Skip to main content

Advertisement

Log in

γδ T Cells and Allergic Diseases

  • Review
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Gamma–delta (γδ) T cells play an essential role in allergic diseases and have emerged as a potential treatment target in recent decades. To clarify the effects of γδ T cells on atopic illnesses, we reviewed the literature on the physical roles and functions of various subsets of γδ T cells, including type 1 T helper (Th1)-like, type 2 T helper- (Th2)-like, and type 17 T helper (Th17)-like γδ T cells. Mouse Vγ1 T cells increase interleukin (IL)-4 levels and trigger B cell class switching and immunoglobulin E production. Meanwhile, mouse Vγ4 T cells and human CD8lowVδ1 T cells secrete interferon-γ and exert an anti-allergy effect similar to that of Th1 cells. Moreover, mouse Vγ6 T cells produce IL-17A, while Th17-like γδ T cells enhance neutrophil and eosinophil infiltration in the acute phase of inflammation, but exert anti-inflammatory effects in the chronic phase. Human Vγ9δ2 T cells may exhibit Th1- or Th2-like characteristics in response to certain types of stimulation. In addition, the microbiota can modulate epithelial γδ T cell survival through aryl hydrocarbon receptors; these γδ T cells play crucial roles in the repair of epithelial damage, antibacterial protection, antigen tolerance, and effects of dysbiosis on allergic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaiko GE, Horvat JC, Beagley KW, Hansbro PM (2008) Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 123(3):326–338. https://doi.org/10.1111/j.1365-2567.2007.02719.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robinson DS (2010) The role of the T cell in asthma. J Allergy Clin Immunol 126(6):1081–1091; quiz 1092–1083. https://doi.org/10.1016/j.jaci.2010.06.025

  3. Vatrella A, Fabozzi I, Calabrese C, Maselli R, Pelaia G (2014) Dupilumab: a novel treatment for asthma. J Asthma Allergy 7:123–130. https://doi.org/10.2147/jaa.S52387

    Article  PubMed  PubMed Central  Google Scholar 

  4. McKenzie AN (2014) Type-2 innate lymphoid cells in asthma and allergy. Ann Am Thorac Soc 11(Suppl 5):S263–270. https://doi.org/10.1513/AnnalsATS.201403-097AW

  5. Licona-Limón P, Kim LK, Palm NW, Flavell RA (2013) TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14(6):536–542. https://doi.org/10.1038/ni.2617

    Article  CAS  PubMed  Google Scholar 

  6. Wakashin H, Hirose K, Iwamoto I, Nakajima H (2009) Role of IL-23-Th17 cell axis in allergic airway inflammation. Int Arch Allergy Immunol 149(Suppl 1):108–112. https://doi.org/10.1159/000211382

    Article  CAS  PubMed  Google Scholar 

  7. Reyes NJ, Saban DR (2014) T helper subsets in allergic eye disease. Curr Opin Allergy Clin Immunol 14(5):477–484. https://doi.org/10.1097/aci.0000000000000088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng R, Yang Q (2014) The role of the gamma delta T cell in allergic diseases. J Immunol Res 2014:963484. https://doi.org/10.1155/2014/963484

  9. Dar AA, Patil RS, Chiplunkar SV (2014) Insights into the relationship between Toll like receptors and gamma delta T cell responses. Front Immunol 5:366. https://doi.org/10.3389/fimmu.2014.00366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shiromizu CM, Jancic CC (2018) Gammadelta T lymphocytes: an effector cell in autoimmunity and infection. Front Immunol 9:2389. https://doi.org/10.3389/fimmu.2018.02389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hamzaoui A, Kahan A, Ayed K, Hamzaoui K (2002) T cells expressing the gammadelta receptor are essential for Th2-mediated inflammation in patients with acute exacerbation of asthma. Mediators Inflamm 11(2):113–119. https://doi.org/10.1080/09629350220131971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ribot JC, Lopes N, Silva-Santos B (2020) Gammadelta T cells in tissue physiology and surveillance. Nat Rev Immunol. https://doi.org/10.1038/s41577-020-00452-4

    Article  PubMed  Google Scholar 

  13. Pang DJ, Neves JF, Sumaria N, Pennington DJ (2012) Understanding the complexity of gammadelta T-cell subsets in mouse and human. Immunol 136(3):283–290. https://doi.org/10.1111/j.1365-2567.2012.03582.x

    Article  CAS  Google Scholar 

  14. Kabelitz D, Marischen L, Oberg HH, Holtmeier W, Wesch D (2005) Epithelial defence by γδ T cells. Int Arch Allergy Immunol 137(1):73–81. https://doi.org/10.1159/000085107

