Skip to main content

Advertisement

Log in

Exosomes Secreted by the Cocultures of Normal and Oxygen–Glucose-Deprived Stem Cells Improve Post-stroke Outcome

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Emerging stroke literature suggests that treatment of experimentally induced stroke with stem cells offered post-stroke neuroprotection via exosomes produced by these cells. Treatment with exosomes has great potential to overcome the limitations associated with cell-based therapies. However, in our preliminary studies, we noticed that the exosomes released from human umbilical cord blood-derived mesenchymal stem cells (MSCs) under standard culture conditions did not improve the post-stroke neurological outcome. Because of this apparent discrepancy, we hypothesized that exosome characteristics vary with the conditions of their production. Specifically, we suggest that the exosomes produced from the cocultures of regular and oxygen–glucose-deprived (OGD) MSCs in vitro would represent the exosomes produced from MSCs that are exposed to ischemic brain cells in vivo, and offer similar therapeutic benefits that the cell treatment would provide. We tested the efficacy of therapy with exosomes secreted from human umbilical cord blood (HUCB)-derived MSCs under in vitro hypoxic conditions on post-stroke brain damage and neurological outcome in a rat model of transient focal cerebral ischemia. We performed the TTC staining procedure as well as the neurological tests including the modified neurological severity scores (mNSS), the modified adhesive removal (sticky-tape), and the beam walking tests before ischemia and at regular intervals until 7 days reperfusion. Treatment with exosomes obtained from the cocultures of normal and OGD-induced MSCs reduced the infarct size and ipsilateral hemisphere swelling, preserved the neurological function, and facilitated the recovery of stroke-induced rats. Based on the results, we conclude that the treatment with exosomes secreted from MSCs at appropriate experimental conditions attenuates the post-stroke brain damage and improves the neurological outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Broocks, G., Hanning, U., Flottmann, F., Schonfeld, M., Faizy, T. D., Sporns, P., et al. (2019). Clinical benefit of thrombectomy in stroke patients with low ASPECTS is mediated by oedema reduction. Brain,142, 1399–1407.

    Article  PubMed  Google Scholar 

  • Catanese, L., Tarsia, J., & Fisher, M. (2017). Acute ischemic stroke therapy overview. Circulation Research,120(3), 541–558.

    Article  CAS  PubMed  Google Scholar 

  • Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., & Veeravalli, K. K. (2014). Stem cell treatment after cerebral ischemia regulates the gene expression of apoptotic molecules. Neurochemical Research,39(8), 1511–1521.

    Article  CAS  PubMed  Google Scholar 

  • Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., Vemuganti, R., & Veeravalli, K. K. (2015). Matrix metalloproteinase-12 induces blood–brain barrier damage after focal cerebral ischemia. Stroke,46(12), 3523–3531.

    Article  CAS  PubMed  Google Scholar 

  • Chelluboina, B., Nalamolu, K. R., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., & Veeravalli, K. K. (2016). Stem cell treatment after ischemic stroke alters the expression of DNA damage signaling molecules. Journal of Stem Cell Research & Therapeutics,1(7), 281–288.

    Google Scholar 

  • Chelluboina, B., Nalamolu, K. R., Mendez, G. G., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., et al. (2017). Mesenchymal stem cell treatment prevents post-stroke dysregulation of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Cellular Physiology and Biochemistry,44(4), 1360–1369.

    Article  CAS  PubMed  Google Scholar 

  • Chelluboina, B., & Veeravalli, K. K. (2015). Application of human umbilical cord blood-derived mononuclear cells in animal models of ischemic stroke. Journal of Stem Cell Research and Transplantation,2(1), 1014.

    Google Scholar 

  • Chung, D. J., Choi, C. B., Lee, S. H., Kang, E. H., Lee, J. H., Hwang, S. H., et al. (2009). Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. Journal of Neuroscience Research,87(16), 3554–3567.

    Article  CAS  PubMed  Google Scholar 

  • Clayton, A., Turkes, A., Dewitt, S., Steadman, R., Mason, M. D., & Hallett, M. B. (2004). Adhesion and signaling by B cell-derived exosomes: The role of integrins. FASEB J,18(9), 977–979.

    Article  CAS  PubMed  Google Scholar 

  • Dasari, V. R., Veeravalli, K. K., Tsung, A. J., Gondi, C. S., Gujrati, M., Dinh, D. H., et al. (2009). Neuronal apoptosis is inhibited by cord blood stem cells after spinal cord injury. Journal of Neurotrauma,26(11), 2057–2069.

    Article  PubMed  Google Scholar 

  • Doeppner, T. R., Herz, J., Gorgens, A., Schlechter, J., Ludwig, A. K., Radtke, S., et al. (2015). extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med,4(10), 1131–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldh, M., Ekstrom, K., Valadi, H., Sjostrand, M., Olsson, B., Jernas, M., et al. (2010). Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS ONE,5(12), e15353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gondi, C. S., Veeravalli, K. K., Gorantla, B., Dinh, D. H., Fassett, D., Klopfenstein, J. D., et al. (2010). Human umbilical cord blood stem cells show PDGF-D-dependent glioma cell tropism in vitro and in vivo. Neuro-Oncology,12(5), 453–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, A. C., Schaefer, P. W., Chaudhry, Z. A., Leslie-Mazwi, T. M., Chandra, R. V., Gonzalez, R. G., et al. (2012). Interobserver reliability of baseline noncontrast CT Alberta Stroke Program Early CT Score for intra-arterial stroke treatment selection. AJNR American Journal of Neuroradiology,33(6), 1046–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q., Chen, C., Khatibi, N. H., Li, L., Yang, L., Wang, K., et al. (2011). Lentivirus-mediated transfer of MMP-9 shRNA provides neuroprotection following focal ischemic brain injury in rats. Brain Research,1367, 347–359.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Q., Chen, C., Yan, J., Yang, X., Shi, X., Zhao, J., et al. (2009). Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusion-induced focal ischemia rat model. Experimental Neurology,216(1), 35–46.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, J. O., Han, J. W., Kim, J. M., Cho, H. J., Park, C., Lee, N., et al. (2011). Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Research,108(11), 1340–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katakowski, M., Buller, B., Wang, X., Rogers, T., & Chopp, M. (2010). Functional microRNA is transferred between glioma cells. Cancer Research,70(21), 8259–8263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katan, M., & Luft, A. (2018). Global burden of stroke. Seminars in Neurology,38(2), 208–211.

    Article  PubMed  Google Scholar 

  • Kenmuir, C. L., & Wechsler, L. R. (2017). Update on cell therapy for stroke. Stroke and Vascular Neurology,2(2), 59–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, E. S., Ahn, S. Y., Im, G. H., Sung, D. K., Park, Y. R., Choi, S. H., et al. (2012). Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatric Research,72(3), 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Lim, J. Y., Jeong, C. H., Jun, J. A., Kim, S. M., Ryu, C. H., Hou, Y., et al. (2011). Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Research & Therapy,2(5), 38.

    Article  CAS  Google Scholar 

  • Lotvall, J., & Valadi, H. (2007). Cell to cell signalling via exosomes through esRNA. Cell Adhesion & Migration,1(3), 156–158.

    Article  Google Scholar 

  • Marei, H. E., Hasan, A., Rizzi, R., Althani, A., Afifi, N., Cenciarelli, C., et al. (2018). Potential of stem cell-based therapy for ischemic stroke. Frontiers in Neurology,9, 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moskowitz, M. A., Lo, E. H., & Iadecola, C. (2010). The science of stroke: Mechanisms in search of treatments. Neuron,67(2), 181–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalamolu, K. R., Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., & Veeravalli, K. K. (2018a). Sex differences after mesenchymal stem cell treatment on post-stroke neurological outcome. Stroke,49, ATP106.

    Article  Google Scholar 

  • Nalamolu, K. R., Smith, N. J., Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., et al. (2018b). Prevention of the severity of post-ischemic inflammation and brain damage by simultaneous knockdown of toll-like receptors 2 and 4. Neuroscience,373, 82–91.

    Article  CAS  PubMed  Google Scholar 

  • Nalamolu, K. R., Venkatesh, I., Mohandass, A., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., et al. (2019). Exosomes treatment mitigates ischemic brain damage but does not improve post-stroke neurological outcome. Cellular Physiology and Biochemistry,52(6), 1280–1291.

    Article  CAS  PubMed  Google Scholar 

  • Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., et al. (2018). 2018 Guidelines for the early management of patients with acute ischemic stroke: a GUIDELINE for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke,49(3), e46–e110.

    Article  PubMed  Google Scholar 

  • Qi, H., Liu, C., Long, L., Ren, Y., Zhang, S., Chang, X., et al. (2016). Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano,10(3), 3323–3333.

    Article  CAS  PubMed  Google Scholar 

  • Record, M., Subra, C., Silvente-Poirot, S., & Poirot, M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical Pharmacology,81(10), 1171–1182.

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser, N. R. (2007). Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biology Direct,2, 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology,9(6), 654–659.

    Article  CAS  PubMed  Google Scholar 

  • Wahlgren, J., Statello, L., Skogberg, G., Telemo, E., & Valadi, H. (2016). Delivery of Small Interfering RNAs to Cells via Exosomes. Methods in Molecular Biology,1364, 105–125.

    Article  CAS  PubMed  Google Scholar 

  • Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., et al. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells,30(7), 1556–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, H., Li, Y., Cui, Y., Yang, J. J., Zhang, Z. G., & Chopp, M. (2013a). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. Journal of Cerebral Blood Flow and Metabolism,33(11), 1711–1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., et al. (2013b). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells,31(12), 2737–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, Y., Mahmood, A., & Chopp, M. (2017). Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regeneration Research,12(1), 19–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Z. G., & Chopp, M. (2009). Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. The Lancet Neurology,8(5), 491–500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Chopp, M., Zhang, Z. G., Katakowski, M., Xin, H., Qu, C., et al. (2017). Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochemistry International,111, 69–81.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Guan, Y. M., Huang, H. L., & Wang, Q. S. (2014). Human umbilical cord blood mesenchymal stem cell transplantation suppresses inflammatory responses and neuronal apoptosis during early stage of focal cerebral ischemia in rabbits. Acta Pharmacologica Sinica,35(5), 585–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zomer, A., Vendrig, T., Hopmans, E. S., van Eijndhoven, M., Middeldorp, J. M., & Pegtel, D. M. (2010). Exosomes: Fit to deliver small RNA. Communicative & Integrative Biology,3(5), 447–450.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the William E. McElroy Charitable Foundation, the OSF HealthCare Illinois Neurological Institute, and the National Institutes of Health for the financial assistance. We thank Christina Constantinidou for assistance in manuscript format and review.

Funding

This work was supported by Grants from the William E. McElroy Charitable Foundation, the OSF HealthCare Illinois Neurological Institute, and the NIH Grant 1R01NS102573-01A1 to KKV. The funders had no role in study design, data collection and analysis, data interpretation, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KKV conceived and designed the study. KKV, KRN, IV and AM performed the experiments and collected the data. KKV and KRN analyzed the data. KKV wrote the paper. JDK, DMP, DZW, and AK reviewed and edited the manuscript. All authors read and approved the manuscript. KRN and IV contributed equally to this work.

Corresponding author

Correspondence to Krishna Kumar Veeravalli.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical Approval

The Institutional Animal Care and Use Committee (IACUC) of the University of Illinois College of Medicine at Peoria approved all surgical interventions and post-operative animal care. All the animal experiments conducted were in accordance with the approved animal protocol and the IACUC guidelines.

Informed Consent

Not applicable to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 87 kb)

Supplementary material 2 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalamolu, K.R., Venkatesh, I., Mohandass, A. et al. Exosomes Secreted by the Cocultures of Normal and Oxygen–Glucose-Deprived Stem Cells Improve Post-stroke Outcome. Neuromol Med 21, 529–539 (2019). https://doi.org/10.1007/s12017-019-08540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-019-08540-y

Keywords

Navigation