein expression and triacylglycerol accumulation in rodent skeletal muscle. J. Appl. Physiol. 100(2), 377–383 (2006). doi:10.1152/japplphysiol.00781.2005

    Article  CAS  PubMed  Google Scholar 

  50. Q. Yang, Y. Li, Roles of PPARs on regulating myocardial energy and lipid homeostasis. J. Mol. Med. (Berl) 85(7), 697–706 (2007). doi:10.1007/s00109-007-0170-9

    Article  CAS  Google Scholar 

  51. B.N. Finck, J.J. Lehman, T.C. Leone, M.J. Welch, M.J. Bennett, A. Kovacs, X. Han, R.W. Gross, R. Kozak, G.D. Lopaschuk, D.P. Kelly, The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J. Clin. Investig. 109(1), 121–130 (2002). doi:10.1172/JCI14080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. J.G. Duncan, J.L. Fong, D.M. Medeiros, B.N. Finck, D.P. Kelly, Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation 115(7), 909–917 (2007). doi:10.1161/CIRCULATIONAHA.106.662296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. G.D. Lopaschuk, J.R. Ussher, C.D. Folmes, J.S. Jaswal, W.C. Stanley, Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90(1), 207–258 (2010). doi:10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  54. A. Dikmen, A.M. Ergenoglu, A.O. Yeniel, O.Y. Dilsiz, G. Ercan, H. Yilmaz, Evaluation of glycemic and oxidative/antioxidative status in the estradiol valerate-induced PCOS model of rats. Eur. J. Obstet. Gynecol. Reprod. Biol. 160(1), 55–59 (2012). doi:10.1016/j.ejogrb.2011.09.042

    Article  CAS  PubMed  Google Scholar 

  55. D. Macut, T. Simic, A. Lissounov, M. Pljesa-Ercegovac, I. Bozic, T. Djukic, J. Bjekic-Macut, M. Matic, M. Petakov, S. Suvakov, S. Damjanovic, A. Savic-Radojevic, Insulin resistance in non-obese women with polycystic ovary syndrome: relation to byproducts of oxidative stress. Exp. Clin. Endocrinol. Diabetes 119(7), 451–455 (2011). doi:10.1055/s-0031-1279740

    Article  CAS  PubMed  Google Scholar 

  56. L. Ibarra-Lara, E. Hong, E. Soria-Castro, J.C. Torres-Narvaez, F. Perez-Severiano, L. Del Valle-Mondragon, L.G. Cervantes-Perez, M. Ramirez-Ortega, G.S. Pastelin-Hernandez, A. Sanchez-Mendoza, Clofibrate PPARα activation reduces oxidative stress and improves ultrastructure and ventricular hemodynamics in no-flow myocardial ischemia. J. Cardiovasc. Pharmacol. 60(4), 323–334 (2012). doi:10.1097/FJC.0b013e31826216ed

    Article  CAS  PubMed  Google Scholar 

  57. M. Baranowski, A. Blachnio-Zabielska, J. Gorski, Peroxisome proliferator-activated receptor alpha activation induces unfavourable changes in fatty acid composition of myocardial phospholipids. J. Physiol. Pharmacol. 60(2), 13–20 (2009)

    CAS  PubMed  Google Scholar 

  58. Q. Tian, F.A. Grzemski, S. Panagiotopoulos, J.T. Ahokas, Peroxisome proliferator-activated receptor alpha agonist, clofibrate, has profound influence on myocardial fatty acid composition. Chem-Biol. Interact. 160(3), 241–251 (2006). doi:10.1016/j.cbi.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  59. A. Ayala, M.F. Munoz, S. Arguelles, Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438 (2014). doi:10.1155/2014/360438

    Article  PubMed Central  PubMed  Google Scholar 

  60. J. Keller, M. Mandala, P. Casson, G. Osol, Endothelial dysfunction in a rat model of PCOS: evidence of increased vasoconstrictor prostanoid activity. Endocrinology 152(12), 4927–4936 (2011). doi:10.1210/en.2011-1424

    Article  CAS  PubMed  Google Scholar 

  61. J. Langfort, S. Jagsz, P. Dobrzyn, Z. Brzezinska, B. Klapcinska, H. Galbo, J. Gorski, Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle. Biochem. Biophys. Res. Commun. 399(4), 670–676 (2010). doi:10.1016/j.bbrc.2010.07.140

    Article  CAS  PubMed  Google Scholar 

  62. T.E. Harris, T.A. Huffman, A. Chi, J. Shabanowitz, D.F. Hunt, A. Kumar, J.C. Lawrence Jr, Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1. J. Biol. Chem. 282(1), 277–286 (2007). doi:10.1074/jbc.M609537200

    Article  CAS  PubMed  Google Scholar 

  63. R.W. Brownsey, A.N. Boone, M.F. Allard, Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovasc. Res. 34(1), 3–24 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Project Grant No. III41009, from the Ministry of Education, Science and Technological Development, Republic of Serbia. Authors are particularly thankful to Marija Takić, from the Laboratory for Nutrition and Metabolism of the Institute for Medical Research, University of Belgrade, Serbia, for her assistance in the measurement of cardiac triglycerides.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethical Standards

All animal procedures were in compliance with the EU Directive (2010/63/EU) on the protection of animals used for experimental and other scientific purposes, and were approved by the Ethical Committee for the Use of Laboratory Animals of the Institute for Biological Research “Siniša Stanković”, University of Belgrade (No. 2-20/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Korićanac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepavčević, S., Milutinović, D.V., Macut, D. et al. Cardiac fatty acid uptake and metabolism in the rat model of polycystic ovary syndrome. Endocrine 50, 193–201 (2015). https://doi.org/10.1007/s12020-015-0558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0558-1

Keywords

Navigation