Skip to main content

Advertisement

Log in

Phospholipases A2 and Inflammatory Responses in the Central Nervous System

  • REVIEW PAPER
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Phospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolyzing the sn-2 fatty acids of membrane phospholipids. These enzymes are known to play multiple roles for maintenance of membrane phospholipid homeostasis and for production of a variety of lipid mediators. Over 20 different types of PLA2s are present in the mammalian cells, and in snake and bee venom. Despite their common function in hydrolyzing fatty acids of phospholipids, they are diversely encoded by a number of genes and express proteins that are regulated by different mechanisms. Recent studies have focused on the group IV calcium-dependent cytosolic cPLA2, the group VI calcium-independent iPLA2, and the group II small molecule secretory sPLA2. In the central nervous system (CNS), these PLA2s are distributed among neurons and glial cells. Although the physiological role of these PLA2s in regulating neural cell function has not yet been clearly elucidated, there is increasing evidence for their involvement in receptor signaling and transcriptional pathways that link oxidative events to inflammatory responses that underline many neurodegenerative diseases. Recent studies also reveal an important role of cPLA2 in modulating neuronal excitatory functions, sPLA2 in the inflammatory responses, and iPLA2 with childhood neurologic disorders associated with brain iron accumulation. The goal for this review is to better understand the structure and function of these PLA2s and to highlight specific types of PLA2s and their cross-talk mechanisms in these inflammatory responses under physiological and pathological conditions in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

AA:

Arachidonic acid

BEL:

Bromoenol lactone

CaMKII:

Ca2+/Calmodulin-dependent protein kinase II

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

COX-2:

Cyclooxygenase-2

DHA:

Docosahexaenoic acid

ERK:

Extracellular signal-regulated kinases

HNE:

4-Hydroxynonenal

hsp90:

Heat shock protein 90

iNOS:

Inducible nitric oxide synthase

IFNγ:

Interferon-γ

IL-1β:

Interleukin 1β

INAD:

Infantile neuroaxonal dystrophy

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MNK1:

MAPK-interacting kinase

MRI:

Magnetic resonance imaging

NBIA:

Idiopathic neurodegeneration with brain iron accumulation

NMDA:

N-Methyl-d-aspartic acid

NO:

Nitric oxide

NPD1:

Neuroprotectin 1

PACOCF3:

Palmitoyl trifluoromethyl ketone

PIP2:

Phosphatidylinositol-4,5-bisphosphate

PGE2:

prostglandin E2

PKC:

Protein kinase C

PLA2:

Phospholipases A2

SMase:

sphingomyelinase

ROS:

Reactive oxygen species

TBHP:

tert-Butylhydroperoxide

TNFα:

Tumor necrosis factor-alpha

References

  • Adibhatla, R. M., & Hatcher, J. F. (2007). Secretory phospholipase A2 IIA is up-regulated by TNF-alpha and IL-1alpha/beta after transient focal cerebral ischemia in rat. Brain Research, 1134, 199–205.

    CAS  PubMed  Google Scholar 

  • Adibhatla, R. M., & Hatcher, J. F. (2008). Phospholipase A(2), reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB Reports, 41, 560–567.

    CAS  PubMed  Google Scholar 

  • Adibhatla, R. M., Hatcher, J. F., & Tureyen, K. (2005). CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke. Brain Research, 1058, 193–197.

    PubMed  Google Scholar 

  • Aid, S., & Bosetti, F. (2007). Gene expression of cyclooxygenase-1 and Ca(2+)-independent phospholipase A(2) is altered in rat hippocampus during normal aging. Brain Research Bulletin, 73, 108–113.

    CAS  PubMed  Google Scholar 

  • Alexandrov, P., Cui, J. G., Zhao, Y., & Lukiw, W. J. (2005). 24S-hydroxycholesterol induces inflammatory gene expression in primary human neural cells. Neuroreport, 16, 909–913.

    CAS  PubMed  Google Scholar 

  • Andreani, M., Olivier, J. L., Berenbaum, F., Raymondjean, M., & Bereziat, G. (2000). Transcriptional regulation of inflammatory secreted phospholipases A(2). Biochimica et Biophysica Acta, 1488, 149–158.

    CAS  PubMed  Google Scholar 

  • Balboa, M. A., Balsinde, J., Winstead, M. V., Tischfield, J. A., & Dennis, E. A. (1996). Novel group V phospholipase A2 involved in arachidonic acid mobilization in murine P388D1 macrophages. The Journal of Biological Chemistry, 271, 32381–32384.

    CAS  PubMed  Google Scholar 

  • Balestrieri, B., Hsu, V. W., Gilbert, H., Leslie, C. C., Han, W. K., Bonventre, J. V., et al. (2006). Group V secretory phospholipase A2 translocates to the phagosome after zymosan stimulation of mouse peritoneal macrophages and regulates phagocytosis. The Journal of Biological Chemistry, 281, 6691–6698.

    CAS  PubMed  Google Scholar 

  • Balsinde, J., Perez, R., & Balboa, M. A. (2006). Calcium-independent phospholipase A2 and apoptosis. Biochimica et Biophysica Acta, 1761, 1344–1350.

    CAS  PubMed  Google Scholar 

  • Bao, S., Li, Y., Lei, X., et al. (2007). Attenuated free cholesterol loading-induced apoptosis but preserved phospholipid composition of peritoneal macrophages from mice that do not express group VIA phospholipase A2. The Journal of Biological Chemistry, 282, 27100–27114.

    CAS  PubMed  Google Scholar 

  • Bate, C., Kempster, S., Last, V., & Williams, A. (2006). Interferon-gamma increases neuronal death in response to amyloid-beta1-42. Journal of Neuroinflammation, 3, 7.

    PubMed  Google Scholar 

  • Bate, C., & Williams, A. (2007). Squalestatin protects neurons and reduces the activation of cytoplasmic phospholipase A2 by Abeta(1–42). Neuropharmacology, 53, 222–231.

