Skip to main content

Advertisement

Log in

MicroRNA Expression Signatures and Their Correlation with Clinicopathological Features in Glioblastoma Multiforme

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The increasing interest in identifying molecular biomarkers to determine patient prognosis in glioblastoma multiforme (GBM) has resulted in several microRNA (miRNA)-based signatures able to predict progression-free and overall survival. However, the coherency between these signatures is small, and correlations to clinicopathological features other than survival are seldom seen. The aim of this study was to identify any significant relationship between miRNA signatures and clinicopathological data by combining pathological features with miRNA and mRNA analysis in fourteen GBM patients. In total, 161 miRNAs were shown to cluster the GBM tumor samples into long- and short-term-surviving patients. Many of these miRNAs were associated with differential expression in GBM, including a number of miRNAs shown to confer risk or protection with respect to clinical outcome and to modulate the mesenchymal mode of migration and invasion. An inverse relationship between miR-125b and nestin expression was identified and correlated with overall survival in GBM patients, eloquently illustrating how clinicopathological findings and molecular profiling may be a relevant combination to predict patient outcome. The intriguing finding that many of the differentially expressed miRNAs contained exosome-packaging motifs in their mature sequences suggests that we must expand our view to encompass the complex intercellular communication in order to identify molecular prognostic biomarkers and to increase our knowledge in the field of GBM pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3′UTR:

3′ Untranslated region

5ALA:

5-Aminolevulinic acid

CNS:

Central nervous system

EGFR:

Epidermal growth factor receptor

EXO-motif:

Exosome-packaging-associated motif

GBM:

Glioblastoma multiforme

GFAP:

Glial fibrillary acidic protein

IDH1:

Isocitrate dehydrogenase 1

MAD:

Median absolute deviation

MGMT:

Methyl guanine methyl transferase

miRNA:

MicroRNA

MMMI:

Mesenchymal mode of migration and invasion

mRNA:

Messenger RNA

RNA:

Ribonucleic acid

TCGA:

The Cancer Genome Atlas

References

  • Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233. doi:10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhry, N. S., Shah, A. H., Ferraro, N., Snelling, B. M., Bregy, A., Madhavan, K., et al. (2013). Predictors of long-term survival in patients with glioblastoma multiforme: Advancements from the last quarter century. Cancer Investigation, 31(5), 287–308. doi:10.3109/07357907.2013.789899.

    Article  PubMed  Google Scholar 

  • Chen, L., et al. (2013). Epigenetic regulation of connective tissue growth factor by microRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology (Baltimore, MD). doi:10.1002/hep.26768.

  • Cui, J. G., Zhao, Y., Sethi, P., Li, Y. Y., Mahta, A., Culicchia, F., et al. (2010). Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. Journal of Neuro-Oncology, 98(3), 297–304. doi:10.1007/s11060-009-0077-0.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Xiao, Z., Han, J., Sun, J., Ding, W., Zhao, Y., et al. (2012). MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neuroscience, 13, 116. doi:10.1186/1471-2202-13-116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dahlrot, R. H., Hermansen, S. K., Hansen, S., & Kristensen, B. W. (2013). What is the clinical value of cancer stem cell markers in gliomas? International Journal of Clinical and Experimental Pathology, 6(3), 334–348.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dolecek, T. A., Propp, J. M., Stroup, N. E., & Kruchko, C. (2012). CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-oncology, 14(Suppl 5), v1–v49. doi:10.1093/neuonc/nos218.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunning, M. J., Smith, M. L., Ritchie, M. E., & Tavaré, S. (2007). beadarray: R classes and methods for Illumina bead-based data. Bioinformatics, 23(16), 2183–2184. doi:10.1093/bioinformatics/btm311.

    Article  CAS  PubMed  Google Scholar 

  • EL Andaloussi, S., Mäger, I., Breakefield, X. O., & Wood, M. J. A. (2013). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery. doi:10.1038/nrd3978.

  • Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, F., Wolter, M., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422. doi:10.1038/onc.2010.83.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen, M., Johnsen, K. B., Andersen, H. H., Pilgaard, L., & Duroux, M. (2014). MicroRNA expression signatures determine prognosis and survival in glioblastoma multiforme—A systematic overview. Molecular Neurobiology. doi:10.1007/s12035-014-8668-y.

