Skip to main content
Log in

Primary Cilia-Mediated Mechanotransduction in Bone

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Mechanotransduction is a process in which cells sense applied mechanical stimulus and convert these forces into biochemical responses. This process regulates skeletal homeostasis, organization, and development, although the cellular mechanism that is responsible for mechanotransduction in bone is currently unknown. One candidate mechanosensor is the primary cilium, a single immotile organelle that extends from the surface of bone cells. The inhibition of primary cilia formation or associated components leads to reduced expression of mechanosensitive osteogenic genes, impaired osteoblastic differentiation, and skeletal phenotype irregularities. In this review, we discuss growing evidence supporting primary cilia as mediators of mechanically regulated skeletal homeostasis and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chow JW, Jagger CJ, Chambers TJ. Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae. Am J Physiol. 1993;265(2 Pt 1):E340–7.

    PubMed  CAS  Google Scholar 

  2. Turner CH, Forwood MR, Rho JY, Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res. 1994;9(1):87–97.

    Article  PubMed  CAS  Google Scholar 

  3. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19(6):1006–12.

    Article  PubMed  Google Scholar 

  4. Tsuzuku S, Ikegami Y, Yabe K. Bone mineral density differences between paraplegic and quadriplegic patients: a cross-sectional study. Spinal Cord. 1999;37(5):358–61.

    Article  PubMed  CAS  Google Scholar 

  5. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.

    Article  PubMed  Google Scholar 

  6. NOF. America’s bone health: the state of osteoporosis and low bone mass in our nation. Washington: National Osteoporosis Foundation; 2002.

    Google Scholar 

  7. Ushida T, Uemura T, Tateishi R. Changes in cell proliferation, alkaline phosphatase activity and cAMP production by mechanical strain in osteoblast-like cells differentiated from rat bone marrow. Mater Sci Eng C. 2001;17(1–2):51–3.

    Article  Google Scholar 

  8. Diederichs S, Riechers D, Sempf F, Kall S, Kasper C, van Griensven M, et al. Investigation of the effect of mechanical strain on the osteogenic differentiation of mesenchymal stem cells. Cells Culture. 2010;4(6):579–89.

    Article  Google Scholar 

  9. Tanno M, Furukawa KI, Ueyama K, Harata S, Motomura S. Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone. 2003;33(4):475–84.

    Article  PubMed  CAS  Google Scholar 

  10. Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, et al. Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater. 2004;7:35–41. discussion.

    PubMed  CAS  Google Scholar 

  11. Kanno T, Takahashi T, Ariyoshi W, Tsujisawa T, Haga M, Nishihara T. Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis. J Oral Maxillofac Surg. 2005;63(4):499–504.

    Article  PubMed  Google Scholar 

  12. Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol. 2006;207(2):454–60.

    Article  PubMed  CAS  Google Scholar 

  13. You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng. 2000;122(4):387–93.

    Article  PubMed  CAS  Google Scholar 

  14. McGarry JG, Klein-Nulend J, Mullender MG, Prendergast PJ. A comparison of strain and fluid shear stress in stimulating bone cell responses–a computational and experimental study. FASEB J. 2005;19(3):482–4.

    PubMed  CAS  Google Scholar 

  15. Guo XE, Takai E, Jiang X, Xu Q, Whitesides GM, Yardley JT, et al. Intracellular calcium waves in bone cell networks under single cell nanoindentation. Mol Cell Biomech. 2006;3(3):95–107.

    PubMed  Google Scholar 

  16. Bergh JJ, Shao Y, Akanbi K, Farach-Carson MC. Rodent osteoblastic cells express voltage-sensitive calcium channels lacking a gamma subunit. Calcif Tissue Int. 2003;73(5):502–10.

    Article  PubMed  CAS  Google Scholar 

  17. Bergh JJ, Xu Y, Farach-Carson MC. Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel. Endocrinology. 2004;145(1):426–36.

    Article  PubMed  CAS  Google Scholar 

  18. Miyauchi A, Notoya K, Mikuni-Takagaki Y, Takagi Y, Goto M, Miki Y, et al. Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically loaded osteocytes. J Biol Chem. 2000;275(5):3335–42.

    Article  PubMed  CAS  Google Scholar 

  19. Chen JH, Liu C, You L, Simmons CA. Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43(1):108–18.

    Article  PubMed  Google Scholar 

  20. Malone AM, Batra NN, Shivaram G, Kwon RY, You L, Kim CH, et al. The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3–E1 osteoblasts. Am J Physiol Cell Physiol. 2007;292(5):C1830–6.

    Article  PubMed  CAS  Google Scholar 

  21. Myers KA, Rattner JB, Shrive NG, Hart DA. Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem Biophys Res Commun. 2007;364(2):214–9.

    Article  PubMed  CAS  Google Scholar 

  22. You L, Cowin SC, Schaffler MB, Weinbaum S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech. 2001;34(11):1375–86.

    Article  PubMed  CAS  Google Scholar 

  23. McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. Attachment of osteocyte cell processes to the bone matrix. Anat Rec (Hoboken). 2009;292(3):355–63.

    CAS  Google Scholar 

  24. Wang Y, McNamara LM, Schaffler MB, Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA. 2007;104(40):15941–6.

    Article  PubMed  CAS  Google Scholar 

  25. Brakebusch C, Fassler R. Beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 2005;24(3):403–11.

    Article  PubMed  CAS  Google Scholar 

  26. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27(3):339–60.

    Article  PubMed  CAS  Google Scholar 

  27. Gullberg DE, Lundgren-Akerlund E. Collagen-binding I domain integrins–what do they do? Prog Histochem Cytochem. 2002;37(1):3–54.

    Article  PubMed  CAS  Google Scholar 

  28. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA. 2007;104(33):13325–30.

    Article  PubMed  CAS  Google Scholar 

  29. Wheatley DN, Wang AM, Strugnell GE. Expression of primary cilia in mammalian cells. Cell Biol Int. 1996;20(1):73–81.

    Article  PubMed  CAS  Google Scholar 

  30. DeRouen MC, Oro AE. The primary cilium: a small yet mighty organelle. J Invest Dermatol. 2009;129(2):264–5.

    Article  PubMed  CAS  Google Scholar 

  31. Olsen B. Nearly all cells in vertebrates and many cells in invertebrates contain primary cilia. Matrix Biol. 2005;24(7):449–50.

    Article  PubMed  CAS  Google Scholar 

  32. Zimmerman KW. Beitrage zur kenntnis einiger Drusen und Epithelien. Arch Mikrosk Anat. 1898;52:552–706.

    Article  Google Scholar 

  33. Whitfield JF. The solitary (primary) cilium–a mechanosensory toggle switch in bone and cartilage cells. Cell Signal. 2008;20(6):1019–24.

    Article  PubMed  CAS  Google Scholar 

  34. Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 2010;11(5):331–44.

    Article  PubMed  CAS  Google Scholar 

  35. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST. Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol. 2009;111(3):p39–53.

    Article  PubMed  CAS  Google Scholar 

  36. Yoder BK. Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol. 2007;18(5):1381–8.

    Article  PubMed  CAS  Google Scholar 

  37. Davenport JR, Yoder BK. An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol. 2005;289(6):F1159–69.

    Article  PubMed  CAS  Google Scholar 

  38. Ruiz-Perez VL, Blair HJ, Rodriguez-Andres ME, Blanco MJ, Wilson A, Liu YN, et al. Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia. Development. 2007;134(16):2903–12.

    Article  PubMed  CAS  Google Scholar 

  39. Wong SY, Reiter JF. The primary cilium at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol. 2008;85:225–60.

    Article  PubMed  CAS  Google Scholar 

  40. Praetorius H, Spring KR. A physiological view of the primary cilium. Annu Rev Physiol. 2005;67:515–29.

    Article  PubMed  CAS  Google Scholar 

  41. Downing KH, Sui H. Structural insights into microtubule doublet interactions in axonemes. Curr Opin Struct Biol. 2007;17(2):253–9.

