Skip to main content
Log in

Uncovering Sex-Specific Epigenetic Regulatory Mechanism Involving H3k9me2 in Neural Inflammation, Damage, and Recovery in the Internal Carotid Artery Occlusion Mouse Model

  • Research
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Cerebral ischemic stroke is one of the foremost global causes of death and disability. Due to inadequate knowledge in its sequential disease mechanisms, therapeutic efforts to mitigate acute ischemia-induced brain injury are limited. Recent studies have implicated epigenetic mechanisms, mostly histone lysine acetylation/deacetylation, in ischemia-induced neural damage and death. However, the role of lysine methylation/demethylation, another prevalent epigenetic mechanism in cerebral ischemia has not undergone comprehensive investigation, except a few recent reports, including those from our research cohort. Considering the impact of sex on post-stroke outcomes, we studied both male and female mice to elucidate molecular details using our recently developed Internal Carotid Artery Occlusion (ICAO) model, which induces mild to moderate cerebral ischemia, primarily affecting the striatum and ventral hippocampus. Here, we demonstrate for the first time that female mice exhibit faster recovery than male mice following ICAO, evaluated through neurological deficit score and motor coordination assessment. Furthermore, our investigation unveiled that dysregulated histone lysine demethylases (KDMs), particularly kdm4b/jmjd2b are responsible for the sex-specific variance in the modulation of inflammatory genes. Building upon our prior reportage blocking KDMs by DMOG (Dimethyloxalylglycine) and thus preventing the attenuation in H3k9me2 reduced the post-ICAO transcript levels of the inflammatory molecules and neural damage, our present study delved into investigating the differential role of H3k9me2 in the regulation of pro-inflammatory genes in female vis-à-vis male mice underlying ICAO-induced neural damage and recovery. Overall, our results reveal the important role of epigenetic mark H3k9me2 in mediating sex-specific sequential events in inflammatory response, elicited post-ICAO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig.4
Fig.5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings are available with the corresponding author, may be available on reasonable request.

References

  • Aanerud, J., Borghammer, P., Rodell, A., Jonsdottir, K. Y., & Gjedde, A. (2017). Sex differences of human cortical blood flow and energy metabolism. Journal of Cerebral Blood Flow & Metabolism, 37(7), 2433–2440.

    Article  Google Scholar 

  • Abdu, H., & Seyoum, G. (2022). Sex differences in stroke risk factors, clinical profiles, and in-hospital outcomes among stroke patients admitted to the medical ward of dessie comprehensive specialized hospital, Northeast Ethiopia. Degenerative Neurological and Neuromuscular Disease, 12, 133–144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alisch, J. S. R., Khattar, N., Kim, R. W., Cortina, L. E., Rejimon, A. C., Qian, W., Ferrucci, L., Resnick, S. M., Spencer, R. G., & Bouhrara, M. (2021). Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging. Aging (albany NY), 13(4), 4911.

    Article  PubMed  Google Scholar 

  • Aspey, B. S., Taylor, F. L., Terruli, M., & Harrison, M. J. G. (2000). Temporary middle cerebral artery occlusion in the rat: Consistent protocol for a model of stroke and reperfusion. Neuropathology and Applied Neurobiology, 26(3), 232–242.

    Article  CAS  PubMed  Google Scholar 

  • Bertogliat, M. J., Morris-Blanco, K. C., & Vemuganti, R. (2020). Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochemistry International, 133, 104642.

    Article  CAS  PubMed  Google Scholar 

  • Bouët, V., Freret, T., Toutain, J., Divoux, D., Boulouard, M., & Schumann-Bard, P. (2007). Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Experimental Neurology, 203(2), 555–567.