  • Hermansen, S. K., Christensen, K. G., Jensen, S. S., & Kristensen, B. W. (2011). Inconsistent immunohistochemical expression patterns of four different CD133 antibody clones in glioblastoma. The Journal of Histochemistry and Cytochemistry, 59(4), 391–407. doi:10.1369/0022155411400867.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hombach-Klonisch, S., Paranjothy, T., Wiechec, E., Pocar, P., Mustafa, T., Seifert, A., et al. (2008). Cancer stem cells as targets for cancer therapy: Selected cancers as examples. Archivum Immunologiae et Therapiae Experimentalis, 56(3), 165–180. doi:10.1007/s00005-008-0023-4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsu, S.-D., et al. (2011). miRTarBase: A database curates experimentally validated microRNA-target interactions. Nucleic Acids Research, 39(Database issue), D163–D169. doi:10.1093/nar/gkq1107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, L., Luo, J., Cai, Q., Pan, Q., Zeng, H., Guo, Z., et al. (2011). MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. International Journal of Cancer, 128(8), 1758–1769. doi:10.1002/ijc.25509.

    Article  CAS  Google Scholar 

  • Ishiwata, T., Matsuda, Y., & Naito, Z. (2011). Nestin in gastrointestinal and other cancers: Effects on cells and tumor angiogenesis. World Journal of Gastroenterology: WJG, 17(4), 409–418. doi:10.3748/wjg.v17.i4.409.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jin, Z., Xu, S., Yu, H., Yang, B., Zhao, H., & Zhao, G. (2013). miR-125b inhibits Connexin43 and promotes glioma growth. Cellular and Molecular Neurobiology, 33(8), 1143–1148. doi:10.1007/s10571-013-9980-1.

    Article  CAS  PubMed  Google Scholar 

  • Kanu, O. O., Mehta, A., Di, C., Lin, N., Bortoff, K., Bigner, D. D., et al. (2009). Glioblastoma multiforme: A review of therapeutic targets. Expert Opinion on Therapeutic Targets, 13(6), 701–718. doi:10.1517/14728220902942348.

    Article  CAS  PubMed  Google Scholar 

  • Katakowski, M., Buller, B., Wang, X., Rogers, T., & Chopp, M. (2010). Functional microRNA is transferred between glioma cells. Cancer Research, 70(21), 8259–8263. doi:10.1158/0008-5472.CAN-10-0604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katakowski, M., Buller, B., Zheng, X., Lu, Y., Rogers, T., Osobamiro, O., et al. (2013). Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Letters, 335(1), 201–204. doi:10.1016/j.canlet.2013.02.019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kucharzewska, P., Christianson, H. C., Welch, J. E., Svensson, K. J., Fredlund, E., Ringnér, M., et al. (2013). Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proceedings of the National Academy of Sciences of the United States of America, 110(18), 7312–7317. doi:10.1073/pnas.1220998110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lagos-Quintana, M. (2001). Identification of novel genes coding for small expressed RNAs. Science (New York, NY), 294(5543), 853–858. doi:10.1126/science.1064921.

    Article  CAS  Google Scholar 

  • Lakomy, R., Sana, J., Hankeova, S., Fadrus, P., Kren, L., Lzicarova, E., et al. (2011). MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Science, 102(12), 2186–2190. doi:10.1111/j.1349-7006.2011.02092.x.

    Article  CAS  PubMed  Google Scholar 

  • Li, C. C., Eaton, S. A., Young, P. E., Lee, M., Shuttleworth, R., Humphreys, D. T., et al. (2013a). Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biology, 10(8), 1333–1344. doi:10.4161/rna.25281.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, Y., Xu, J., Chen, H., Bai, J., Li, S., Zhao, Z., et al. (2013b). Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Research, 41(22), e203. doi:10.1093/nar/gkt1054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lima, F. R. S., Kahn, S. A., Soletti, R. C., Biasoli, D., Alves, T., da Fonseca, A. C. C., et al. (2012). Glioblastoma: Therapeutic challenges, what lies ahead. Biochimica et Biophysica Acta, 1826(2), 338–349. doi:10.1016/j.bbcan.2012.05.004.

    CAS  PubMed  Google Scholar 

  • Lu, W. J., Lan, F., He, Q., Lee, A., Tang, C. Z., Dong, L., et al. (2011). Inducible expression of stem cell associated intermediate filament nestin reveals an important role in glioblastoma carcinogenesis. International Journal of Cancer, 128(2), 343–351. doi:10.1002/ijc.25586.

    Article  CAS  Google Scholar 

  • Malzkorn, B., et al. (2010). Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathology (Zurich, Switzerland), 20(3), 539–550. doi:10.1111/j.1750-3639.2009.00328.x.

    Article  CAS  Google Scholar 

  • Manterola, L., Guruceaga, E., Pérez-Larraya, J. G., González-Huarriz, M., Jauregui, P., Tejada, S., et al. (2014). A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncology, 16(4), 520–527. doi:10.1093/neuonc/not218.