    Article  PubMed  CAS  Google Scholar 

  42. Sui H, Downing KH. Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature. 2006;442(7101):475–8.

    Article  PubMed  CAS  Google Scholar 

  43. Plotnikova OV, Pugacheva EN, Golemis EA. Primary cilia and the cell cycle. Methods Cell Biol. 2009;94:137–60.

    Article  PubMed  CAS  Google Scholar 

  44. Hoyer-Fender S. Centriole maturation and transformation to basal body. Semin Cell Dev Biol. 2010;21(2):142–7.

    Article  PubMed  Google Scholar 

  45. Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 2008;85:23–61.

    Article  PubMed  CAS  Google Scholar 

  46. Fariss RN, Molday RS, Fisher SK, Matsumoto B. Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways. J Comp Neurol. 1997;387(1):148–56.

    Article  PubMed  CAS  Google Scholar 

  47. Yang J, Gao J, Adamian M, Wen XH, Pawlyk B, Zhang L, et al. The ciliary rootlet maintains long-term stability of sensory cilia. Mol Cell Biol. 2005;25(10):4129–37.

    Article  PubMed  CAS  Google Scholar 

  48. Alieva IB, Vorobjev IA. Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a “sleeping beauty” in cultured cells? Cell Biol Int. 2004;28(2):139–50.

    Article  PubMed  Google Scholar 

  49. Rieder CL, Jensen CG, Jensen LC. The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J Ultrastruct Res. 1979;68(2):173–85.

    Article  PubMed  CAS  Google Scholar 

  50. Robert A, Margall-Ducos G, Guidotti JE, Bregerie O, Celati C, Brechot C, et al. The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci. 2007;120(Pt 4):628–37.

    Article  PubMed  CAS  Google Scholar 

  51. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA. 2003;100(9):5286–91.

    Article  PubMed  CAS  Google Scholar 

  52. Yoder BK, Tousson A, Millican L, Wu JH, Bugg CE Jr, Schafer JA, et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol. 2002;282(3):F541–52.

    PubMed  CAS  Google Scholar 

  53. Bisgrove BW, Yost HJ. The roles of cilia in developmental disorders and disease. Development. 2006;133(21):4131–43.

    Article  PubMed  CAS  Google Scholar 

  54. Roth KE, Rieder CL, Bowser SS. Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9 + 0) cilia in cultured kidney epithelia. J Cell Sci. 1988;89(Pt 4):457–66.

    PubMed  Google Scholar 

  55. Schwartz EA, Leonard ML, Bizios R, Bowser SS. Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol. 1997;272(1 Pt 2):F132–8.

    PubMed  CAS  Google Scholar 

  56. Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 2001;184(1):71–9.

    Article  PubMed  CAS  Google Scholar 

  57. Praetorius HA, Spring KR. The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens. 2003;12(5):517–20.

    Article  PubMed  Google Scholar 

  58. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.

    Article  PubMed  CAS  Google Scholar 

  59. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell. 2006;10(1):57–69.

    Article  PubMed  CAS  Google Scholar 

  60. Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol. 2008;182(3):437–47.

    Article  PubMed  CAS  Google Scholar 

  61. Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G725–34.

    Article  PubMed  CAS  Google Scholar 

  62. Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology. 2006;131(3):911–20.

    Article  PubMed  CAS  Google Scholar 

  63. Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA. 2007;104(48):19138–43.

    Article  PubMed  CAS  Google Scholar 

  64. Ernstrom GG, Chalfie M. Genetics of sensory mechanotransduction. Annu Rev Genet. 2002;36:411–53.

    Article  PubMed  CAS  Google Scholar 

  65. Van der Heiden K, Hierck BP, Krams R, de Crom R, Cheng C, Baiker M, et al. Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis. 2008;196(2):542–50.

    Article  PubMed  CAS  Google Scholar 

  66. Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, et al. Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn. 2008;237(3):725–35.

    Article  PubMed  CAS  Google Scholar 

  67. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol. 2003;285(5):F998–1012.

    PubMed  CAS  Google Scholar 

  68. Rydholm S, Zwartz G, Kowalewski JM, Kamali-Zare P, Frisk T, Brismar H. Mechanical Properties of primary cilia regulate the response to fluid flow. Am J Physiol Renal Physiol. 2010;298:F1096–F1102.

    Article  CAS  Google Scholar 

  69. Besschetnova TY, Kolpakova-Hart E, Guan Y, Zhou J, Olsen BR, Shah JV. Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol. 2010;20(2):182–7.

    Article  PubMed  CAS  Google Scholar 

  70. McGlashan SR, Knight MM, Chowdhury TT, Joshi P, Jensen CG, Kennedy S, et al. Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int. 2010;34(5):441–6.

    Article  PubMed  Google Scholar 

  71. McGlashan SR, Haycraft CJ, Jensen CG, Yoder BK, Poole CA. Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol. 2007;26(4):234–46.

    Article  PubMed  CAS  Google Scholar 

  72. Federman M, Nichols G Jr. Bone cell cilia: vestigial or functional organelles? Calcif Tissue Res. 1974;17(1):81–5.

    Article  PubMed  CAS  Google Scholar 

  73. Whitfield JF. Primary cilium–is it an osteocyte’s strain-sensing flowmeter? J Cell Biochem. 2003;89(2):233–7.

    Article  PubMed  CAS  Google Scholar 

  74. Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, et al. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem. 2006;281(41):30884–95.

    Article  PubMed  CAS  Google Scholar 

  75. Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng. 2010;12:369–400.

    Article  PubMed  CAS  Google Scholar 

  76. Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Castillo AB, Helms JA, Stearns T, Jacobs CR, editors. Primary cilia mediate loading-induced bone formation in vivo. Orthopaedic Research Society; 2010. New Orleans, US; 2010.

  77. Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J. 2010;24(8):2859–2868.

    Article  PubMed  CAS  Google Scholar 

  78. Mao J, Wang J, Liu B, Pan W, Farr GH III, Flynn C, et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell. 2001;7(4):801–9.

    Article  PubMed  CAS  Google Scholar 

  79. Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281(33):23698–711.

    Article  PubMed  CAS  Google Scholar 

  80. Bodine PV. Wnt signaling control of bone cell apoptosis. Cell Res. 2008;18(2):248–53.

    Article  PubMed  CAS  Google Scholar 

  81. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.

    Article  PubMed  CAS  Google Scholar 

  82. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  83. Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005;280(29):26770–5.

    Article  PubMed  CAS  Google Scholar 

  84. Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 2006;21(11):1738–49.

    Article  PubMed  CAS  Google Scholar 

  85. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.

    Article  PubMed  CAS  Google Scholar 

  86. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76.

    Article  PubMed  CAS  Google Scholar 

  87. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24(10):1651–61.

    Article  PubMed  CAS  Google Scholar 

  88. Winkler DG, Sutherland MS, Ojala E, Turcott E, Geoghegan JC, Shpektor D, et al. Sclerostin inhibition of Wnt-3a-induced C3H10T1/2 cell differentiation is indirect and mediated by bone morphogenetic proteins. J Biol Chem. 2005;280(4):2498–502.

    Article  PubMed  CAS  Google Scholar 

  89. Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, et al. Noncanonical Wnt signaling through G protein-linked PKC delta activation promotes bone formation. Dev Cell. 2007;12(1):113–27.

    Article  PubMed  CAS  Google Scholar 

  90. Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, et al. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem. 2007;282(42):30938–48.

    Article  PubMed  CAS  Google Scholar 

  91. Bikkavilli RK, Feigin ME, Malbon CC. p38 mitogen-activated protein kinase regulates canonical Wnt-beta-catenin signaling by inactivation of GSK3beta. J Cell Sci. 2008;121(Pt 21):3598–607.

    Article  PubMed  CAS  Google Scholar 

  92. Caverzasio J, Manen D. Essential role of Wnt3a-mediated activation of mitogen-activated protein kinase p38 for the stimulation of alkaline phosphatase activity and matrix mineralization in C3H10T1/2 mesenchymal cells. Endocrinology. 2007;148(11):5323–30.

    Article  PubMed  CAS  Google Scholar 

  93. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. 2005;37(5):537–43.

    Article  PubMed  CAS  Google Scholar 

  94. Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol. 2005;4(1):2.

    Article  PubMed  Google Scholar 

  95. Gerdes JM, Liu Y, Zaghloul NA, Leitch CC, Lawson SS, Kato M, et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet. 2007;39(11):1350–60.

    Article  PubMed  CAS  Google Scholar 

  96. Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet. 2005;37(10):1135–40.