    Article  PubMed  Google Scholar 

  • Chakravarty, S., Jhelum, P., Bhat, U. A., Rajan, W. D., Maitra, S., Pathak, S. S., Patel, A. B., & Kumar, A. (2017). Insights into the epigenetic mechanisms involving histone lysine methylation and demethylation in ischemia induced damage and repair has therapeutic implication. Biochimica Et Biophysica Acta Molecular Basis of Disease, 1863(1), 152–164.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Sun, Y., Liu, K., & Sun, X. (2014). Autophagy: A double-edged sword for neuronal survival after cerebral ischemia. Neural Regeneration Research, 9(12), 1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm, N. C., Henderson, M. L., Selvamani, A., Park, M. J., Dindot, S., Miranda, R. C., & Sohrabji, F. (2015). Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics, 10(2), 142–152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Covington, H. E., Maze, I., Sun, H. S., Bomze, H. M., DeMaio, K. D., Wu, E. Y., Dietz, D. M., et al. (2011). A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron, 71(4), 656–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, T., Soren, K., Yerasi, M., Kumar, A., & Chakravarty, S. (2019). Revealing sex-specific molecular changes in hypoxia-ischemia induced neural damage and subsequent recovery using Zebrafish model. Neuroscience Letters, 712, 134492.

    Article  CAS  PubMed  Google Scholar 

  • Dell’Aversana, C., Lepore, I., & Altucci, L. (2012). HDAC modulation and cell death in the clinic. Experimental Cell Research, 318(11), 1229–1244.

    Article  PubMed  Google Scholar 

  • Doerfler, W. (2008). In pursuit of the first recognized epigenetic signal––DNA methylation: A 1976 to 2008 synopsis. Epigenetics, 3(3), 125–133.

    Article  PubMed  Google Scholar 

  • Donnan, G. A., Fisher, M., Macleod, M., & Davis, S. M. (2008). Stroke. Lancet, 371(9624), 1612–1623.

    Article  CAS  PubMed  Google Scholar 

  • Dyken, M. L., Klatte, E., Kolar, O. J., & Spurgeon, C. (1974). Complete occlusion of common or internal carotid arteries: Clinical significance. Archives of Neurology, 30(5), 343–346.

    Article  CAS  PubMed  Google Scholar 

  • Endres, M., Meisel, A., Biniszkiewicz, D., Namura, S., Prass, K., Ruscher, K., Lipski, A., Jaenisch, R., Moskowitz, M. A., & Dirnagl, U. (2000). DNA methyltransferase contributes to delayed ischemic brain injury. Journal of Neuroscience, 20(9), 3175–3181.

    Article  CAS  PubMed  Google Scholar 

  • Faraco, G., Pancani, T., Formentini, L., Mascagni, P., Fossati, G., Leoni, F., Moroni, F., & Chiarugi, A. (2006). Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Molecular Pharmacology, 70(6), 1876–1884.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, M. (1954). Occlusion of the carotid arteries: Further experiences. AMA Archives of Neurology & Psychiatry, 72(2), 187–204.

    Article  CAS  Google Scholar 

  • Flaherty, M. L., Flemming, K. D., McClelland, R., Jorgensen, N. W., & Brown, R. D. (2004). Population-based study of symptomatic internal carotid artery occlusion: Incidence and long-term follow-up. Stroke, 35(8), e349–e352.

    Article  PubMed  Google Scholar 

  • Formisano, L., Noh, K.-M., Miyawaki, T., Mashiko, T., Bennett, M. V. L., & Suzanne Zukin, R. (2007). Ischemic insults promote epigenetic reprogramming of μ opioid receptor expression in hippocampal neurons. Proceedings of the National Academy of Sciences United State of America, 104(10), 4170–4175.

    Article  ADS  CAS  Google Scholar 

  • Harder, D. R., Alkayed, N. J., Lange, A. R., Gebremedhin, D., & Roman, R. J. (1998). Functional hyperemia in the brain: Hypothesis for astrocyte-derived vasodilator metabolites. Stroke, 29(1), 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Hebbes, T. R., Thorne, A. W., & Crane-Robinson, C. (1988). A direct link between core histone acetylation and transcriptionally active chromatin. The EMBO Journal, 7(5), 1395–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraj, R. L., Azimullah, S., Beiram, R., Jalal, F. Y., & Rosenberg, G. A. (2019). Neuroinflammation: Friend and foe for ischemic stroke. Journal of Neuroinflammation, 16(1), 1–24.

    Article  Google Scholar 

  • Jhelum, P., Mydhili Radhakrishnan, A. R., Paul, S., Dey, S. K., Kamle, A., Kumar, A., Sharma, A., & Chakravarty, S. (2022). Neuroprotective and proneurogenic effects of glucosamine in an internal carotid artery occlusion model of ischemia. NeuroMolecular Medicine. https://doi.org/10.1007/s12017-021-08697-5

    Article  PubMed  Google Scholar 

  • Jhelum, P., Wahul, A. B., Kamle, A., Kumawat, S., Kumar, A., Bhutani, K. K., Tripathi, S. M., & Chakravarty, S. (2017). Sameerpannag ras mixture (SRM) improved neurobehavioral deficits following acute ischemic stroke by attenuating neuroinflammatory response. Journal of Ethnopharmacology, 197, 147–156.

    Article  PubMed  Google Scholar 

  • Jørgensen, H. S., Nakayama, H., Raaschou, H. O., & Olsen, T. S. (1999). Stroke: Neurologic and functional recovery the Copenhagen stroke study. Physical Medicine and Rehabilitation Clinics of North America, 10(4), 887–906.

    Article  PubMed  Google Scholar 

  • Karisetty, B. C., Joshi, P. C., Kumar, A., & Chakravarty, S. (2017). Sex differences in the effect of chronic mild stress on mouse prefrontal cortical BDNF levels: A role of major ovarian hormones. Neuroscience, 356, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. J., Rowe, M., Ren, M., Hong, J.-S., Chen, P.-S., & Chuang, D.-M. (2007). Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: Multiple mechanisms of action. Journal of Pharmacology and Experimental Therapeutics, 321(3), 892–901.

    Article  CAS  PubMed  Google Scholar 

  • Klöting, I., Nitschke, C., & van den Brandt, J. (2003). Impact of genetic profiles on experimental studies: Outbred versus wild rats. Toxicology and Applied Pharmacology, 189(1), 68–71.

    Article  PubMed  Google Scholar 

  • Krupinski, J., Carrera, C., Muiño, E., Torres, N., Al-Baradie, R., Cullell, N., & Fernandez-Cadenas, I. (2018). DNA methylation in stroke. Update of latest advances. Computational and Structural Biotechnology Journal, 16, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Choi, K.-H., Renthal, W., Tsankova, N. M., Theobald, D. E. H., Truong, H.-T., Russo, S. J., et al. (2005). Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron, 48(2), 303–314.

    Article  CAS  PubMed  Google Scholar 

  • Leng, X., Fang, H., Leung, T. W. H., Mao, C., Miao, Z., Liu, L., Wong, K. S., & Liebeskind, D. S. (2016). Impact of collaterals on the efficacy and safety of endovascular treatment in acute ischaemic stroke: A systematic review and meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry, 87(5), 537–544.

    Article  Google Scholar 

  • Lu, X., Jian Zhang, Y., Ding, J. W., & Chen, G. (2022). Novel therapeutic strategies for ischemic stroke: Recent insights into autophagy. Oxidative Medicine and Cellular Longevity, 2022, 1–15.

    Google Scholar 

  • Manwani, B., Bentivegna, K., Benashski, S. E., Venna, V. R., Yan, X., Arnold, A. P., & McCullough, L. D. (2015). Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement. Journal of Cerebral Blood Flow & Metabolism, 35(2), 221–229.

    Article  CAS  Google Scholar 

  • Marks, P. A. (2010). Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1799, 717–725.

    Article  CAS  Google Scholar 

  • McAuley, M. A. (1995). Rodent models of focal ischemia. Cerebrovascular and Brain Metabolism Reviews, 7(2), 153–180.

    CAS  PubMed  Google Scholar 

  • Mead, G. E., Shingler, H., Farrell, A., O’neill, P. A., & Mccollum, C. N. (1998). Carotid disease in acute stroke. Age and Ageing, 27(6), 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Mhairi, M. I. (1992). New models of focal cerebral ischaemia. British Journal of Clinical Pharmacology, 34(4), 302–308.