    CAS  PubMed  Google Scholar 

  • Beck, S., Beck, G., Ostendorf, T., et al. (2006). Upregulation of group IB secreted phospholipase A(2) and its M-type receptor in rat ANTI-THY-1 glomerulonephritis. Kidney International, 70, 1251–1260.

    CAS  PubMed  Google Scholar 

  • Bezzine, S., Koduri, R. S., Valentin, E., Murakami, M., Kudo, I., Ghomashchi, F., et al. (2000). Exogenously added human group X secreted phospholipase A(2) but not the group IB, IIA, and V enzymes efficiently release arachidonic acid from adherent mammalian cells. The Journal of Biological Chemistry, 275, 3179–3191.

    CAS  PubMed  Google Scholar 

  • Boilard, E., Rouault, M., Surrel, F., Le Calvez, C., Bezzine, S., Singer, A., et al. (2006). Secreted phospholipase A2 inhibitors are also potent blockers of binding to the M-type receptor. Biochemistry, 45, 13203–13218.

    CAS  PubMed  Google Scholar 

  • Bostrom, M. A., Boyanovsky, B. B., Jordan, C. T., Wadsworth, M. P., Taatjes, D. J., de Beer, F. C., et al. (2007). Group v secretory phospholipase A2 promotes atherosclerosis: Evidence from genetically altered mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 600–606.

    CAS  PubMed  Google Scholar 

  • Burke, J. E., & Dennis, E. A. (2009). Phospholipase A2 biochemistry. Cardiovascular Drugs and Therapy, 23, 49–59.

    CAS  PubMed  Google Scholar 

  • Burke, J. E., Hsu, Y. H., Deems, R. A., Li, S., Woods, V. L., Jr., & Dennis, E. A. (2008). A phospholipid substrate molecule residing in the membrane surface mediates opening of the lid region in group IVA cytosolic phospholipase A2. Journal of Biological Chemistry, 283, 31227–31236.

    CAS  PubMed  Google Scholar 

  • Carey, M. C., Small, D. M., & Bliss, C. M. (1983). Lipid digestion and absorption. Annual Review of Physiology, 45, 651–677.

    CAS  PubMed  Google Scholar 

  • Casas, J., Gijon, M. A., Vigo, A. G., Crespo, M. S., Balsinde, J., & Balboa, M. A. (2006). Phosphatidylinositol 4,5-bisphophate anchors cytosolic group IVA phospholipase A2 to perinuclear membranes and decreases its calcium requirement for translocation in live cells. Molecular Biology of the Cell, 17, 155–162.

    CAS  PubMed  Google Scholar 

  • Chalimoniuk, M., Stolecka, A., Cakala, M., et al. (2007). Amyloid beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells. Acta Biochimica Polonica, 54, 611–623.

    CAS  PubMed  Google Scholar 

  • Chen, J., Shao, C., Lazar, V., Srivastava, C. H., Lee, W. H., & Tischfield, J. A. (1997). Localization of group IIc low molecular weight phospholipase A2 mRNA to meiotic cells in the mouse. Journal of Cellular Biochemistry, 64, 369–375.

    CAS  PubMed  Google Scholar 

  • Chenevier-Gobeaux, C., Simonneau, C., Therond, P., Bonnefont-Rousselot, D., Poiraudeau, S., Ekindjian, O. G., et al. (2007). Implication of cytosolic phospholipase A2 (cPLA2) in the regulation of human synoviocyte NADPH oxidase (Nox2) activity. Life Science, 81, 1050–1058.

    CAS  Google Scholar 

  • Cheng, S. E., Luo, S. F., Jou, M. J., Lin, C. C., Kou, Y. R., Lee, I. T., et al. (2009). Cigarette smoke extract induces cytosolic phospholipase A2 expression via NADPH oxidase, MAPKs, AP-1, and NF-kappaB in human tracheal smooth muscle cells. Free Radical Biology and Medicine, 46, 948–960.

    CAS  PubMed  Google Scholar 

  • Cho, H. W., Kim, J. H., Choi, S., & Kim, H. J. (2006). Phospholipase A2 is involved in muscarinic receptor-mediated sAPPalpha release independently of cyclooxygenase or lipoxygenase activity in SH-SY5Y cells. Neuroscience Letters, 397, 214–218.

    CAS  PubMed  Google Scholar 

  • Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., & Lukiw, W. J. (2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. Journal of Neuroscience Research, 70, 462–473.

    CAS  PubMed  Google Scholar 

  • Corbin, J. A., Evans, J. H., Landgraf, K. E., & Falke, J. J. (2007). Mechanism of specific membrane targeting by C2 domains: Localized pools of target lipids enhance Ca2+ affinity. Biochemistry, 46, 4322–4336.

    CAS  PubMed  Google Scholar 

  • Couturier, C., Brouillet, A., Couriaud, C., Koumanov, K., Bereziat, G., & Andreani, M. (1999). Interleukin 1beta induces type II-secreted phospholipase A(2) gene in vascular smooth muscle cells by a nuclear factor kappaB and peroxisome proliferator-activated receptor-mediated process. The Journal of Biological Chemistry, 274, 23085–23093.

    CAS  PubMed  Google Scholar 

  • Cunningham, T. J., Souayah, N., Jameson, B., Mitchell, J., & Yao, L. (2004). Systemic treatment of cerebral cortex lesions in rats with a new secreted phospholipase A2 inhibitor. Journal of Neurotrauma, 21, 1683–1691.

    PubMed  Google Scholar 

  • Cupillard, L., Koumanov, K., Mattei, M. G., Lazdunski, M., & Lambeau, G. (1997). Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A2. The Journal of Biological Chemistry, 272, 15745–15752.

    CAS  PubMed  Google Scholar 

  • Das, S., & Cho, W. (2002). Roles of catalytic domain residues in interfacial binding and activation of group IV cytosolic phospholipase A2. The Journal of Biological Chemistry, 277, 23838–23846.

    CAS  PubMed  Google Scholar 

  • Dennis, E. A. (1994). Diversity of group types, regulation, and function of phospholipase A2. The Journal of Biological Chemistry, 269, 13057–13060.