    Article  PubMed  CAS  Google Scholar 

  97. Xiao Z, Zhang S, Cao L, Qiu N, David V, Quarles LD. Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation. J Biol Chem. 2010;285(2):1177–87.

    Article  PubMed  CAS  Google Scholar 

  98. Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK. Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell. 2001;12(3):589–99.

    PubMed  CAS  Google Scholar 

  99. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426(6962):83–7.

    Article  PubMed  CAS  Google Scholar 

  100. Xiao Z, Zhang S, Magenheimer BS, Luo J, Quarles LD. Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J Biol Chem. 2008;283(18):12624–34.

    Article  PubMed  CAS  Google Scholar 

  101. Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 1993;75(7):1401–16.

    Article  PubMed  CAS  Google Scholar 

  102. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 2005;1(4):e53.

    Article  PubMed  CAS  Google Scholar 

  103. Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science. 2007;317(5836):372–6.

    Article  PubMed  CAS  Google Scholar 

  104. Jeong JMJ, Trenzen T, Kottmann AH, McMahon AP. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 2004;18:937–51.

    Article  PubMed  CAS  Google Scholar 

  105. Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA. 1999;96(9):5043–8.

    Article  PubMed  CAS  Google Scholar 

  106. Park TJ, Haigo SL, Wallingford JB. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat Genet. 2006;38(3):303–11.

    Article  PubMed  CAS  Google Scholar 

  107. Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet. 2006;38(1):112–7.

    Article  PubMed  CAS  Google Scholar 

  108. Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development. 2000;127(3):543–8.

    PubMed  CAS  Google Scholar 

  109. Mak KK, Chen MH, Day TF, Chuang PT, Yang Y. Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development. 2006;133(18):3695–707.

    Article  PubMed  CAS  Google Scholar 

  110. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072–86.

    Article  PubMed  CAS  Google Scholar 

  111. Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, et al. Intraflagellar transport is essential for endochondral bone formation. Development. 2007;134(2):307–16.

    Article  PubMed  CAS  Google Scholar 

  112. Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development. 2007;134(11):2159–69.

    Article  PubMed  CAS  Google Scholar 

  113. Ruiz-Perez VL, Goodship JA. Ellis-van Creveld syndrome and Weyers acrodental dysostosis are caused by cilia-mediated diminished response to hedgehog ligands. Am J Med Genet C Semin Med Genet. 2009;151C(4):341–51.

    Article  PubMed  CAS  Google Scholar 

  114. Nowlan NC, Prendergast PJ, Murphy P. Identification of mechanosensitive genes during embryonic bone formation. PLoS Comput Biol. 2008;4(12):e1000250.

    Article  PubMed  CAS  Google Scholar 

  115. Ng TC, Chiu KW, Rabie AB, Hagg U. Repeated mechanical loading enhances the expression of Indian hedgehog in condylar cartilage. Front Biosci. 2006;11:943–8.

    Article  PubMed  CAS  Google Scholar 

  116. Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol. 2002;12(11):938–43.

    Article  PubMed  CAS  Google Scholar 

  117. Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, et al. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet. 2000;24(1):75–8.

    Article  PubMed  CAS  Google Scholar 

  118. Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, et al. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol. 2008;216(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  119. Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 2008;8(3):257–65.

    Article  PubMed  CAS  Google Scholar 

  120. Abed E, Labelle D, Martineau C, Loghin A, Moreau R. Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Mol Membr Biol. 2009;26(3):146–58.

    Article  PubMed  CAS  Google Scholar 

  121. Wassermann F, Yaeger JA. Fine structure of the osteocyte capsule and of the wall of the lacunae in bone. Cell Tissue Res. 1965;67(5):636–52.

    Google Scholar 

  122. McGlashan SR, Jensen CG, Poole CA. Localization of extracellular matrix receptors on the chondrocyte primary cilium. J Histochem Cytochem. 2006;54(9):1005–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.L., Hoey, D.A. & Jacobs, C.R. Primary Cilia-Mediated Mechanotransduction in Bone. Clinic Rev Bone Miner Metab 8, 201–212 (2010). https://doi.org/10.1007/s12018-010-9078-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-010-9078-y

Keywords

Navigation