Skip to main content
Log in

The association of SCGB3A2 polymorphisms with the risk of Graves’ disease: a meta-analysis

  • Meta- Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the association of the SCGB3A2 −112G>A promoter polymorphism with Graves’ disease(GD) using a meta-analysis. Relevant studies were identified using PubMed and EMBASE electronic databases. A meta-analysis of relevant studies was performed. This meta-analysis included four case–control studies, containing 6,913 GD cases (Caucasian 3904, Han 3009) and 7,185 controls(Caucasian 4155, Han 3030). The combined results showed a significant difference in genotype distribution (−112A/G) between GD and control populations (A vs. G P = 1.53 × 10−7; GG vs. AA+AG P = 6.78 × 10−9). Meta-analysis was performed using a fixed-effects model. Under the dominant model (GG/AA + GA), the AA and GA genotypes were significantly associated with GD (pooled OR = 1.24, 95 % CI 1.12–1.37). When the two European studies are combined, the AA and GA genotypes were also significantly associated with GD (pooled OR = 1.29, 95 % CI 1.20–1.39). This meta-analysis suggests that SCGB3A2 polymorphism at positions −112G>A was associated with GD both in Chinese and Caucasian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.J. Simmonds, J.M. Howson, J.M. Heward, H.J. Cordell, H. Foxall, J. Carr-Smith, S.M. Gibson, N. Walker, Y. Tomer, J.A. Franklyn, J.A. Todd, S.C. Gough, Regression mapping of association between the human leukocyte antigen region and Graves’ disease. Am. J. Hum. Genet. 76, 157–163 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. H. Ueda, J.M. Howson, L. Esposito, J. Heward, H. Snook, G. Chamberlain, D.B. Rainbow, K.M. Hunter, A.N. Smith, G. Di Genova, M.H. Herr, I. Dahlman, F. Payne, D. Smyth, C. Lowe, R.C. Twells, S. Howlett, B. Healy, S. Nutland, H.E. Rance, V. Everett, L.J. Smink, A.C. Lam, H.J. Cordell, N.M. Walker, C. Bordin, J. Hulme, C. Motzo, F. Cucca, J.F. Hess, M.L. Metzker, J. Rogers, S. Gregory, A. Allahabadia, R. Nithiyananthan, E. Tuomilehto-Wolf, J. Tuomilehto, P. Bingley, K.M. Gillespie, D.E. Undlien, K.S. Rønningen, C. Guja, C. Ionescu-Tîrgovişte, D.A. Savage, A.P. Maxwell, D.J. Carson, C.C. Patterson, J.A. Franklyn, D.G. Clayton, L.B. Peterson, L.S. Wicker, J.A. Todd, S.C. Gough, Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Tomer, E. Concepcion, D.A. Greenberg, A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 12, 1129–1135 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. M.R. Velaga, V. Wilson, C.E. Jennings, C.J. Owen, S. Herington, P.T. Donaldson, S.G. Ball, R.A. James, R. Quinton, P. Perros, S.H. Pearce, The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J. Clin. Endocrinol. Metab. 89, 5862–5865 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. H. Hiratani, D.W. Bowden, S. Ikegami, S. Shirasawa, A. Shimizu, Y. Iwatani, T. Akamizu, Multiple SNPs in intron 7 of thyrotropin receptor are associated with Graves’ disease. J. Clin. Endocrinol. Metab. 90, 2898–2903 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Y. Jin, W. Teng, S. Ben, X. Xiong, J. Zhang, S. Xu, Y.Y. Shugart, L. Jin, J. Chen, W. Huang, Genome-wide scan of Graves’ disease evidence for linkage on chromosome 5q31 in Chinese pedigrees. J. Clin. Endocrinol. Metab. 88, 1798–1803 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. K. Sakai, S. Shirasawa, N. Ishikawa, K. Ito, H. Tamai, K. Kuma, T. Akamizu, M. Tanimura, K. Furugaki, K. Yamamoto, T. Sasazuki, Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum. Mol. Genet. 10, 1379–1386 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. X. Chu, Y. Dong, M. Shen, L. Sun, C. Dong, Y. Wang, B. Wang, K. Zhang, Q. Hua, S. Xu, W. Huang, Polymorphisms in the ADRB2 gene and Graves disease: a case-control study and a meta-analysis of available evidence. BMC Med. Genet. 10, 26 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  9. Y. Ikeda, W. Yoshida, T. Noguchi, K. Asaba, T. Nishioka, T. Takao, K. Hashimoto, Lack of association between IL-12B gene polymorphism and autoimmune thyroid disease in Japanese patients. Endocr. J. 51, 609–613 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Hiromatsu, T. Fukutani, M. Ichimura, T. Mukai, H. Kaku, I. Miyake, K. Yamada, Interleukin-12B gene polymorphism does not confer susceptibility to Graves’ ophthalmopathy in Japanese population. Endocr. J. 53, 753–759 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Yang, S. Lingling, J. Ying, L. Yushu, S. Zhongyan, H. Wei, T. Weiping, Association study between the IL4, IL13, IRF1 and UGRP1 genes in chromosomal 5q31 region and Chinese Graves’ disease. J. Hum. Genet. 50, 574–582 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. M.J. Simmonds, J.M. Heward, J.A. Franklyn, S.C. Gough, IL-13 and chromosome 5q31-q33: problems of identifying association within regions of linkage to Graves’ disease. Clin. Endocrinol. (Oxf) 63, 695–697 (2005)