    CAS  PubMed  Google Scholar 

  • Farina, C., Aloisi, F., & Meinl, E. (2007). Astrocytes are active players in cerebral innate immunity. Trends in Immunology, 28, 138–145.

    CAS  PubMed  Google Scholar 

  • Farooqui, A. A., Ong, W. Y., & Horrocks, L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacological Reviews, 58, 591–620.

    CAS  PubMed  Google Scholar 

  • Farooqui, A. A., Yang, H. C., Hirashima, Y., & Horrocks, L. A. (1999). Determination of plasmalogen-selective phospholipase A2 activity by radiochemical and fluorometric assay procedures. Methods in Molecular Biology, 109, 39–47.

    CAS  PubMed  Google Scholar 

  • Forlenza, O. V., Mendes, C. T., Marie, S. K., & Gattaz, W. F. (2007a). Inhibition of phospholipase A2 reduces neurite outgrowth and neuronal viability. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 76, 47–55.

    CAS  PubMed  Google Scholar 

  • Forlenza, O. V., Schaeffer, E. L., & Gattaz, W. F. (2007b). The role of phospholipase A2 in neuronal homeostasis and memory formation: Implications for the pathogenesis of Alzheimer’s disease. Journal of Neural Transmission, 114, 231–238.

    CAS  PubMed  Google Scholar 

  • Fujioka, D., Saito, Y., Kobayashi, T., et al. (2008). Reduction in myocardial ischemia/reperfusion injury in group X secretory phospholipase A2-deficient mice. Circulation, 117, 2977–2985.

    CAS  PubMed  Google Scholar 

  • Geijsen, N., Dijkers, P. F., Lammers, J. J., Koenderman, L., & Coffer, P. J. (2000). Cytokine-mediated cPLA(2) phosphorylation is regulated by multiple MAPK family members. FEBS Letters, 471, 83–88.

    CAS  PubMed  Google Scholar 

  • Ghosh, M., Loper, R., Ghomashchi, F., Tucker, D. E., Bonventre, J. V., Gelb, M. H., et al. (2007). Function, activity, and membrane targeting of cytosolic phospholipase A(2)zeta in mouse lung fibroblasts. The Journal of Biological Chemistry, 282, 11676–11686.

    CAS  PubMed  Google Scholar 

  • Ghosh, M., Tucker, D. E., Burchett, S. A., & Leslie, C. C. (2006). Properties of the Group IV phospholipase A2 family. Progress in Lipid Research, 45, 487–510.

    CAS  PubMed  Google Scholar 

  • Green, J. T., Orr, S. K., & Bazinet, R. P. (2008). The emerging role of group VI calcium-independent phospholipase A2 in releasing docosahexaenoic acid from brain phospholipids. Journal of Lipid Research, 49, 939–944.

    CAS  PubMed  Google Scholar 

  • Gregory, A., Westaway, S. K., Holm, I. E., et al. (2008). Neurodegeneration associated with genetic defects in phospholipase A(2). Neurology, 71, 1402–1409.

    CAS  PubMed  Google Scholar 

  • Hanasaki, K., & Arita, H. (2002). Phospholipase A2 receptor: A regulator of biological functions of secretory phospholipase A2. Prostaglandins and Other Lipid Mediators, 68–69, 71–82.

    PubMed  Google Scholar 

  • Hanasaki, K., Ono, T., Saiga, A., et al. (1999). Purified group X secretory phospholipase A(2) induced prominent release of arachidonic acid from human myeloid leukemia cells. The Journal of Biological Chemistry, 274, 34203–34211.

    CAS  PubMed  Google Scholar 

  • Hefner, Y., Borsch-Haubold, A. G., Murakami, M., et al. (2000). Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. The Journal of Biological Chemistry, 275, 37542–37551.

    CAS  PubMed  Google Scholar 

  • Henderson, W. R., Jr., Chi, E. Y., Bollinger, J. G., et al. (2007). Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. The Journal of Experimental Medicine, 204, 865–877.

    CAS  PubMed  Google Scholar 

  • Hernandez, M., Burillo, S. L., Crespo, M. S., & Nieto, M. L. (1998). Secretory phospholipase A2 activates the cascade of mitogen-activated protein kinases and cytosolic phospholipase A2 in the human astrocytoma cell line 1321N1. The Journal of Biological Chemistry, 273, 606–612.

    CAS  PubMed  Google Scholar 

  • Hsu, Y. H., Burke, J. E., Li, S., Woods, V. L., Jr., & Dennis, E. A. (2009). Localizing the membrane binding region of group VIA Ca2+-independent phospholipase A2 using peptide amide hydrogen/deuterium exchange mass spectrometry. The Journal of Biological Chemistry, 284, 23652–23661.

    CAS  PubMed  Google Scholar 

  • Ibeas, E., Fuentes, L., Martin, R., Hernandez, M., & Nieto, M. L. (2009). Secreted phospholipase A2 type IIA as a mediator connecting innate and adaptive immunity: New role in atherosclerosis. Cardiovascular Research, 81, 54–63.

    CAS  PubMed  Google Scholar 

  • Jenkins, C. M., Yan, W., Mancuso, D. J., & Gross, R. W. (2006). Highly selective hydrolysis of fatty acyl-CoAs by calcium-independent phospholipase A2beta. Enzyme autoacylation and acyl-CoA-mediated reversal of calmodulin inhibition of phospholipase A2 activity. The Journal of Biological Chemistry, 281, 15615–15624.

    CAS  PubMed  Google Scholar 

  • Jensen, M. D., Sheng, W., Simonyi, A., Johnson, G. S., Sun, A. Y., & Sun, G. Y. (2009). Involvement of oxidative pathways in cytokine-induced secretory phospholipase A2-IIA in astrocytes. Neurochemistry International, 55, 362–368.

    CAS  PubMed  Google Scholar 

  • Kalyvas, A., Baskakis, C., Magrioti, V., et al. (2009). Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis. Brain, 132, 1221–1235.

    PubMed  Google Scholar 

  • Kim, D. H., Fitzsimmons, B., Hefferan, M. P., et al. (2008). Inhibition of spinal cytosolic phospholipase A(2) expression by an antisense oligonucleotide attenuates tissue injury-induced hyperalgesia. Neuroscience, 154, 1077–1087.

    CAS  PubMed  Google Scholar 

  • Kinsey, G. R., Cummings, B. S., Beckett, C. S., Saavedra, G., Zhang, W., McHowat, J., et al. (2005). Identification and distribution of endoplasmic reticulum iPLA2. Biochemical and Biophysical Research Communications, 327, 287–293.

    CAS  PubMed  Google Scholar 

  • Kolko, M., Christoffersen, N. R., Barreiro, S. G., Miller, M. L., Pizza, A. J., & Bazan, N. G. (2006). Characterization and location of secretory phospholipase A2 groups IIE, V, and X in the rat brain. Journal of Neuroscience Research, 83, 874–882.

    CAS  PubMed  Google Scholar 

  • Kolko, M., Christoffersen, N. R., Varoqui, H., & Bazan, N. G. (2005). Expression and induction of secretory phospholipase A2 group IB in brain. Cellular and Molecular Neurobiology, 25, 1107–1122.

    CAS  PubMed  Google Scholar 

  • Kovacic, L., Sribar, J., & Krizaj, I. (2007). A new photoprobe for studying biological activities of secreted phospholipases A2. Bioorganic Chemistry, 35, 295–305.

    CAS  PubMed  Google Scholar 

  • Kriem, B., Sponne, I., Fifre, A., et al. (2005). Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. The FASEB Journal, 19, 85–87.

    CAS  PubMed  Google Scholar 

  • Kurian, M. A., Morgan, N. V., MacPherson, L., et al. (2008). Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology, 70, 1623–1629.

    CAS  PubMed  Google Scholar 

  • Kuwata, H., Fujimoto, C., Yoda, E., Shimbara, S., Nakatani, Y., Hara, S., et al. (2007). A novel role of group VIB calcium-independent phospholipase A2 (iPLA2gamma) in the inducible expression of group IIA secretory PLA2 in rat fibroblastic cells. The Journal of Biological Chemistry, 282, 20124–20132.

    CAS  PubMed  Google Scholar 

  • Lambeau, G., & Gelb, M. H. (2008). Biochemistry and physiology of mammalian secreted phospholipases A2. Annual Review of Biochemistry, 77, 495–520.

    CAS  PubMed  Google Scholar 

  • Lambeau, G., & Lazdunski, M. (1999). Receptors for a growing family of secreted phospholipases A2. Trends in Pharmacological Sciences, 20, 162–170.

    CAS  PubMed  Google Scholar 

  • Lamour, N. F., Subramanian, P., Wijesinghe, D. S., Stahelin, R. V., Bonventre, J. V., & Chalfant, C. E. (2009). Ceramide-1-phosphate is required for the translocation of group IVA cytosolic phospholipase A2 and prostaglandin synthesis. The Journal of Biological Chemistry, 284, 26897–26907.

    CAS  PubMed  Google Scholar 

  • Le Berre, L., Takano, T., Papillon, J., Lemay, S., & Cybulsky, A. V. (2006). Role of phosphatidylinositol 4,5-bisphosphate in the activation of cytosolic phospholipase A2-alpha. Prostaglandins and Other Lipid Mediators, 81, 113–125.

    CAS  PubMed  Google Scholar 

  • Leu, B. H., & Schmidt, J. T. (2008). Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors. Developmental Neurobiology, 68, 18–30.

    CAS  PubMed  Google Scholar 

  • Lin, T. N., Wang, Q., Simonyi, A., et al. (2004). Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. Journal of Neurochemistry, 90, 637–645.

    CAS  PubMed  Google Scholar 

  • Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A., & Davis, R. J. (1993). cPLA2 is phosphorylated and activated by MAP kinase. Cell, 72, 269–278.

    CAS  PubMed  Google Scholar 

  • Liu, N. K., Zhang, Y. P., Han, S., Pei, J., Xu, L. Y., Lu, P. H., et al. (2007). Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury. Journal of Neuropathology and Experimental Neurology, 66, 932–943.

    CAS  PubMed  Google Scholar 

  • Lopez-Vales, R., Navarro, X., Shimizu, T., Baskakis, C., Kokotos, G., Constantinou-Kokotou, V., et al. (2008). Intracellular phospholipase A(2) group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury. Brain, 131, 2620–2631.

    PubMed  Google Scholar 

  • Lukiw, W. J., & Bazan, N. G. (2006). Survival signalling in Alzheimer’s disease. Biochemical Society Transactions, 34, 1277–1282.

    CAS  PubMed  Google Scholar 

  • Lukiw, W. J., & Bazan, N. G. (2008). Docosahexaenoic acid and the aging brain. Journal of Nutrition, 138, 2510–2514.

    CAS  PubMed  Google Scholar 

  • Lukiw, W. J., Cui, J. G., Marcheselli, V. L., Bodker, M., Botkjaer, A., Gotlinger, K., et al. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. Journal of Clinical Investigation, 115, 2774–2783.

    CAS  PubMed  Google Scholar 

  • Malaplate-Armand, C., Florent-Bechard, S., Youssef, I., et al. (2006). Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiology of Disease, 23, 178–189.

    CAS  PubMed  Google Scholar 

  • Malik, I., Turk, J., Mancuso, D. J., Montier, L., Wohltmann, M., Wozniak, D. F., et al. (2008). Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations. American Journal of Pathology, 172, 406–416.

    CAS  PubMed  Google Scholar 

  • Masuda, S., Murakami, M., Takanezawa, Y., Aoki, J., Arai, H., Ishikawa, Y., et al. (2005). Neuronal expression and neuritogenic action of group X secreted phospholipase A2. The Journal of Biological Chemistry, 280, 23203–23214.

    CAS  PubMed  Google Scholar 

  • Masuda, S., Yamamoto, K., Hirabayashi, T., Ishikawa, Y., Ishii, T., Kudo, I., et al. (2008). Human group III secreted phospholipase A2 promotes neuronal outgrowth and survival. The Biochemical Journal, 409, 429–438.

    CAS  PubMed  Google Scholar 

  • Mathisen, G. H., Thorkildsen, I. H., & Paulsen, R. E. (2007). Secretory PLA2-IIA and ROS generation in peripheral mitochondria are critical for neuronal death. Brain Research, 1153, 43–51.

    CAS  PubMed  Google Scholar 

  • Menard, C., Valastro, B., Martel, M. A., Chartier, E., Marineau, A., Baudry, M., et al. (2005). AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A(2) and 5-lipoxygenase activities. Hippocampus, 15, 370–380.

    CAS  PubMed  Google Scholar 

  • Molloy, G. Y., Rattray, M., & Williams, R. J. (1998). Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neuroscience Letters, 258, 139–142.

    CAS  PubMed  Google Scholar 

  • Morgan, N. V., Westaway, S. K., Morton, J. E., et al. (2006). PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nature Genetics, 38, 752–754.

    CAS  PubMed  Google Scholar 

  • Moses, G. S., Jensen, M. D., Lue, L. F., Walker, D. G., Sun, A. Y., Simonyi, A., et al. (2006). Secretory PLA2-IIA: A new inflammatory factor for Alzheimer’s disease. Journal of Neuroinflammation [electronic resource], 3, 28.

    Google Scholar 

  • Mounier, C. M., Wendum, D., Greenspan, E., Flejou, J. F., Rosenberg, D. W., & Lambeau, G. (2008). Distinct expression pattern of the full set of secreted phospholipases A2 in human colorectal adenocarcinomas: sPLA2-III as a biomarker candidate. British Journal of Cancer, 98, 587–595.

    CAS  PubMed  Google Scholar 

  • Murakami, M., & Kudo, I. (2002). Phospholipase A2. Journal of Biochemistry, 131, 285–292.

    CAS  PubMed  Google Scholar 

  • Murakami, M., Masuda, S., Shimbara, S., Ishikawa, Y., Ishii, T., & Kudo, I. (2005). Cellular distribution, post-translational modification, and tumorigenic potential of human group III secreted phospholipase A(2). The Journal of Biological Chemistry, 280, 24987–24998.

    CAS  PubMed  Google Scholar 

  • Murakami, M., Masuda, S., Shimbara, S., et al. (2003). Cellular arachidonate-releasing function of novel classes of secretory phospholipase A2s (groups III and XII). The Journal of Biological Chemistry, 278, 10657–10667.

    CAS  PubMed  Google Scholar 

  • Murakami, M., Nakatani, Y., Atsumi, G., Inoue, K., & Kudo, I. (1997). Regulatory functions of phospholipase A2. Critical Reviews in Immunology, 17, 225–283.

    CAS  PubMed  Google Scholar 

  • Murakami, M., Shimbara, S., Kambe, T., Kuwata, H., Winstead, M. V., Tischfield, J. A., et al. (1998). The functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. The Journal of Biological Chemistry, 273, 14411–14423.

    CAS  PubMed  Google Scholar 

  • Muthalif, M. M., Hefner, Y., Canaan, S., Harper, J., Zhou, H., Parmentier, J. H., et al. (2001). Functional interaction of calcium-/calmodulin-dependent protein kinase II and cytosolic phospholipase A(2). The Journal of Biological Chemistry, 276, 39653–39660.

    CAS  PubMed  Google Scholar 

  • Nakashima, S., Kitamoto, K., & Arioka, M. (2004). The catalytic activity, but not receptor binding, of sPLA2s plays a critical role for neurite outgrowth induction in PC12 cells. Brain Research, 1015, 207–211.

    CAS  PubMed  Google Scholar 

  • Nanda, B. L., Nataraju, A., Rajesh, R., Rangappa, K. S., Shekar, M. A., & Vishwanath, B. S. (2007). PLA2 mediated arachidonate free radicals: PLA2 inhibition and neutralization of free radicals by anti-oxidants–a new role as anti-inflammatory molecule. Current Topics in Medicinal Chemistry, 7, 765–777.

    CAS  PubMed  Google Scholar 

  • Nardicchi, V., Macchioni, L., Ferrini, M., & Goracci, G. (2007). The presence of a secretory phospholipase A2 in the nuclei of neuronal and glial cells of rat brain cortex. Biochimica et Biophysica Acta, 1771, 1345–1352.

    CAS  PubMed  Google Scholar 

  • Nicotra, A., Lupo, G., Giurdanella, G., Anfuso, C. D., Ragusa, N., Tirolo, C., et al. (2005). MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid beta(25–35) peptide in bovine retina pericytes. Biochimica et Biophysica Acta, 1733, 172–186.

    CAS  PubMed  Google Scholar 

  • Niknami, M., Patel, M., Witting, P. K., & Dong, Q. (2009). Molecules in focus: Cytosolic phospholipase A2-alpha. International Journal of Biochemistry and Cell Biology, 41, 994–997.

    CAS  PubMed  Google Scholar 

  • Ohtsuki, M., Taketomi, Y., Arata, S., et al. (2006). Transgenic expression of group V, but not group X, secreted phospholipase A2 in mice leads to neonatal lethality because of lung dysfunction. The Journal of Biological Chemistry, 281, 36420–36433.

    CAS  PubMed  Google Scholar 

  • Olson, J. K., & Miller, S. D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. Journal of Immunology, 173, 3916–3924.

    CAS  Google Scholar 

  • Ong, W. Y., Ling, S. F., Yeo, J. F., Chiueh, C. C., & Farooqui, A. A. (2005a). Injury and recovery of pyramidal neurons in the rat hippocampus after a single episode of oxidative stress induced by intracerebroventricular injection of ferrous ammonium citrate. Reproduction, Nutrition, Development, 45, 647–662.

    CAS  PubMed  Google Scholar 

  • Ong, W. Y., Yeo, J. F., Ling, S. F., & Farooqui, A. A. (2005b). Distribution of calcium-independent phospholipase A2 (iPLA 2) in monkey brain. Journal of Neurocytology, 34, 447–458.

    CAS  PubMed  Google Scholar 

  • Paisan-Ruiz, C., Bhatia, K. P., Li, A., et al. (2009). Characterization of PLA2G6 as a locus for dystonia–parkinsonism. Annals of Neurology, 65, 19–23.

    PubMed  Google Scholar 

  • Pardue, S., Rapoport, S. I., & Bosetti, F. (2003). Co-localization of cytosolic phospholipase A2 and cyclooxygenase-2 in Rhesus monkey cerebellum. Brain Research. Molecular Brain Research, 116, 106–114.

    CAS  PubMed  Google Scholar 

  • Pavicevic, Z., Leslie, C. C., & Malik, K. U. (2008). cPLA2 phosphorylation at serine-515 and serine-505 is required for arachidonic acid release in vascular smooth muscle cells. Journal of Lipid Research, 49, 724–737.

    CAS  PubMed  Google Scholar 

  • Peterson, B., Knotts, T., & Cummings, B. S. (2007). Involvement of Ca2+-independent phospholipase A2 isoforms in oxidant-induced neural cell death. Neurotoxicology, 28, 150–160.

    CAS  PubMed  Google Scholar 

  • Pettus, B. J., Bielawska, A., Subramanian, P., et al. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. The Journal of Biological Chemistry, 279, 11320–11326.

    CAS  PubMed  Google Scholar 

  • Pindado, J., Balsinde, J., & Balboa, M. A. (2007). TLR3-dependent induction of nitric oxide synthase in RAW 264.7 macrophage-like cells via a cytosolic phospholipase A2/cyclooxygenase-2 pathway. Journal of Immunology, 179, 4821–4828.

    CAS  Google Scholar 

  • Raichel, L., Berger, S., Hadad, N., Kachko, L., Karter, M., Szaingurten-Solodkin, I., et al. (2008). Reduction of cPLA2alpha overexpression: An efficient anti-inflammatory therapy for collagen-induced arthritis. European Journal of Immunology, 38, 2905–2915.

    CAS  PubMed  Google Scholar 

  • Rao, J. S., Ertley, R. N., DeMar, J. C., Jr., Rapoport, S. I., Bazinet, R. P., & Lee, H. J. (2007). Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol Psychiatry, 12, 151–157.

    CAS  PubMed  Google Scholar 

  • Rapoport, S. I. (2008). Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 79, 153–156.

    CAS  PubMed  Google Scholar 

  • Rastogi, P., & McHowat, J. (2009). Inhibition of calcium-independent phospholipase A2 prevents inflammatory mediator production in pulmonary microvascular endothelium. Respiratory Physiology & Neurobiology, 165, 167–174.

    CAS  Google Scholar 

  • Rosenberger, T. A., Villacreses, N. E., Hovda, J. T., Bosetti, F., Weerasinghe, G., Wine, R. N., et al. (2004). Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. Journal of Neurochemistry, 88, 1168–1178.

    CAS  PubMed  Google Scholar 

  • Sanchez-Mejia, R. O., Newman, J. W., Toh, S., et al. (2008). Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nature Neuroscience, 11, 1311–1318.

    CAS  PubMed  Google Scholar 

  • Satake, Y., Diaz, B. L., Balestrieri, B., Lam, B. K., Kanaoka, Y., Grusby, M. J., et al. (2004). Role of group V phospholipase A2 in zymosan-induced eicosanoid generation and vascular permeability revealed by targeted gene disruption. The Journal of Biological Chemistry, 279, 16488–16494.

    CAS  PubMed  Google Scholar 

  • Schaeffer, E. L., Forlenza, O. V., & Gattaz, W. F. (2009). Phospholipase A(2) activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology (Berlin), 202, 37–51.

    CAS  Google Scholar 

  • Schaeffer, E. L., & Gattaz, W. F. (2005). Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology (Berlin), 181, 392–400.

    CAS  Google Scholar 

  • Schaeffer, E. L., & Gattaz, W. F. (2007). Requirement of hippocampal phospholipase A2 activity for long-term memory retrieval in rats. Journal of Neural Transmission, 114, 379–385.

    CAS  PubMed  Google Scholar 

  • Schaeffer, E. L., & Gattaz, W. F. (2008). Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: Participation of the phospholipase A2 enzyme. Psychopharmacology (Berlin), 198, 1–27.

    CAS  Google Scholar 

  • Schwab, J. M., Chiang, N., Arita, M., & Serhan, C. N. (2007). Resolvin E1 and protectin D1 activate inflammation–resolution programmes. Nature, 447, 869–874.

    CAS  PubMed  Google Scholar 

  • Seleznev, K., Zhao, C., Zhang, X. H., Song, K., & Ma, Z. A. (2006). Calcium-independent phospholipase A2 localizes in and protects mitochondria during apoptotic induction by staurosporine. The Journal of Biological Chemistry, 281, 22275–22288.

    CAS  PubMed  Google Scholar 

  • Shelat, P. B., Chalimoniuk, M., Wang, J. H., Strosznajder, J. B., Lee, J. C., Sun, A. Y., et al. (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. Journal of Neurochemistry, 106, 45–55.

    CAS  PubMed  Google Scholar 

  • Shen, Y., Kishimoto, K., Linden, D. J., & Sapirstein, A. (2007). Cytosolic phospholipase A(2) alpha mediates electrophysiologic responses of hippocampal pyramidal neurons to neurotoxic NMDA treatment. Proceedings of the National Academy of Sciences of the United States of America, 104, 6078–6083.

    CAS  PubMed  Google Scholar 

  • Shimizu, T., Ohto, T., & Kita, Y. (2006). Cytosolic phospholipase A2: Biochemical properties and physiological roles. IUBMB Life, 58, 328–333.

    CAS  PubMed  Google Scholar 

  • Shimizu, M., Tada, E., Makiyama, T., Yasufuku, K., Moriyama, Y., Fujino, H., et al. (2009). Effects of ceramide, ceramidase inhibition and expression of ceramide kinase on cytosolic phospholipase A2alpha; additional role of ceramide-1-phosphate in phosphorylation and Ca2+ signaling. Cellular Signalling, 21, 440–447.

    CAS  PubMed  Google Scholar 

  • Shinzawa, K., Sumi, H., Ikawa, M., Matsuoka, Y., Okabe, M., Sakoda, S., et al. (2008). Neuroaxonal dystrophy caused by group VIA phospholipase A2 deficiency in mice: A model of human neurodegenerative disease. Journal of Neuroscience, 28, 2212–2220.

    CAS  PubMed  Google Scholar 

  • Shirai, Y., & Ito, M. (2004). Specific differential expression of phospholipase A2 subtypes in rat cerebellum. Journal of Neurocytology, 33, 297–307.

    CAS  PubMed  Google Scholar 

  • Shmelzer, Z., Karter, M., Eisenstein, M., et al. (2008). Cytosolic phospholipase A2alpha is targeted to the p47phox-PX domain of the assembled NADPH oxidase via a novel binding site in its C2 domain. The Journal of Biological Chemistry, 283, 31898–31908.

    CAS  PubMed  Google Scholar 

  • Singaravelu, K., Lohr, C., & Deitmer, J. W. (2006). Regulation of store-operated calcium entry by calcium-independent phospholipase A2 in rat cerebellar astrocytes. Journal of Neuroscience, 26, 9579–9592.

    CAS  PubMed  Google Scholar 

  • Six, D. A., Barbayianni, E., Loukas, V., et al. (2007). Structure–activity relationship of 2-oxoamide inhibition of group IVA cytosolic phospholipase A2 and group V secreted phospholipase A2. Journal of Medicinal Chemistry, 50, 4222–4235.

    CAS  PubMed  Google Scholar 

  • Smesny, S., Stein, S., Willhardt, I., Lasch, J., & Sauer, H. (2008). Decreased phospholipase A2 activity in cerebrospinal fluid of patients with dementia. Journal of Neural Transmission, 115, 1173–1179.

    CAS  PubMed  Google Scholar 

  • Song, H., Bao, S., Ramanadham, S., & Turk, J. (2006). Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2. Biochemistry, 45, 6392–6406.

    CAS  PubMed  Google Scholar 

  • Stahelin, R. V., Subramanian, P., Vora, M., Cho, W., & Chalfant, C. E. (2007). Ceramide-1-phosphate binds group IVA cytosolic phospholipase a2 via a novel site in the C2 domain. The Journal of Biological Chemistry, 282, 20467–20474.

    CAS  PubMed  Google Scholar 

  • Strokin, M., Chechneva, O., Reymann, K. G., & Reiser, G. (2006). Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2. Neuroscience, 140, 547–553.

    CAS  PubMed  Google Scholar 

  • Strokin, M., Sergeeva, M., & Reiser, G. (2007). Prostaglandin synthesis in rat brain astrocytes is under the control of the n − 3 docosahexaenoic acid, released by group VIB calcium-independent phospholipase A2. Journal of Neurochemistry, 102, 1771–1782.

    CAS  PubMed  Google Scholar 

  • Subramanian, P., Stahelin, R. V., Szulc, Z., Bielawska, A., Cho, W., & Chalfant, C. E. (2005). Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2 alpha and enhances the interaction of the enzyme with phosphatidylcholine. The Journal of Biological Chemistry, 280, 17601–17607.

    CAS  PubMed  Google Scholar 

  • Subramanian, P., Vora, M., Gentile, L. B., Stahelin, R. V., & Chalfant, C. E. (2007). Anionic lipids activate group IVA cytosolic phospholipase A2 via distinct and separate mechanisms. Journal of Lipid Research, 48, 2701–2708.

    CAS  PubMed  Google Scholar 

  • Sun, G. Y., Horrocks, L. A., & Farooqui, A. A. (2007). The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. Journal of Neurochemistry, 103, 1–16.

    CAS  PubMed  Google Scholar 

  • Sun, G. Y., Xu, J., Jensen, M. D., & Simonyi, A. (2004). Phospholipase A2 in the central nervous system: Implications for neurodegenerative diseases. Journal of Lipid Research, 45, 205–213.

    CAS  PubMed  Google Scholar 

  • Sun, G. Y., Xu, J., Jensen, M. D., Yu, S., Wood, W. G., Gonzalez, F. A., et al. (2005). Phospholipase A2 in astrocytes: Responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Molecular Neurobiology, 31, 27–41.

    CAS  PubMed  Google Scholar 

  • Suzuki, N., Ishizaki, J., Yokota, Y., Higashino, K., Ono, T., Ikeda, M., et al. (2000). Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A(2)s. The Journal of Biological Chemistry, 275, 5785–5793.

    CAS  PubMed  Google Scholar 

  • Svensson, C. I., Lucas, K. K., Hua, X. Y., Powell, H. C., Dennis, E. A., & Yaksh, T. L. (2005). Spinal phospholipase A2 in inflammatory hyperalgesia: Role of the small, secretory phospholipase A2. Neuroscience, 133, 543–553.

    CAS  PubMed  Google Scholar 

  • Thomas, G., Bertrand, F., & Saunier, B. (2000). The differential regulation of group II(A) and group V low molecular weight phospholipases A(2) in cultured rat astrocytes. The Journal of Biological Chemistry, 275, 10876–10886.

    CAS  PubMed  Google Scholar 

  • Tian, W., Wijewickrama, G. T., Kim, J. H., Das, S., Tun, M. P., Gokhale, N., et al. (2008). Mechanism of regulation of group IVA phospholipase A2 activity by Ser727 phosphorylation. The Journal of Biological Chemistry, 283, 3960–3971.

    CAS  PubMed  Google Scholar 

  • Tischfield, J. A., Xia, Y. R., Shih, D. M., et al. (1996). Low-molecular-weight, calcium-dependent phospholipase A2 genes are linked and map to homologous chromosome regions in mouse and human. Genomics, 32, 328–333.

    CAS  PubMed  Google Scholar 

  • Titsworth, W. L., Liu, N. K., & Xu, X. M. (2008). Role of secretory phospholipase a(2) in CNS inflammation: Implications in traumatic spinal cord injury. CNS & Neurological Disorders Drug Targets, 7, 254–269.

    CAS  Google Scholar 

  • Titsworth, W. L., Onifer, S. M., Liu, N. K., & Xu, X. M. (2007). Focal phospholipases A2 group III injections induce cervical white matter injury and functional deficits with delayed recovery concomitant with Schwann cell remyelination. Experimental Neurology, 207, 150–162.

    CAS  PubMed  Google Scholar 

  • Touqui, L., & Alaoui-El-Azher, M. (2001). Mammalian secreted phospholipases A2 and their pathophysiological significance in inflammatory diseases. Current Molecular Medicine, 1, 739–754.

    CAS  PubMed  Google Scholar 

  • Tucker, D. E., Ghosh, M., Ghomashchi, F., et al. (2009). Role of phosphorylation and basic residues in the catalytic domain of cytosolic phospholipase A2alpha in regulating interfacial kinetics and binding and cellular function. The Journal of Biological Chemistry, 284, 9596–9611.

    CAS  PubMed  Google Scholar 

  • Tucker, D. E., Gijon, M. A., Spencer, D. M., Qiu, Z. H., Gelb, M. H., & Leslie, C. C. (2008). Regulation of cytosolic phospholipase A2alpha by hsp90 and a p54 kinase in okadaic acid-stimulated macrophages. Journal of Leukocyte Biology, 84, 798–806.

    CAS  PubMed  Google Scholar 

  • Valentin, E., Ghomashchi, F., Gelb, M. H., Lazdunski, M., & Lambeau, G. (1999). On the diversity of secreted phospholipases A(2). Cloning, tissue distribution, and functional expression of two novel mouse group II enzymes. The Journal of Biological Chemistry, 274, 31195–31202.

    CAS  PubMed  Google Scholar 

  • Valentin, E., Ghomashchi, F., Gelb, M. H., Lazdunski, M., & Lambeau, G. (2000). Novel human secreted phospholipase A(2) with homology to the group III bee venom enzyme. The Journal of Biological Chemistry, 275, 7492–7496.

    CAS  PubMed  Google Scholar 

  • Verheij, H. M., Slotboom, A. J., & de Haas, G. H. (1981). Structure and function of phospholipase A2. Reviews of Physiology Biochemistry and Pharmacology, 91, 91–203.

    CAS  Google Scholar 

  • Wang, Z., Ramanadham, S., Ma, Z. A., Bao, S., Mancuso, D. J., Gross, R. W., et al. (2005). Group VIA phospholipase A2 forms a signaling complex with the calcium/calmodulin-dependent protein kinase IIbeta expressed in pancreatic islet beta-cells. The Journal of Biological Chemistry, 280, 6840–6849.

    CAS  PubMed  Google Scholar 

  • Wilkins, W. P., 3rd, & Barbour, S. E. (2008). Group VI phospholipases A2: Homeostatic phospholipases with significant potential as targets for novel therapeutics. Current Drug Targets, 9, 683–697.

    CAS  PubMed  Google Scholar 

  • Won, J. S., Im, Y. B., Khan, M., Singh, A. K., & Singh, I. (2005). Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia, 51, 13–21.

    PubMed  Google Scholar 

  • Wu, Y., Jiang, Y., Gao, Z., et al. (2009). Clinical study and PLA2G6 mutation screening analysis in Chinese patients with infantile neuroaxonal dystrophy. European Journal of Neurology, 16, 240–245.

    CAS  PubMed  Google Scholar 

  • Xu, J., Chalimoniuk, M., Shu, Y., Simonyi, A., Sun, A. Y., Gonzalez, F. A., et al. (2003a). Prostaglandin E2 production in astrocytes: Regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 69, 437–448.

    CAS  PubMed  Google Scholar 

  • Xu, L., Han, C., Lim, K., & Wu, T. (2008). Activation of cytosolic phospholipase A2alpha through nitric oxide-induced S-nitrosylation. Involvement of inducible nitric-oxide synthase and cyclooxygenase-2. The Journal of Biological Chemistry, 283, 3077–3087.

    CAS  PubMed  Google Scholar 

  • Xu, J., Weng, Y. I., Simonyi, A., Krugh, B. W., Liao, Z., Weisman, G. A., et al. (2002). Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. Journal of Neurochemistry, 83, 259–270.

    CAS  PubMed  Google Scholar 

  • Xu, J., Yu, S., Sun, A. Y., & Sun, G. Y. (2003b). Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radical Biology and Medicine, 34, 1531–1543.

    CAS  PubMed  Google Scholar 

  • Yagami, T., Ueda, K., Asakura, K., et al. (2002). Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Molecular Pharmacology, 61, 114–126.

    CAS  PubMed  Google Scholar 

  • Zhang, F., Sha, J., Wood, T. G., et al. (2008). Alteration in the activation state of new inflammation-associated targets by phospholipase A2-activating protein (PLAA). Cellular Signalling, 20, 844–861.

    CAS  PubMed  Google Scholar 

  • Zhu, D., Hu, C., Sheng, W., Tan, K. S., Haidekker, M. A., Sun, A. Y., et al.. (2009). NADPH oxidase-mediated reactive oxygen species alter astrocyte membrane molecular order via phospholipase A2. Biochemistry Journal, 421, 201–210.

    CAS  Google Scholar 

  • Zhu, D., Lai, Y., Shelat, P. B., Hu, C., Sun, G. Y., & Lee, J. C. (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. Journal of Neuroscience, 26, 11111–11119.

    CAS  PubMed  Google Scholar 

  • Zhu, D., Tan, K. S., Zhang, X., Sun, A. Y., Sun, G. Y., & Lee, J. C. (2005). Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. Journal of Cell Science, 118, 3695–3703.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by P01 AG018357 from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Y. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G.Y., Shelat, P.B., Jensen, M.B. et al. Phospholipases A2 and Inflammatory Responses in the Central Nervous System. Neuromol Med 12, 133–148 (2010). https://doi.org/10.1007/s12017-009-8092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8092-z

Keywords

Navigation