    Article  CAS  PubMed  Google Scholar 

  • Møller, H. G., Rasmussen, A. P., Andersen, H. H., Johnsen, K. B., Henriksen, M., & Duroux, M. (2013). A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Molecular Neurobiology, 47(1), 131–144. doi:10.1007/s12035-012-8349-7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Noerholm, M., Balaj, L., Limperg, T., Salehi, A., Zhu, L. D., Hochberg, F. H., et al. (2012). RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer, 12, 22. doi:10.1186/1471-2407-12-22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohno, S.-I., Takanashi, M., Sudo, K., Ueda, S., Ishikawa, A., Matsuyama, N., et al. (2012). Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy. doi:10.1038/mt.2012.180.

  • Pan, Q., Ramakrishnaiah, V., Henry, S., Fouraschen, S., de Ruiter, P. E., Kwekkeboom, J., et al. (2012). Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut, 61(9), 1330–1339. doi:10.1136/gutjnl-2011-300449.

    Article  CAS  PubMed  Google Scholar 

  • Peinado, H., Alečković, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18(6), 883–891. doi:10.1038/nm.2753.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rak, J., & Guha, A. (2012). Extracellular vesicles–vehicles that spread cancer genes. BioEssays: News and reviews in molecular, cellular and developmental biology, 34(6), 489–497. doi:10.1002/bies.201100169.

    Article  CAS  Google Scholar 

  • Record, M., Subra, C., Silvente-Poirot, S., & Poirot, M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical Pharmacology, 81(10), 1171–1182. doi:10.1016/j.bcp.2011.02.011.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Das, K., Woo, J., & Gimzewski, J. K. (2014). Nanofilaments on glioblastoma exosomes revealed by peak force microscopy. Journal of the Royal Society, Interface/the Royal Society, 11(92), 20131150. doi:10.1098/rsif.2013.1150.

    Article  PubMed  Google Scholar 

  • Shi, L., Zhang, J., Pan, T., Zhou, J., Gong, W., Liu, N., et al. (2010). MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Research, 1312, 120–126. doi:10.1016/j.brainres.2009.11.056.

    Article  CAS  PubMed  Google Scholar 

  • Shi, L., Wan, Y., Sun, G., Gu, X., Qian, C., Yan, W., et al. (2012). Functional differences of miR-125b on the invasion of primary glioblastoma CD133-negative cells and CD133-positive cells. Neuromolecular Medicine, 14(4), 303–316. doi:10.1007/s12017-012-8188-8.

    Article  CAS  PubMed  Google Scholar 

  • Shi, L., Wan, Y., Sun, G., Zhang, S., Wang, Z., & Zeng, Y. (2013). miR-125b inhibitor may enhance the invasion-prevention activity of temozolomide in glioblastoma stem cells by targeting PIAS3. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals And Gene Therapy. doi:10.1007/s40259-013-0053-2.

  • Sidhu, S. S., Mengistab, A. T., Tauscher, A. N., LaVail, J., & Basbaum, C. (2004). The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene, 23(4), 956–963. doi:10.1038/sj.onc.1207070.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401. doi:10.1038/nature03128.

    Article  CAS  PubMed  Google Scholar 

  • Skog, J., Würdinger, T., Van Rijn, S., Meijer, D. H., Gainche, L., Sena-Esteves, M., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10(12), 1470–1476. doi:10.1038/ncb1800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smits, M., Wurdinger, T., van het Hof, B., Drexhage, J. A. R., Geerts, D., Wesseling, P., et al. (2012). Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 26(6), 2639–2647. doi:10.1096/fj.11-202820.

    Article  CAS  Google Scholar 

  • Stieber, D., Golebiewska, A., Evers, L., Lenkiewicz, E., Brons, N. H. C., Nicot, N., et al. (2014). Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathologica, 127(2), 203–219. doi:10.1007/s00401-013-1196-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talasila, K. M., Soentgerath, A., Euskirchen, P., Rosland, G. V., Wang, J., Huszthy, P. C., et al. (2013). EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathologica, 125(5), 683–698. doi:10.1007/s00401-013-1101-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomita, T., Akimoto, J., Haraoka, J., & Kudo, M. (2013). Clinicopathological significance of expression of nestin, a neural stem/progenitor cell marker, in human glioma tissue. Brain Tumor Pathology, 1–10 doi:10.1007/s10014-013-0169-6.

  • Tunca, B., Tezcan, G., Cecener, G., Egeli, U., Ak, S., Malyer, H., et al. (2012). Olea europaea leaf extract alters microRNA expression in human glioblastoma cells. Journal of Cancer Research and Clinical Oncology, 138(11), 1831–1844. doi:10.1007/s00432-012-1261-8.