    Article  Google Scholar 

  • Moskowitz, M. A., Lo, E. H., & Iadecola, C. (2010). The science of stroke: Mechanisms in search of treatments. Neuron, 67(2), 181–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narlikar, G. J., Fan, H.-Y., & Kingston, R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell, 108(4), 475–487.

    Article  CAS  PubMed  Google Scholar 

  • Patrizz, A. N., Moruno-Manchon, J. F., O’Keefe, L. M., Doran, S. J., Patel, A. R., Venna, V. R., Tsvetkov, A. S., Li, J., & McCullough, L. D. (2021). Sex-specific differences in autophagic responses to experimental ischemic stroke. Cells, 10(7), 1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, M., Leng, Y., Jeong, MiRa., Leeds, P. R., & Chuang, D.-M. (2004). Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: Potential roles of histone deacetylase inhibition and heat shock protein induction. Journal of Neurochemistry, 89(6), 1358–1367.

    Article  CAS  PubMed  Google Scholar 

  • Roy-O’Reilly, M., & McCullough, L. D. (2018). Age and sex are critical factors in ischemic stroke pathology. Endocrinology, 159(8), 3120–3131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schweizer, S., Harms, C., Lerch, H., Flynn, J., Hecht, J., Yildirim, F., Meisel, A., & Märschenz, S. (2015). Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism, 35(10), 1640–1647.

    Article  CAS  Google Scholar 

  • Shigeno, T., Teasdale, G. M., McCulloch, J., & Graham, D. I. (1985). Recirculation model following MCA occlusion in rats: Cerebral blood flow, cerebrovascular permeability, and brain edema. Journal of Neurosurgery, 63(2), 272–277.

    Article  CAS  PubMed  Google Scholar 

  • Song, T.-J., Jeong, Y., Park, J., & Gwak, H. S. (2020). Risk factors and prevention of stroke. Cerebrovascular Diseases, 49(1), 1–149.

    CAS  Google Scholar 

  • Stenzel-Poore, M. P., Stevens, S. L., King, J. S., & Simon, R. P. (2007). Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: A speculative synthesis. Stroke, 38(2), 680–685.

    Article  PubMed  Google Scholar 

  • Sudlow, C. L. M., & Warlow, C. P. (1997). Comparable studies of the incidence of stroke and its pathological types: Results from an international collaboration. Stroke, 28(3), 491–499.

    Article  CAS  PubMed  Google Scholar 

  • Sundt, T. M., Grant, W. C., & Garcia, J. H. (1969). Restoration of middle cerebral artery flow in experimental infarction. Journal of Neurosurgery, 31(3), 311–322.

    Article  PubMed  Google Scholar 

  • Szadvári, I., Ostatníková, D., & Durdiaková, J. B. (2023). Sex differences matter: Males and females are equal but not the same. Physiology & Behavior, 259, 114038.

    Article  Google Scholar 

  • Tamura, A., Graham, D. I., McCulloch, J., & Teasdale, G. M. (1981). Focal cerebral ischaemia in the rat: Description of technique and early neuropathological consequences following middle cerebral artery occlusion. Journal of Cerebral Blood Flow & Metabolism, 1(1), 53–60.

    Article  CAS  Google Scholar 

  • Ten, V., & Galkin, A. (2019). Mechanism of mitochondrial complex I damage in brain ischemia/reperfusion injury: A hypothesis. Molecular and Cellular Neuroscience, 100, 103408.

    Article  CAS  PubMed  Google Scholar 

  • Thanvi, B., & Robinson, T. (2007). Complete occlusion of extracranial internal carotid artery: Clinical features, pathophysiology, diagnosis and management. Postgraduate Medical Journal, 83(976), 95–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiele, B. L., Young, J. V., Chikos, P. M., Hirsch, J. H., & Strandness, D. E. (1980). Correlation of arteriographic findings and symptoms in cerebrovascular disease. Neurology, 30(10), 1041–1041.

