Skip to main content

Advertisement

Log in

Glucocorticoids activate the local renin–angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Bone metabolism disorder has been identified to play a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The local renin–angiotensin system (RAS) in bone is newly defined to be closely related to the bone metabolism. However, it is unknown whether the local RAS is involved in GIOP. Adult male New Zealand white rabbits were treated with saline, dexamethasone (DXM) alone, or DXM combined with perindopril. The expression of main RAS components in trabecular bone was examined at mRNA and/or protein levels. Bone metabolism was analyzed using dual-energy X-ray absorptiometry, histomorphometry, biomechanics, biochemical techniques, and quantitative RT-PCR. The expressions of local bone angiotensin II, angiotensin types 1 and 2 receptors, and angiotensin-converting enzyme at mRNA and/or protein levels increased when DXM-induced osteoporosis was present. Whereas, perindopril significantly blocked the activation of the local RAS and partially reversed GIOP. Mineralizing surface, mineral apposition rate, and bone formation rate were decreased by DXM, along with serum osteocalcin being downregulated. These changes were then reversed by the use of perindopril. Osteoclast number, osteoclast surface, and eroded surface increased after the administration of DXM, and urinary deoxypyridinoline was upregulated. These were also inhibited when perindopril was given. Quantitative RT-PCR using RNA isolated from the lumbar vertebrae revealed an increase in the SOST expression and a decrease in the Runx2 expression, whereas the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio and the expression of tartrate resistant acid phosphatase were increased, which were all inhibited by perindopril. The results of this study provide evidence for the role of local RAS is involved in GIOP, and GIOP may be ameliorated by blocking the activation of local RAS in the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Steinbuch, T. Youket, S. Cohen, Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos. Int. 15, 323–328 (2004)

    Article  PubMed  CAS  Google Scholar 

  2. T. Van Staa, R. Laan, I. Barton, S. Cohen, D. Reid, C. Cooper, Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 48, 3224–3229 (2003)

    Article  PubMed  Google Scholar 

  3. S. Lekamwasam, J. Adachi, D. Agnusdei, J. Bilezikian, S. Boonen, F. Borgström, C. Cooper, A. Diez Perez, R. Eastell, L. Hofbauer, A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos. Int. 23, 2257–2276 (2012)

    Article  PubMed  CAS  Google Scholar 

  4. R. Rizzoli, J. Adachi, C. Cooper, W. Dere, J. Devogelaer, A. Diez-Perez, J. Kanis, A. Laslop, B. Mitlak, S. Papapoulos, Management of glucocorticoid-induced osteoporosis. Calcif. Tissue Int. 91, 225–243 (2012)

    Article  PubMed  CAS  Google Scholar 

  5. M. Paul, A.P. Mehr, R. Kreutz, Physiology of local renin–angiotensin systems. Physiol. Rev. 86, 747–803 (2006). doi:10.1152/physrev.00036.2005

    Article  PubMed  CAS  Google Scholar 

  6. H. Hagiwara, Y. Hiruma, A. Inoue, A. Yamaguchi, S. Hirose, Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J. Endocrinol. 156, 543–550 (1998). doi:10.1677/joe.0.1560543

    Article  PubMed  CAS  Google Scholar 

  7. Y.Y. Liu, W.M. Yao, T. Wu, B.L. Xu, F. Chen, L. Cui, Captopril improves osteopenia in ovariectomized rats and promotes bone formation in osteoblasts. J. Bone Miner. Metab. 29, 149–158 (2011)

    Article  PubMed  Google Scholar 

  8. R. Hatton, M. Stimpel, T.J. Chambers, Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J. Endocrinol. 152, 5–10 (1997). doi:10.1677/joe.0.1520005

    Article  PubMed  CAS  Google Scholar 

  9. Y. Asaba, M. Ito, T. Fumoto, K. Watanabe, R. Flikuhara, S. Takeshita, Y. Nimura, J. Ishida, A. Fukamizu, K. Ikeda, Activation of renin–angiotensin system induces osteoporosis independently of hypertension. J. Bone Miner. Res. 24, 241–250 (2009). doi:10.1359/jbmr.081006