    Article  CAS  Google Scholar 

  13. Y. Hiromatsu, T. Fukutani, M. Ichimura, T. Mukai, H. Kaku, H. Nakayama, I. Miyake, S. Shoji, Y. Koda, T. Bednarczuk, Interleukin-13 gene polymorphisms confer the susceptibility of Japanese populations to Graves’ disease. J. Clin. Endocrinol. Metab. 90, 296–301 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. T. Niimi, M. Munakata, C.L. Keck-Waggoner, N.C. Popescu, R.C. Levitt, M. Hisada, S. Kimura, A polymorphism in the human UGRP1 gene promoter that regulates transcription is associated with an increased risk of asthma. Am. J. Hum. Genet. 70, 718–725 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Z. Jian, J. Nakayama, E. Noguchi, M. Shibasaki, T. Arinami, No evidence for association between the −112G/A polymorphism of UGRP1 and childhood atopic asthma. Clin. Exp. Allergy 33, 902–904 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. J. Batra, P.V. Niphadkar, S.K. Sharma, B. Ghosh, Uteroglobin-related protein 1 (UGRP1) gene polymorphisms and atopic asthma in the Indian population. Int. Arch. Allergy Immunol. 136, 1–6 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. A. Heinzmann, H. Dietrich, K.A. Deichmann, Association of uteroglobulinrelated protein 1 with bronchial asthma. Int. Arch. Allergy Immunol. 131, 291–295 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. H.D. Song, J. Liang, J.Y. Shi, S.X. Zhao, Z. Liu, J.J. Zhao, Y.D. Peng, G.Q. Gao, J. Tao, C.M. Pan, L. Shao, F. Cheng, Y. Wang, G.Y. Yuan, C. Xu, B. Han, W. Huang, X. Chu, Y. Chen, Y. Sheng, R.Y. Li, Q. Su, L. Gao, W.P. Jia, L. Jin, M.D. Chen, S.J. Chen, Z. Chen, J.L. Chen, Functional SNPs in the SCGB3A2 promoter are associated with susceptibility to Graves’ disease. Hum. Mol. Genet. 18, 1156–1170 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. M.J. Simmonds, K. Yesmin, P.R. Newby, O.J. Brand, J.A. Franklyn, S.C. Gough, Confirmation of association of chromosome 5q31-33 with United Kingdom Caucasian Graves’ disease. Thyroid 20, 413–417 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. D.A. Chistiakov, N.V. Voronova, R.I. Turakulov, K.V. Savost’anov, The −112G>A polymorphism of the secretoglobin 3A2 (SCGB3A2) gene encoding uteroglobin-related protein 1 (UGRP1) increases risk for the development of Graves’ disease in subsets of patients with elevated levels of immunoglobulin E. J. Appl. Genet. 52, 201–207 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. R. DerSimonian, N. Laird, Meta-analysis in clinical trials. Control Clin. Trials 7, 177–188 (1986)

