Skip to main content
Log in

Acute effects of acylated ghrelin on salbutamol-induced metabolic actions in humans

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The aim of this study is to describe a potential modulatory effect of acute acylated ghrelin (AG) administration on the glucose, insulin, and free fatty acids (FFA) responses to salbutamol (SALBU). Six healthy young male volunteers underwent the following four testing sessions in random order at least 7 days apart: (a) acute AG administration (1.0 μg/kg i.v. as bolus at 0′); (b) SALBU infusion (0.06 μg/kg/min i.v. from −15′ to +45′); (c) SALBU infusion + AG; and (d) isotonic saline infusion. Blood samples for glucose, insulin, and FFA levels were collected every 15 min. As expected, with respect to saline, SALBU infusion induced a remarkable increase in glucose (10.8 ± 5.6 mmol/l × min; P < 0.05), insulin (2436.8 ± 556.9 pmol/l × min; P < 0.05), and FFA (18.9 ± 4.5 mmol/l × min; P < 0.01) levels. A significant increase in glucose (7.4 ± 3.9 mmol/l × min; P < 0.05) and FFA levels (10.0 ± 2.8 mmol/l × min; P < 0.01) without significant variations in insulin levels were recorded after AG administration. Interestingly, the hyperglycemic effect of AG appeared to be significantly potentiated during SALBU infusion (26.7 ± 4.8 mmol/l × min; P < 0.05). On the other hand, the stimulatory effect of SALBU on insulin and FFA was not significantly modified by AG administration. The results of this study show that acute AG administration has a synergic effect with β2-adrenergic receptor activation by SALBU on blood glucose increase, suggesting that their pharmacological hyperglycemic action takes place via different mechanisms. On the other hand, AG has a negligible influence on the other pharmacological metabolic effects of SALBU infusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Kojima, H. Hosoda, H. Matsuo, K. Kangawa, Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol. Metab. 12, 118–122 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. S. Gnanapavan, B. Kola, S.A. Bustin, D.G. Morris, P. McGee, P. Fairclough, S. Bhattacharya, R. Carpenter, A.B. Grossman, M. Korbonits, The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab. 87, 2988 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. C. De Vriese, C. Delporte, Influence of ghrelin on food intake and energy homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 10, 615–619 (2007)

    Article  PubMed  Google Scholar 

  4. H. Kirchner, K.M. Heppner, M.H. Tschöp, The role of ghrelin in the control of energy balance. Handb. Exp. Pharmacol. 161–184 (2012)

  5. M.A. van Baak, The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2, 3–14 (2001)

    Article  PubMed  Google Scholar 

  6. J. Robidoux, T.L. Martin, S. Collins, Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu. Rev. Pharmacol. Toxicol. 44, 297–323 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. H. Imura, Y. Kato, M. Ikeda, M. Morimoto, M. Yawata, Effect of adrenergic-blocking or -stimulating agents on plasma growth hormone, immunoreactive insulin, and blood free fatty acid levels in man. J. Clin. Invest. 50, 1069–1079 (1971)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. P.D. Gluckman, The development of beta-adrenergic mediated inhibition of growth hormone secretion in the ovine fetus. J. Dev. Physiol. 4, 207–214 (1982)

    CAS  PubMed  Google Scholar 

  9. G. Muccioli, N. Pons, C. Ghè, F. Catapano, R. Granata, E. Ghigo, Ghrelin and des-acyl ghrelin both inhibit isoproterenol-induced lipolysis in rat adipocytes via a non-type 1a growth hormone secretagogue receptor. Eur. J. Pharmacol. 498, 27–35 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. M.T. Bluet-Pajot, D. Durand, F. Mounier, C. Schaub, C. Kordon, Interaction of beta-adrenergic agonists and antagonists with the stimulation of growth hormone release induced by clonidine or by morphine in the rat. J. Endocrinol. 94, 327–331 (1982)

    Article  CAS  PubMed  Google Scholar 

  11. H.S. Park, E.S. Shin, J.E. Lee, Genotypes and haplotypes of beta2-adrenergic receptor and parameters of the metabolic syndrome in Korean adolescents. Metabolism 57, 1064–1070 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. J.P. Palmer, J. Halter, P.L. Werner, Differential effect of isoproterenol on acute glucagon and insulin release in man. Metabolism 28, 237–240 (1979)

    Article  CAS  PubMed  Google Scholar 

  13. P. Kuusela, S. Rehnmark, A. Jacobsson, B. Cannon, J. Nedergaard, Adrenergic stimulation of lipoprotein lipase gene expression in rat brown adipocytes differentiated in culture: mediation via beta3- and alpha1-adrenergic receptors. Biochem. J. 321(Pt 3), 759–767 (1997)

    PubMed Central  CAS  PubMed  Google Scholar 

  14. E. Ghigo, E. Arvat, L. Gianotti, J. Ramunni, M. Maccario, F. Camanni, Interaction of salbutamol with pyridostigmine and arginine on both basal and GHRH-stimulated GH secretion in humans. Clin. Endocrinol. (Oxf.) 40, 799–802 (1994)

    Article  CAS  Google Scholar 

  15. E. Arvat, L. Gianotti, J. Ramunni, L. DiVito, R. Deghenghi, F. Camanni, E. Ghigo, Influence of beta-adrenergic agonists and antagonists on the GH-releasing effect of hexarelin in man. J. Endocrinol. Invest. 19, 25–29 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. T.-J. Zhao, I. Sakata, R.L. Li, G. Liang, J.A. Richardson, M.S. Brown, J.L. Goldstein, J.M. Zigman, Ghrelin secretion stimulated by 1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proc. Natl. Acad. Sci. 107, 15868–15873 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. J. Gagnon, Y. Anini, Insulin and norepinephrine regulate ghrelin secretion from a rat primary stomach cell culture. Endocrinology 153, 3646–3656 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. A. Baragli, C. Ghè, E. Arnoletti, R. Granata, E. Ghigo, G. Muccioli, Acylated and unacylated ghrelin attenuate isoproterenol-induced lipolysis in isolated rat visceral adipocytes through activation of phosphoinositide 3-kinase γ and phosphodiesterase 3B. Biochim. Biophys. Acta 1811, 386–396 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. E. Adeghate, A.S. Ponery, Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats. J. Neuroendocrinol. 14, 555–560 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. D.H. St-Pierre, A. Benso, E. Gramaglia, F. Prodam, B. Lucatello, V. Ramella-Gigliardi, I. Olivetti, M. Tomelini, F. Broglio, The metabolic response to the activation of the beta-adrenergic receptor by salbutamol is amplified by acylated ghrelin. J. Endocrinol. Invest. 33, 363–367 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. A.C. Heijboer, A.M. van den Hoek, E.T. Parlevliet, L.M. Havekes, J.A. Romijn, H. Pijl, E.P.M. Corssmit, Ghrelin differentially affects hepatic and peripheral insulin sensitivity in mice. Diabetologia 49, 732–738 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. T.R. Castañeda, J. Tong, R. Datta, M. Culler, M.H. Tschöp, Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 31, 44–60 (2010)

    Article  PubMed  Google Scholar 

  23. M. Murata, Y. Okimura, K. Iida, M. Matsumoto, H. Sowa, H. Kaji, M. Kojima, K. Kangawa, K. Chihara, Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J. Biol. Chem. 277, 5667–5674 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. C. Gauna, P.J.D. Delhanty, L.J. Hofland, J.A. Janssen, F. Broglio, R.J.M. Ross, E. Ghigo, A.J. van der Lely, Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes. J. Clin. Endocrinol. Metab. 90, 1055–1060 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. L.H. Philipson, β-Agonists and metabolism. J. Allergy Clin. Immunol. 110, S313–S317 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. R.J. Lacey, N.S. Berrow, N.J.M. London, S.P. Lake, R.F. James, J.H.B. Scarpello, N.G. Morgan, Differential effects of β-adrenergic agonists on insulin secretion from pancreatic islets isolated from rat and man. J. Mol. Endocrinol. 5, 49–54 (1990)

    Article  CAS  PubMed  Google Scholar 

  27. A. Loubatières, M.M. Mariani, G. Sorel, L. Savi, The action of β-adrenergic blocking and stimulating agents on insulin secretion. Characterization of the type of β receptor. Diabetologia 7(3), 127–132 (1971)

    Article  PubMed  Google Scholar 

  28. E. Cipolletta, A. Campanile, G. Santulli, E. Sanzari, D. Leosco, P. Campiglia, B. Trimarco, G. Iaccarino, The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc. Res. 84, 407–415 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. M. Lafontan, M. Berlan, Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34, 1057–1091 (1993)

    CAS  PubMed  Google Scholar 

  30. F. Broglio, E. Arvat, A. Benso, C. Gottero, G. Muccioli, M. Papotti, A.J. van der Lely, R. Deghenghi, E. Ghigo, Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J. Clin. Endocrinol. Metab. 86, 5083–5086 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. T. Yada, K. Dezaki, H. Sone, M. Koizumi, B. Damdindorj, M. Nakata, M. Kakei, Ghrelin regulates insulin release and glycemia: physiological role and therapeutic potential. Curr. Diabetes Rev. 4, 18–23 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. W. An, Y. Li, G. Xu, J. Zhao, X. Xiang, L. Ding, J. Li, Y. Guan, X. Wang, C. Tang, X. Li, M. Mulholland, W. Zhang, Modulation of ghrelin O-acyltransferase expression in pancreatic islets. Cell Physiol. Biochem 26, 707–716 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. K. Dezaki, Ghrelin function in insulin release and glucose metabolism. Endocr. Dev. 25, 135–143 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. P.-J. Verhulst, I. Depoortere, Ghrelin’s second life: from appetite stimulator to glucose regulator. World J. Gastroenterol. 18, 3183–3195 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  35. P. Lucidi, G. Murdolo, C. Di Loreto, N. Parlanti, A. De Cicco, C. Fatone, C. Taglioni, C. Fanelli, F. Broglio, E. Ghigo, G.B. Bolli, F. Santeusanio, P. De Feo, Metabolic and endocrine effects of physiological increments in plasma ghrelin concentrations. Nutr. Metab. Cardiovasc. Dis. 15, 410–417 (2005)

    Article  PubMed  Google Scholar 

  36. J. Tong, R.L. Prigeon, H.W. Davis, M. Bidlingmaier, M.H. Tschöp, D. D’Alessio, Physiologic concentrations of exogenously infused ghrelin reduces insulin secretion without affecting insulin sensitivity in healthy humans. J. Clin. Endocrinol. Metab. 98, 2536–2543 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the European FP6 Project DIABESITY, the Ministero dell’ Università e della Ricerca Scientifica, the University of Turin, SMEM Foundation of Turin.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Broglio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benso, A., Gramaglia, E., Olivetti, I. et al. Acute effects of acylated ghrelin on salbutamol-induced metabolic actions in humans. Endocrine 48, 937–941 (2015). https://doi.org/10.1007/s12020-014-0343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0343-6

Keywords

Navigation