Skip to main content

Advertisement

Log in

Mutation analysis and serum FGF23 level in a patient with pulmonary alveolar microlithiasis

  • Case Report
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Pulmonary alveolar microlithiasis (PAM) is a rare, hereditary disorder characterized by ectopic formation of calcium-phosphate microliths in the alveolar space. PAM has been reported to arise from inactivating mutations in SLC34A2, encoding a sodium-dependent phosphate co-transporter essential for phosphate transport in the lungs and small intestine. Serum levels of the phosphaturic hormone fibroblast growth factor-23 (FGF23) in PAM have not been determined. Our objectives were to investigate the genetic etiology and circulating level of FGF23 in a 50-year-old male with clinical characteristics of PAM and extra-pulmonary calcifications. The SLC34A2 and FGF23 genes were sequenced for mutations and serum FGF23 analyzed by ELISA. We found no disease-causing mutations or single nucleotide polymorphisms in the genes investigated. Importantly, repeated measurements revealed undetectable or markedly low serum FGF23 (<3–11 RU/ml). Surprisingly, in the face of low serum FGF23, 1,25-dihydroxy vitamin D3 level was low-normal and parathyroid hormone mildly elevated. Total 24-h urinary excretion of phosphate and calcium were low, as was fractional urinary excretion of calcium. In contrast, fractional excretion of phosphate was above normal, likely due to elevated PTH. Collectively, PAM may be a polygenic disorder that arises from mutations other than in SLC34A2. The low FGF23 level in our PAM patient supports an intestinal-bone axis, leading to decreased FGF23 expression when intestinal phosphate absorption is compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. M.C. Sosman, G.D. Dodd, W.D. Jones, G.U. Pillmore, The familial occurrence of pulmonary alveolar microlithiasis. Am. J. Roentgenol. Radium Ther. Nucl. Med. 77, 947–1012 (1957)

    CAS  PubMed  Google Scholar 

  2. E.S. Ucan, A.I. Keyf, R. Aydilek, Z. Yalcin, S. Sebit, M. Kudu, U. Ok, Pulmonary alveolar microlithiasis: review of Turkish reports. Thorax 48, 171–173 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. S. Mariotta, A. Ricci, M. Papale, F. De Clementi, B. Sposato, L. Guidi, F. Mannino, Pulmonary alveolar microlithiasis: report on 576 cases published in the literature. Sarcoidosis Vasc. Diffuse Lung Dis. 21, 173–181 (2004)

    PubMed  Google Scholar 

  4. T. Coetzee, Pulmonary alveolar microlithiasis with involvement of the sympathetic nervous system and gonads. Thorax 25, 637–642 (1970)

    Article  CAS  PubMed  Google Scholar 

  5. K. Pant, A. Shah, R.K. Mathur, S.K. Chhabra, S.K. Jain, Pulmonary alveolar microlithiasis with pleural calcification and nephrolithiasis. Chest 98, 245–246 (1990)

    Article  CAS  PubMed  Google Scholar 

  6. A. Corut, A. Senyigit, S.A. Ugur, S. Altin, U. Ozcelik, H. Calisir, Z. Yildirim, A. Gocmen, A. Tolun, Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis. Am. J. Hum. Genet. 79, 650–656 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. I.S. Huqun, H. Miyazawa, K. Ishii, B. Uchiyama, T. Ishida, S. Tanaka, R. Tazawa, S. Fukuyama, T. Tanaka, Y. Nagai, A. Yokote, H. Takahashi, T. Fukushima, K. Kobayashi, H. Chiba, M. Nagata, S. Sakamoto, K. Nakata, Y. Takebayashi, Y. Shimizu, K. Kaneko, M. Shimizu, M. Kanazawa, S. Abe, Y. Inoue, S. Takenoshita, K. Yoshimura, K. Kudo, T. Tachibana, T. Nukiwa, K. Hagiwara, Mutations in the SLC34A2 gene are associated with pulmonary alveolar microlithiasis. Am. J. Respir. Crit. Care Med. 175, 263–268 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. J.A. Feild, L. Zhang, K.A. Brun, D.P. Brooks, R.M. Edwards, Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem. Biophys. Res. Commun. 258, 578–582 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. M. Hashimoto, D.Y. Wang, T. Kamo, Y. Zhu, T. Tsujiuchi, Y. Konishi, M. Tanaka, H. Sugimura, Isolation and localization of type IIb Na/Pi cotransporter in the developing rat lung. Am. J. Pathol. 157, 21–27 (2000)

    CAS  PubMed  Google Scholar 

  10. M. Traebert, O. Hattenhauer, H. Murer, B. Kaissling, J. Biber, Expression of type II Na-P(i) cotransporter in alveolar type II cells. Am. J. Physiol. 277, L868–L873 (1999)

    CAS  PubMed  Google Scholar 

  11. H. Xu, L. Bai, J.F. Collins, F.K. Ghishan, Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2). Genomics 62, 281–284 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. B. Hildmann, C. Storelli, G. Danisi, H. Murer, Regulation of Na+-Pi cotransport by 1,25-dihydroxyvitamin D3 in rabbit duodenal brush-border membrane. Am. J. Physiol. 242, G533–G539 (1982)

    CAS  PubMed  Google Scholar 

  13. T. Tachibana, K. Hagiwara, T. Johkoh, Pulmonary alveolar microlithiasis: review and management. Curr. Opin. Pulm. Med. 15, 486–490 (2009)

    Article  PubMed  Google Scholar 

  14. ADHR Consortium, Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000)

    Google Scholar 

  15. T. Larsson, R. Marsell, E. Schipani, C. Ohlsson, O. Ljunggren, H.S. Tenenhouse, H. Juppner, K.B. Jonsson, Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145, 3087–3094 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. S. Kruger, V.M. Brandenburg, R. Hoffmann, C. Breuer, J. Riehl, Pulmonary alveolar microlithiasis—a rare cause of bilateral extensive pulmonary infiltrates. Med. Klin. (Munich) 97, 304–307 (2002)

    Article  Google Scholar 

  17. Y. Yang, J.H. Qiao, J.H. An, Y. Zhang, T. Yu, B. Jia, Z.S. Ma, Detection of SLC34A2 in patients with pulmonary alveolar microlithiasis and the effect of SLC34A2 on transportation of calcium and phosphate in human alveolar epithelial cells. Zhonghua Jie He He Hu Xi Za Zhi 31, 908–911 (2008)

    PubMed  Google Scholar 

  18. A. Benet-Pages, P. Orlik, T.M. Strom, B. Lorenz-Depiereux, An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 14, 385–390 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. T. Larsson, X. Yu, S.I. Davis, M.S. Draman, S.D. Mooney, M.J. Cullen, K.E. White, A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J. Clin. Endocrinol. Metab. 90, 2424–2427 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. G. Castellana, V. Lamorgese, Pulmonary alveolar microlithiasis. World cases and review of the literature. Respiration 70, 549–555 (2003)

    Article  PubMed  Google Scholar 

  21. Y. Sabbagh, S.P. O’Brien, W. Song, J.H. Boulanger, A. Stockmann, C. Arbeeny, S.C. Schiavi, Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J. Am. Soc. Nephrol. 20, 2348–2358 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. L.D. Quarles, Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. D. Prie, P. Urena Torres, G. Friedlander, Latest findings in phosphate homeostasis. Kidney Int. 75, 882–889 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. T. Shimada, S. Mizutani, T. Muto, T. Yoneya, R. Hino, S. Takeda, Y. Takeuchi, T. Fujita, S. Fukumoto, T. Yamashita, Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl. Acad. Sci. U.S.A. 98, 6500–6505 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. T. Kawata, Y. Imanishi, K. Kobayashi, T. Miki, A. Arnold, M. Inaba, Y. Nishizawa, Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J. Am. Soc. Nephrol. 18, 2683–2688 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the patient for his participation. We also thank professor Hagiwara for valuable comments. Declaration of interest: V.B. and T.E.L. received lecture fees. H.O. has nothing to declare. Funding: This study was supported by the Swedish Research Council, the Novo Nordisk Foundation, the Swedish Kidney Foundation and the Swedish Society of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias E. Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olauson, H., Brandenburg, V. & Larsson, T.E. Mutation analysis and serum FGF23 level in a patient with pulmonary alveolar microlithiasis. Endocr 37, 244–248 (2010). https://doi.org/10.1007/s12020-009-9299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-009-9299-3

Keywords

Navigation