    Article  CAS  PubMed  Google Scholar 

  22. N. Liu, X. Li, C. Liu, Y. Zhao, B. Cui, G. Ning, The association of interleukin-1alpha and interleukin-1beta polymorphisms with the risk of Graves’ disease in a case-control study and meta-analysis. Hum. Immunol. 71, 397–401 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. M. Egger, G. Davey Smith, M. Schneider, C. Minder, Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. N. Liu, H. Lu, F. Tao, T. Guo, C. Liu, B. Cui, G. Ning, An association of interleukin-10 gene polymorphisms with Graves’ disease in two Chinese populations. Endocrine 40, 90–94 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. M. Feng, H. Li, S.F. Chen, W.F. Li, F.B. Zhang, Polymorphisms in the vitamin D receptor gene and risk of autoimmune thyroid diseases: a meta-analysis. Endocrine 43, 318–326 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. J. Yang, Q. Qin, N. Yan, Y.F. Zhu, C. Li, X.J. Yang, X. Wang, M. Pandey, P. Hou, J.A. Zhang, CD40 C/T(-1) and CTLA-4 A/G(49) SNPs are associated with autoimmune thyroid diseases in the Chinese population. Endocrine 41, 111–115 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. A.K. Andiappan, W.S. Yeo, P.N. Parate, R. Anantharaman, B.K. Suri, Y. de Wang, F.T. Chew, Variation in uteroglobin-related protein 1 (UGRP1) gene is associated with allergic rhinitis in Singapore Chinese. BMC Med. Genet. 12, 39 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Y.H. Lee, S.J. Choi, J.D. Ji, G.G. Song, The association between the PTPN22 C1858T polymorphism and systemic sclerosis: a meta-analysis. Mol. Biol. Rep. 39, 3103–3108 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Y.H. Lee, S.C. Bae, S.J. Choi, J.D. Ji, G.G. Song, The association between the PTPN22 C1858T polymorphism and rheumatoid arthritis: a meta-analysis update. Mol. Biol. Rep. 39, 3453–3460 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. D. Zhebrun, Y. Kudryashova, A. Babenko, A. Maslyansky, N. Kunitskaya, D. Popcova, A. Klushina, E. Grineva, A. Kostareva, E. Shlyakhto, Association of PTPN22 1858T/T genotype with type 1 diabetes, Graves’ disease but not with rheumatoid arthritis in Russian population. Aging (Albany NY) 3, 368–373 (2011)

    CAS  Google Scholar 

  31. I. Santin, A. Castellanos-Rubio, A.M. Aransay, L. Castaño, J.C. Vitoria, J.R. Bilbao, The functional R620W variant of the PTPN22 gene is associated with celiac disease. Tissue Antigens 71, 247–249 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. W.W. Lea, Y.H. Lee, The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: a meta-analysis update. Lupus 20, 51–57 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from National Natural Science Foundation of China (81200416), Shanghai Municipal Health Bureau (20124262), Shanghai Science and Technology Committee (10JC1410400), Program for Graves’ Disease Innovative Research Team of Shanghai Municipal Education Commission and Shanghai Ninth People's Hospital (JY2011A13).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaidong Song.

Additional information

Liqiong Xue and Bing Han contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, L., Han, B., Pan, C. et al. The association of SCGB3A2 polymorphisms with the risk of Graves’ disease: a meta-analysis. Endocrine 45, 365–369 (2014). https://doi.org/10.1007/s12020-013-0021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0021-0

Keywords

Navigation