    Article  PubMed  CAS  Google Scholar 

  10. H. Shimizu, H. Nakagami, M.K. Osako, R. Hanayama, Y. Kunugiza, T. Kizawa, T. Tomita, H. Yoshikawa, T. Ogihara, R. Morishita, Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J 22, 2465–2475 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. B.O. Donmez, S. Ozdemir, M. Sarikanat, N. Yaras, P. Koc, N. Demir, B. Karayalcin, N. Oguz, Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol. Rep. 64, 878–888 (2012)

    Article  PubMed  CAS  Google Scholar 

  12. K. Kaneko, M. Ito, T. Fumoto, R. Fukuhara, J. Ishida, A. Fukamizu, K. Ikeda, Physiological function of the angiotensin AT1a receptor in bone remodeling. J. Bone Miner. Res. 26, 2959–2966 (2011)

    Article  PubMed  CAS  Google Scholar 

  13. H. Lynn, T. Kwok, S.Y.S. Wong, J. Woo, P.C. Leung, Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone 38, 584–588 (2006). doi:10.1016/j.bone.2005.09.011

    Article  PubMed  CAS  Google Scholar 

  14. H. Nakagami, M. Kiomy Osako, H. Shimizu, R. Hanayama, R. Morishita, Potential contribution of action of renin angiotensin system to bone metabolism. Curr. Hypertens Rev. 3, 129–132 (2007)

    Article  CAS  Google Scholar 

  15. L. Rejnmark, P. Vestergaard, L. Mosekilde, Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J. Hypertens. 24, 581–589 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. D. Woods, G. Onambele, R. Woledge, D. Skelton, S. Bruce, S.E. Humphries, H. Montgomery, Angiotensin-I converting enzyme genotype-dependent benefit from hormone replacement therapy in isometric muscle strength and bone mineral density. J. Clin. Endocrinol. Metab. 86, 2200–2204 (2001)

    PubMed  CAS  Google Scholar 

  17. J.L. Pérez-Castrillón, I. Justo, J. Silva, A. Sanz, J.C.M. Escudero, R. Igea, P. Escudero, C. Pueyo, C. Diaz, G. Hernández, Relationship between bone mineral density and angiotensin converting enzyme polymorphism in hypertensive postmenopausal women. Am. J. Hypertens. 16, 233–235 (2003)

    Article  PubMed  Google Scholar 

  18. M.L.M. Barreto-Chaves, I. Aneas, J.E. Krieger, Glucocorticoid regulation of angiotensin-converting enzyme in primary culture of adult cardiac fibroblasts. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R25–R32 (2001)

    PubMed  CAS  Google Scholar 

  19. A. Sato, H. Suzuki, Y. Nakazato, H. Shibata, T. Inagami, T. Saruta, Increased expression of vascular angiotensin II type 1A receptor gene in glucocorticoid induced hypertension. J. Hypertens. 12, 511–516 (1994)

    Article  PubMed  CAS  Google Scholar 

  20. S.G. Roy, P. De, D. Mukherjee, V. Chander, A. Konar, D. Bandyopadhyay, A. Bandyopadhyay, Excess of glucocorticoid induces cardiac dysfunction via activating angiotensin II pathway. Cell. Physiol. Biochem. 24, 1–10 (2009)

    Article  PubMed  CAS  Google Scholar 

  21. K.J. Zhang, J. Zhang, Z.K. Kang, X.M. Xue, J.F. Kang, Y.W. Li, H.N. Dong, D.G. Liu, Ibandronate for prevention and treatment of glucocorticoid-induced osteoporosis in rabbits. Rheumatol. Int. 32, 3405–3411 (2011)

    Article  PubMed  Google Scholar 

  22. H. Mitani, T. Bandoh, J. Ishikawa, M. Kimura, T. Totsuka, S. Hayashi, Inhibitory effects of fluvastatin, a new HMG-CoA reductase inhibitor, on the increase in vascular ACE activity in cholesterol-fed rabbits. Br. J. Pharmacol. 119, 1269–1275 (1996)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, P.J. Meunier, S.M. Ott, R.R. Recker, Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987)

    Article  PubMed  CAS  Google Scholar 

  24. C.H. Turner, D.B. Burr, Basic biomechanical measurements of bone: a tutorial. Bone 14, 595–608 (1993)

    Article  PubMed  CAS  Google Scholar 

  25. Y. Izu, F. Mizoguchi, A. Kawamata, T. Hayata, T. Nakamoto, K. Nakashima, T. Inagami, Y. Ezura, M. Noda, Angiotensin II type 2 receptor blockade increases bone mass. J. Biol. Chem. 284, 4857–4864 (2009). doi:10.1074/jbc.M807610200

    Article  PubMed  CAS  Google Scholar 

  26. P. Garcia, S. Schwenzer, J.E. Slotta, C. Scheuer, A.E. Tami, J.H. Holstein, T. Histing, M. Burkhardt, T. Pohlemann, M.D. Menger, Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—role of a local renin–angiotensin system. Br. J. Pharmacol. 159, 1672–1680 (2010). doi:10.1111/j.1476-5381.2010.00651.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. I.C. Haznedaroglu, M. Oztürk, Towards the understanding of the local hematopoietic bone marrow renin–angiotensin system. Int. J. Biochem. Cell Biol. 35, 867–880 (2003)

    Article  PubMed  CAS  Google Scholar 

  28. F.A.O. Mendelsohn, C.J. Lloyd, C. Kachel, J.W. Funder, Induction by glucocorticoids of angiotensin converting enzyme-production from bovine endothelial-cells in culture and rat lung in vivo. J. Clin. Investig. 70, 684–692 (1982). doi:10.1172/jci110663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. I. Hamming, H. Van Goor, A. Turner, C. Rushworth, A. Michaud, P. Corvol, G. Navis, Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Exp. Physiol. 93, 631–638 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. Y. Zhu, Y. Zhu, J. Li, H. Schäfer, W. Schmidt, T. Unger, T. Yao, Effects of ramipril on cardiac gene transcription levels of angiotensin II receptors after myocardial infarction. Zhongguo yao lixue bao 20, 481 (1999)

    CAS  Google Scholar 

  31. N. Iwai, T. Inagami, Regulation of the expression of the rat angiotensin II receptor mRNA. Biochem. Biophys. Res. Commun. 182, 1094–1099 (1992)

    Article  PubMed  CAS  Google Scholar 

  32. I.D. McCarthy, Fluid shifts due to microgravity and their effects on bone: a review of current knowledge. Ann. Biomed. Eng. 33, 95–103 (2005)

    Article  PubMed  Google Scholar 

  33. A. Bergula, W. Huang, J. Frangos, Femoral vein ligation increases bone mass in the hindlimb suspended rat. Bone 24, 171–177 (1999)

    Article  PubMed  CAS  Google Scholar 

  34. C. Paszty, C.H. Turner, M.K. Robinson, Sclerostin, a gem from the genome leads to bone-building antibodies. J. Bone Miner. Res. 25, 1897–1904 (2010)

    Article  PubMed  CAS  Google Scholar 

  35. W. Yao, Z. Cheng, A. Pham, C. Busse, E.A. Zimmermann, R.O. Ritchie, N.E. Lane, Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum. 58, 3485–3497 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. D.H. Solomon, H. Mogun, K. Garneau, M.A. Fischer, Risk of fractures in older adults using antihypertensive medications. J. Bone Miner. Res. 26, 1561–1567 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Xiaoge Zhao for his excellent technical assistance and Qi Chen for providing language help. This work was supported by the National Natural Science foundation No. 81101337.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Chunsheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Bone mineral density (BMD) of the lumbar spine. BMD of the lumbar spine in the four groups was measured using a dual-energy X-ray absorptiometer at baseline and at week 6 and 12 after intervention (n = 3 per group). Data are mean ± SD. P < 0.05 versus CONT group; P < 0.05 versus DXM group. Supplementary material 1 (TIFF 1,722 kb)

Fig. S2

Body weight and mean arterial blood pressure (MAP). a Body weight was measured every 2 weeks throughout the study (n = 12 per group). b MAP was measured prior to sacrifice, at t = 12 weeks (n = 10 per group). Data are mean ± SD. P < 0.05 versus CONT group; P < 0.05 versus DXM group. Supplementary material 2 (TIFF 3,713 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongtao, Z., Kunzheng, W., Jingjing, Z. et al. Glucocorticoids activate the local renin–angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis. Endocrine 47, 598–608 (2014). https://doi.org/10.1007/s12020-014-0196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0196-z

Keywords

Navigation