    Article  CAS  PubMed  Google Scholar 

  15. Pauza CD, Liou M-L, Lahusen T, Xiao L, Lapidus RG, Cairo C, Li H (2018) Gamma delta T cell therapy for cancer: it is good to be local. Front Immunol 9(1305). https://doi.org/10.3389/fimmu.2018.01305

  16. Wands JM, Roark CL, Aydintug MK, Jin N, Hahn YS, Cook L, Yin X, Dal Porto J, Lahn M, Hyde DM et al (2005) Distribution and leukocyte contacts of gammadelta T cells in the lung. J Leukoc Biol 78(5):1086–1096. https://doi.org/10.1189/jlb.0505244

    Article  CAS  PubMed  Google Scholar 

  17. Krug N, Erpenbeck JV, Balke K, Petschallies J, Tschernig T, Hohlfeld JM, Fabel H (2001) Cytokine profile of bronchoalveolar lavage–derived CD4, CD8, and T cells in people with asthma after segmental allergen challenge. Am J Respir Cell Mol Biol 25:125–131. https://doi.org/10.1165/ajrcmb.25.1.4194

    Article  CAS  PubMed  Google Scholar 

  18. Glanville N, Message SD, Walton RP, Pearson RM, Parker HL, Laza-Stanca V, Mallia P, Kebadze T, Contoli M, Kon OM et al (2013) GammadeltaT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol 6(6):1091–1100. https://doi.org/10.1038/mi.2013.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Russano AM, Agea E, Corazzi L, Postle AD, De Libero G, Porcelli S, de Benedictis FM, Spinozzi F (2006) Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1d-restricted gamma delta T cells. J Allergy Clin Immunol 117(5):1178–1184. https://doi.org/10.1016/j.jaci.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  20. Yang LY, Li X, Li WT, Huang JC, Wang ZY, Huang ZZ, Chang LH, Zhang GH (2017) Vgamma1(+) gammadeltaT cells are correlated with increasing expression of eosinophil cationic protein and metalloproteinase-7 in chronic rhinosinusitis with nasal polyps inducing the formation of edema. Allergy Asthma Immunol Res 9(2):142–151. https://doi.org/10.4168/aair.2017.9.2.142

    Article  CAS  PubMed  Google Scholar 

  21. Reyes NJ, Mayhew E, Chen PW, Niederkorn JY (2011) gammadelta T cells are required for maximal expression of allergic conjunctivitis. Invest Ophthalmol Vis Sci 52(5):2211–2216. https://doi.org/10.1167/iovs.10-5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mengel J, Cardillo F, Aroeira LS, Williams O, Russo M, Vaz NM (1995) Anti-gamma delta T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol Lett 48(2):97–102

    Article  CAS  PubMed  Google Scholar 

  23. Bol-Schoenmakers M, Marcondes Rezende M, Bleumink R, Boon L, Man S, Hassing I, Fiechter D, Pieters RH, Smit JJ (2011) Regulation by intestinal gammadelta T cells during establishment of food allergic sensitization in mice. Allergy 66(3):331–340. https://doi.org/10.1111/j.1398-9995.2010.02479.x

    Article  CAS  PubMed  Google Scholar 

  24. Hayday AC, Vantourout P (2020) The innate biologies of adaptive antigen receptors. Annu Rev Immunol 38:487–510. https://doi.org/10.1146/annurev-immunol-102819-023144

    Article  CAS  PubMed  Google Scholar 

  25. Abeler-Dörner L, Swamy M, Williams G, Hayday AC, Bas A (2012) Butyrophilins: an emerging family of immune regulators. Trends Immunol 33(1):34–41. https://doi.org/10.1016/j.it.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  26. Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, Hayday AC, Tigelaar RE, Lifton RP (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40(5):656–662. https://doi.org/10.1038/ng.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sutoh Y, Mohamed RH, Kasahara M (2018) Origin and evolution of dendritic epidermal T cells. Front Immunol 9:1059. https://doi.org/10.3389/fimmu.2018.01059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML et al (2016) Epithelia use butyrophilin-like molecules to shape organ-specific gammadelta T cell compartments. Cell 167(1):203–218 e217. https://doi.org/10.1016/j.cell.2016.08.030

  29. Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A, Nussbaumer O, Polyakova O, Roberts NA, Wesch D, Kabelitz D et al (2018) The gammadeltaTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat Immunol 19(12):1352–1365. https://doi.org/10.1038/s41590-018-0253-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Willcox CR, Vantourout P, Salim M, Zlatareva I, Melandri D, Zanardo L, George R, Kjaer S, Jeeves M, Mohammed F et al (2019) Butyrophilin-like 3 Directly binds a human Vγ4(+) T cell receptor using a modality distinct from clonally-restricted antigen. Immunity 51(5):813–825.e814. https://doi.org/10.1016/j.immuni.2019.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharp LL, Jameson JM, Cauvi G, Havran WL (2005) Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol 6(1):73–79. https://doi.org/10.1038/ni1152

    Article  CAS  PubMed  Google Scholar 

  32. Strid J, Sobolev O, Zafirova B, Polic B, Hayday A (2011) The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Sci 334(6060):1293–1297. https://doi.org/10.1126/science.1211250

    Article  CAS  Google Scholar 

  33. Strid J, Roberts SJ, Filler RB, Lewis JM, Kwong BY, Schpero W, Kaplan DH, Hayday AC, Girardi M (2008) Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat Immunol 9(2):146–154. https://doi.org/10.1038/ni1556

    Article  CAS  PubMed  Google Scholar 

  34. Toulon A, Breton L, Taylor KR, Tenenhaus M, Bhavsar D, Lanigan C, Rudolph R, Jameson J, Havran WL (2009) A role for human skin-resident T cells in wound healing. J Exp Med 206(4):743–750. https://doi.org/10.1084/jem.20081787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H (1995) Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature (London) 373(6511):255–257

    Article  CAS  PubMed  Google Scholar 

  36. Wesch D, Glatzel A, Kabelitz D (2001) Differentiation of resting human peripheral blood gamma delta T cells toward Th1- or Th2-phenotype. Cell Immunol 212(2):110–117. https://doi.org/10.1006/cimm.2001.1850

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Liu J, Wang E, Wang B, Zeng S, Wu J, Kimura Y, Liu B (2013) Respiratory syncytial virus protects against the subsequent development of ovalbumin-induced allergic responses by inhibiting Th2-type gammadelta T cells. J Med Virol 85(1):149–156. https://doi.org/10.1002/jmv.23435

    Article  CAS  PubMed  Google Scholar 

  38. Jin N, Miyahara N, Roark CL, French JD, Aydintug MK, Matsuda JL, Gapin L, O’Brien RL, Gelfand EW, Born WK (2007) Airway hyperresponsiveness through synergy of gammadelta} T cells and NKT cells. J Immunol 179(5):2961–2968. https://doi.org/10.4049/jimmunol.179.5.2961

    Article  CAS  PubMed  Google Scholar 

  39. Hahn YS, Ji XY, Woo SI, Choi YK, Song MS, Shin KS, Jin N, O’Brien RL, Born WK (2008) Vgamma1+ gammadelta T cells reduce IL-10-producing CD4+CD25+ T cells in the lung of ovalbumin-sensitized and challenged mice. Immunol Lett 121(2):87–92. https://doi.org/10.1016/j.imlet.2008.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwarze J, O’Brien R, Kanehir o A, Joetham A, Gelfand EW, Köhler G, Lahn M, Takeda K, Born W, (1999) Negative regulation of airway responsiveness that is dependent on γδ T cells and independent of αβ T cells. Nat Med 5(10):1150–1156. https://doi.org/10.1038/13476

    Article  CAS  PubMed  Google Scholar 

  41. Murdoch JR, Gregory LG, Lloyd CM (2014) gammadeltaT cells regulate chronic airway inflammation and development of airway remodelling. Clin Exp Allergy 44(11):1386–1398. https://doi.org/10.1111/cea.12395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spinozzi F, Agea E, Bistoni O, Forenza N, Monaco A, Falini B, Bassotti G, De Benedictis F, Grignani F, Bertotto A (1995) Local expansion of allergen-specific CD30+Th2-type gamma delta T cells in bronchial asthma. Mol Med 1(7):821–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Claudia Z-A, Claude R, Solomon H, Vargaftig BB, Pablo P, Marina P (1998) Requirement for γδ T cells in allergic airway inflammation. Proc Am Assoc Adv Sci 280(5367):1265–1267

    Google Scholar 

  44. Felices M, Yin CC, Kosaka Y, Kang J, Berg LJ (2009) Tec kinase Itk in gammadeltaT cells is pivotal for controlling IgE production in vivo. Proceedings of the National Academy of Sciences - PNAS 106(20):8308–8313. https://doi.org/10.1073/pnas.0808459106

    Article  Google Scholar 

  45. Dong P, Zhang S, