Skip to main content

Advertisement

Log in

Exostoses of the Bony Pyramid of the Nose: A Review About an Adaptive Response to Mechanical Stimuli Exerted by In-Flight Oxygen Masks

  • The burden of osteoporosis
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

This review addresses thickening of the bony pyramid of the nose, a condition that is caused by in-flight oxygen masks in otherwise healthy Royal Netherlands Air Force (RNLAF) F-16 pilots. The overlying skin may show temporary or permanent reddening, irritation, thickening and may become painful. Both in vitro and in vivo animal research has shown that mechanical stimuli are converted into a biochemical response through a process called mechanotransduction. Examination of the RNLAF F-16 pilots showed that the oxygen mask exerts pressure and friction on the nose. The biochemical response to chronic exposure to these stimuli results in the development of skin conditions and eventually exostoses of the bony pyramid of the nose. Painful skin conditions are most frequently observed, while the development of exostoses is rare. It lies at the extreme end of the spectrum of the pilots’ nasal conditions. The suboptimal fit of their work gear probably contributes to the pilots’ soft and bony tissue nasal conditions. Explaining the pathogenesis of the development of exostoses may aid in the development of preventive measures. Also, the obtained knowledge may be of use in similar occupational health issues that involve mechanical loading. Our conclusions are that areas containing osteocyte precursors and covered by a relatively thin cushioning layer are prone to develop a soft tissue and bony tissue response when they are chronically exposed to intermittently exerted, mechanical stimuli of sufficiently high magnitude. Modification of the suboptimally fitting oxygen mask–helmet assembly is needed to prevent symptoms associated with its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schreinemakers JRC, Westers P, van Amerongen P, et al. Oxygen mask related nasal integument and osteocartilagenous disorders in F-16 fighter pilots. PLoS One. 2013;. doi:10.1371/journal.pone.0056251.

    Google Scholar 

  2. Schreinemakers JRC, van Amerongen P, Kon M. Acquired nasal deformities in fighter pilots. J Plast Reconstr Aesthet Surg. 2010;63:1217–9.

    Article  PubMed  Google Scholar 

  3. Bodor RM, Breithaupt AD, Bruncke GM, et al. Swimmer’s nose deformity. Ann Plast Surg. 2008;60:658–60.

    Article  CAS  PubMed  Google Scholar 

  4. Tlougan BE, Mancini AJ, Mandell JA, et al. Skin conditions in figure skaters, ice-hockey players and speed skaters: part I—mechanical dermatoses. Sports Med. 2011;41:709–19.

    Article  PubMed  Google Scholar 

  5. Uchiyama M, Tsuboi R, Mitsuhashi Y. Athlete’s nodule. J Dermatol. 2009;36:608–11.

    Article  PubMed  Google Scholar 

  6. MacDonald DM, Martin SJ. Acanthoma fissuratum—spectacle frame acanthoma. Acta Derm Venereol. 1975;55:485–8.

    CAS  PubMed  Google Scholar 

  7. Schreinemakers JRC, Oudenhuijzen AJ, van Amerongen PC. Oxygen mask fit analysis in F-16 fighter pilots using 3D imaging. Aviat Space Environ Med. 2013;84:1029–33.

    Article  PubMed  Google Scholar 

  8. Defloor T. The risk of pressure sores: a conceptual scheme. J Clin Nurse. 1999;8:206–16.

    Article  CAS  Google Scholar 

  9. Krogman WM, Iscan MY. Restoration of physiognomy: skull to head restoration. In: The human skeleton in forensic medicine. Springfield: Thomas; 1986. pp. 420-431.

  10. Coleman S, Gorecki C, Nelson EA, et al. Patient risk factors for pressure ulcer development: systematic review. Int J Nurs Stud. 2013;50:974–1003.

    Article  PubMed  Google Scholar 

  11. Munckton K, Ho KM, Dobb GJ, et al. The pressure effects of facemasks during noninvasive ventilation: a volunteer study. Anaesthesia. 2007;62:1126–31.

    Article  CAS  PubMed  Google Scholar 

  12. Mathys R, Ferguson SJ. Simulation of the effects of different pilot helmets on neck loading during air combat. J Biomech. 2012;45:2362–7.

    Article  CAS  PubMed  Google Scholar 

  13. Schreinemakers JR, Boer C, van Amerongen PC, Kon M. Pressure effects on the nose by an in-flight oxygen mask during simulated flight conditions. JR Army Med Corps. 2015;. doi:10.1136/jramc-2014-000399.

    Google Scholar 

  14. Schreinemakers JRC, Boer C, van Amerongen PCGM, et al. Exerted pressure by an in-flight oxygen mask. Aviat Space Environ Med. 2014;85:745–9.

    Article  PubMed  Google Scholar 

  15. Chen JC, Jacobs CR. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res Ther. 2014;4:107.

    Article  CAS  Google Scholar 

  16. Klein-Nulend J, Bakker AD, Bacabac RG, et al. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90.

    Article  CAS  PubMed  Google Scholar 

  17. Krahl H, Michaelis U, Pieper HG, et al. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med. 1994;4:751–7.

    Article  Google Scholar 

  18. Hall BK, Herring SW. Paralysis and growth of the musculoskeletal system in the embryonic chick. J Morphol. 1990;4:45–56.

    Article  Google Scholar 

  19. Rodriguez JI, Garcia-Alix A, Palacios J, et al. Changes in the long bones due to fetal immobility caused by neuromuscular disease. A radiographic and histological study. J Bone Joint Surg Am. 1998;4:1052–60.

    Google Scholar 

  20. Pead MJ, Skerry TM, Lanyon LE. Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Min Res. 1988;3:647–56.

    Article  CAS  Google Scholar 

  21. Forwood MR, Turner CH. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone. 1994;15:603–9.

    Article  CAS  PubMed  Google Scholar 

  22. Mullender M, El Haj AJ, Yang Y, et al. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput. 2004;42:14–21.

    Article  CAS  PubMed  Google Scholar 

  23. Haudenschild AK, Hsieh AH, Kapila S, et al. Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann Biomed Eng. 2009;4:492–502.

    Article  Google Scholar 

  24. Jagodzinski M, Breitbart A, Wehmeier M, et al. Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J Biomech. 2008;4:1885–91.

    Article  Google Scholar 

  25. Gurkan UA, Akkus O. The mechanical environment of bone marrow: a review. Ann Biomed Eng. 2008;4:1978–91.

    Article  Google Scholar 

  26. Adachi T, Aonuma Y, Tanaka M, et al. Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech. 2009;42:1989–95.

    Article  PubMed  Google Scholar 

  27. Burra S, Jiang JX. Connexin 43 hemichannel opening associated with Prostaglandin E2 release is adaptively regulated by mechanical stimulation. Common Integr Biol. 2009;2:239–40.

    Article  CAS  Google Scholar 

  28. Wu D, Ganatos P, Spray DC, et al. On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces. J Biomech. 2011;44:1707–8.

    Google Scholar 

  29. Xiao Z, Zhang S, Mahlios J, et al. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem. 2006;281:30884–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wang I, Ciani C, Doty SB, Fritton SP. Delineating bone’s interstitial fluid pathway in vivo. Bone. 2004;34:499–509.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001;28:145–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sugawara Y, Kamioka H, Honjo T, et al. Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone. 2005;36:877–83.

    Article  CAS  PubMed  Google Scholar 

  33. Muir P, Sample SJ, Barrett JG, et al. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow. Bone. 2007;40:948–56.

    Article  PubMed  Google Scholar 

  34. Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 1994;8:875–8.

    CAS  PubMed  Google Scholar 

  35. Knothe Tate ML, Steck R, Forwood MR, et al. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for precesses associated with functional adaptation. J Exp Biol. 2000;203:2737–45.

    CAS  PubMed  Google Scholar 

  36. Tate ML, Niederer P, Knothe U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone. 1998;22:107–17.

    Article  Google Scholar 

  37. Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269:80–2.

    Article  CAS  PubMed  Google Scholar 

  38. O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodeling. J Biomech. 1982;15:767–81.

    Article  PubMed  Google Scholar 

  39. Hagino H, Raab D, Kimmel D, et al. The effects of ovariectomy on bone response to in vivo external loading. J Bone Miner Res. 1993;8:347–57.

    Article  CAS  PubMed  Google Scholar 

  40. Turner CH, Akhter MP, Raab DM, et al. A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone. 1991;12:73–9.

    Article  CAS  PubMed  Google Scholar 

  41. Raab-Cullen D, Akhter M, Kimmel D, et al. Bone response to alternate day mechanical loading of the rat tibia during external mechanical loading of the rat tibia. J Bone Miner Res. 1994;9:203–11.

    Article  CAS  PubMed  Google Scholar 

  42. Ajubi NE, Klein-Nulend J, Alblas MJ, et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol. 1999;276:E171–8.

    CAS  PubMed  Google Scholar 

  43. Raab-Cullen DM, Thiede MA, Petersen DN, et al. Mechanical loading stimulates rapid changes in periosteal gene expression. Calcif Tissue Int. 1994;55:473–8.

    Article  CAS  PubMed  Google Scholar 

  44. Goodship AE, Lanyon LE, McFie H. Functional adaptation of bone to increased stress. J Bone Joint Surg. 1979;61A:539–46.

    Google Scholar 

  45. Turner CH, Woltman TA, Belongia DA. Structural changes in rat bone subjected to long-term, in vivo mechanical loading. Bone. 1992;13:417–22.

    Article  CAS  PubMed  Google Scholar 

  46. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg. 1984;66A:397–402.

    Google Scholar 

  47. Lanyon LE, Goodship AE, Pye CJ. Mechanically active bone remodeling. A quantitative study on functional adaptation in the radius following ulna osteotomy in sheep. J Biomech. 1982;15:141–54.

    Article  CAS  PubMed  Google Scholar 

  48. Robling AG, Burr DB. Turner CH recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001;204:3389–99.

    CAS  PubMed  Google Scholar 

  49. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23:399–407.

    Article  CAS  PubMed  Google Scholar 

  50. Chow JWM, Jagger CJ, Chambers TJ. Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae. Am J Physiol. 1993;265:E340–7.

    CAS  PubMed  Google Scholar 

  51. Lanyon L. Control of bone architecture by functional load bearing. J Bone Miner Res. 1992;7:S369–75.

    Article  PubMed  Google Scholar 

  52. Bünneman M, Lee KB, Pals-Rylaarsdam R, et al. Desensitization of G-protein couples receptors in the cardiovascular system. Annu Rev Physiol. 1999;61:169–92.

    Article  Google Scholar 

  53. Freedman NJ, Lefkowitz RJ. Desensitization of G protein-coupled receptors. Recent Prog Horm Res. 1996;51:319–51.

    CAS  PubMed  Google Scholar 

  54. Lohse MJ. Molecular mechanisms of membrane receptor desensitization. Biochim Biophys Acta. 1993;1179:171–88.

    Article  CAS  PubMed  Google Scholar 

  55. Umemura Y, Ishiko T, Yamauchi T, et al. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12:1480–5.

    Article  CAS  PubMed  Google Scholar 

  56. Robling AG, Burr DB, Turner CH. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res. 2000;15(8):1596–602.

    Article  CAS  PubMed  Google Scholar 

  57. Peachey RD, Matthews CN. Fiddler’s neck. Br J Dermatol. 1978;98:669–74.

    Article  CAS  PubMed  Google Scholar 

  58. Diesel DA. A conformal foam insert to improve comfort and function of the MBU-20/p positive pressure breathing oxygen mask. SAFE J. 1997;27:104–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rieneke C. Schreinemakers.

Ethics declarations

Conflict of interest

J. Rieneke C. Schreinemakers, J. Klein-Nulend, M. L. van Lotten, P.A. Nolte and M. Kon declare that they have no conflict of interest.

Animal/Human Studies

This article does not include any studies with human or animal subjects performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreinemakers, J.R.C., Klein-Nulend, J., van Lotten, M.L. et al. Exostoses of the Bony Pyramid of the Nose: A Review About an Adaptive Response to Mechanical Stimuli Exerted by In-Flight Oxygen Masks. Clinic Rev Bone Miner Metab 13, 98–104 (2015). https://doi.org/10.1007/s12018-015-9187-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-015-9187-8

Keywords

Navigation