    Article  CAS  PubMed  Google Scholar 

  • Trotman-Lucas, M., & Gibson, C. L. (2021). A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model. F1000Research, 10, 242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L., & Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9(4), 519–525.

    Article  CAS  PubMed  Google Scholar 

  • Tsankova, N. M., Kumar, A., & Nestler, E. J. (2004). Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. Journal of Neuroscience, 24(24), 5603–5610.

    Article  CAS  PubMed  Google Scholar 

  • Tsankova, N., Renthal, W., Kumar, A., & Nestler, E. J. (2007). Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8(5), 355–367.

    Article  CAS  PubMed  Google Scholar 

  • Wahul, A. B., Joshi, P. C., Kumar, A., & Chakravarty, S. (2018). Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in bilateral common carotid arterial occlusion (BCCAo) mouse model. Journal of Chemical Neuroanatomy, 92, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, M. B., Xiao, G., Kumar, A., LaPlant, Q., Renthal, W., Sikder, D., Kodadek, T. J., & Nestler, E. J. (2009). Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. Journal of Neuroscience, 29(24), 7820–7832.

    Article  CAS  PubMed  Google Scholar 

  • Zampino, M., Yuzhakova, M., Hansen, J., McKinney, R. D., Goldspink, P. H., Geenen, D. L., & Buttrick, P. M. (2006). Sex-related dimorphic response of HIF-1α expression in myocardial ischemia. American Journal of Physiology-Heart and Circulatory Physiology, 291(2), H957–H964.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.-Z., Zhang, Q.-H., Ye, H., Zhang, Y., Luo, Y.-M., Ji, X.-M., & Ying-Ying, Su. (2010). Distribution of lysine-specific demethylase 1 in the brain of rat and its response in transient global cerebral ischemia. Neuroscience Research, 68(1), 66–72.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, H., Han, Z., Ji, X., & Luo, Y. (2016). Epigenetic regulation of oxidative stress in ischemic stroke. Aging and Disease, 7(3), 295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong, X., Sun, Y., Yajun, Lu., & Lei, Xu. (2023). Immunomodulatory role of estrogen in ischemic stroke: Neuroinflammation and effect of sex. Frontiers in Immunology, 14, 1164258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwemer, C. F., Song, M. Y., Carello, K. A., & D’Alecy, L. G. (2007). Strain differences in response to acute hypoxia: CD-1 versus C57BL/6J mice. Journal of Applied Physiology, 102(1), 286–293.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was initiated by the Council of Scientific and Industrial Research (CSIR), India network projects [(BSC0103-UNDO) to SC and AK] and later supported by ICMR grant [5/4-5/3/17/Neuro/2022-NCD-1 to SC]. MR, VV, PBT, SP and KS wish to acknowledge CSIR India, Department of Biotechnology (DBT) and DST-INSPIRE for their doctoral fellowships, respectively. In addition, the authors would like to specially acknowledge B. Jyothilakshmi of the Centre for Cellular and Molecular Biology (CCMB), Hyderabad, for the maintenance and care of animals throughout the study period. KIM Department of CSIR-IICT is greatly acknowledged for generating institutional publication number IICT/Pubs/2023/186.

Author information

Authors and Affiliations

Authors

Contributions

SC and AK conceived the study. SC and AK designed and supervised all the experiments. The experiments performed by MR, VV, SA, PB, SP, KS, and SC, SC and AK arranged the resources and analyzed the results. MR, SC, and AK. wrote the original draft of the manuscript and made the edits to make the final version. All authors reviewed and edited the manuscript for their part.

Corresponding authors

Correspondence to Arvind Kumar or Sumana Chakravarty.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, M., Vijay, V., Supraja Acharya, B. et al. Uncovering Sex-Specific Epigenetic Regulatory Mechanism Involving H3k9me2 in Neural Inflammation, Damage, and Recovery in the Internal Carotid Artery Occlusion Mouse Model. Neuromol Med 26, 3 (2024). https://doi.org/10.1007/s12017-023-08768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12017-023-08768-9

Keywords

Navigation