    Article  CAS  PubMed  Google Scholar 

  • Verhaak, R. G. W., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17(1), 98–110. doi:10.1016/j.ccr.2009.12.020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villarroya-Beltri, C., Gutiérrez-Vázquez, C., Sánchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature communications, 4, 2980. doi:10.1038/ncomms3980.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta, 1820(7), 940–948. doi:10.1016/j.bbagen.2012.03.017.

    Article  CAS  PubMed  Google Scholar 

  • Wan, Y., Fei, X.-F., Wang, Z.-M., Jiang, D.-Y., Chen, H.-C., Yang, J., et al. (2012). Expression of miR-125b in the new, highly invasive glioma stem cell and progenitor cell line SU3. Chinese Journal of Cancer, 31(4), 207–214. doi:10.5732/cjc.011.10336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wan, Y., Sun, G., Wang, Z., Guo, J., & Shi, L. (2013a). miR-125b promotes cell proliferation by directly targeting Lin28 in glioblastoma stem cells with low expression levels of miR-125b. Neuroreport. doi:10.1097/WNR.0000000000000085.

  • Wan, Y., Sun, G., Zhang, S., Wang, Z., & Shi, L. (2013b). MicroRNA-125b inhibitor sensitizes human primary glioblastoma cells to chemotherapeutic drug temozolomide on invasion. In Vitro Cellular and Developmental Biology. Animal, 49(8), 599–607. doi:10.1007/s11626-013-9644-y.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Zheng., Bao, Z., Yan, W., You, G., Wang, Y., Li, X., et al. (2013). Isocitrate dehydrogenase 1 (IDH1) mutation-specific microRNA signature predicts favorable prognosis in glioblastoma patients with IDH1 wild type. Journal of Experimental & Clinical Cancer Research: CR, 32(1), 59. doi:10.1186/1756-9966-32-59.

    Article  CAS  PubMed Central  Google Scholar 

  • Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K. V., Tarasova, Y., et al. (2004). Nestin expression—A property of multi-lineage progenitor cells? Cellular and Molecular Life Sciences, 61(19–20), 2510–2522. doi:10.1007/s00018-004-4144-6.

    Article  CAS  PubMed  Google Scholar 

  • Winter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nature Cell Biology, 11(3), 228–234. doi:10.1038/ncb0309-228.

    Article  CAS  PubMed  Google Scholar 

  • Witwer, K. W., Buzás, E. I., Bemis, L. T., Bora, A., Lässer, C., Lötvall, J., et al. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles, 2, 18389. doi:10.1074/jbc.M111.277061.

    Article  Google Scholar 

  • Wu, N., Xiao, L., Zhao, X., Zhao, J., Wang, J., Wang, F., et al. (2012). miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Letters, 586(21), 3831–3839. doi:10.1016/j.febslet.2012.08.023.

    Article  CAS  PubMed  Google Scholar 

  • Wu, N., Lin, X., Zhao, X., Zheng, L., Xiao, L., Liu, J., et al. (2013). MiR-125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK-independent pathways. British Journal of Cancer, 109(11), 2853–2863. doi:10.1038/bjc.2013.672.

    Article  CAS  PubMed  Google Scholar 

  • Xia, H.-F., He, T.-Z., Liu, C.-M., Cui, Y., Song, P.-P., Jin, X.-H., et al. (2009). MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 23(4–6), 347–358. doi:10.1159/000218181.

    Article  CAS  Google Scholar 

  • Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., et al. (2009). IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine, 360(8), 765–773. doi:10.1056/NEJMoa0808710.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong, J., Paul, A., Kellie, S. J., & O’Neill, G. M. (2010). Mesenchymal migration as a therapeutic target in glioblastoma. Journal of Oncology, 2010, 430142. doi:10.1155/2010/430142.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge laboratory technician Rikke Sophie Holm Kristensen, Aalborg University for her excellent technical assistance. Sille Jensen, Julie Vedel, Spogmai Zadran, Ditte Hansen and Line Tegtmeier Frandsen are acknowledged for their help in gathering the clinical data. This work was supported by grants from Det Obelske Familiefond and Spar Nord Fonden. Kasper Bendix Johnsen is supported by the Novo Scholarship Programme (Novo Nordisk, Denmark).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meg Duroux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriksen, M., Johnsen, K.B., Olesen, P. et al. MicroRNA Expression Signatures and Their Correlation with Clinicopathological Features in Glioblastoma Multiforme. Neuromol Med 16, 565–577 (2014). https://doi.org/10.1007/s12017-014-8309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8309-7

Keywords

Navigation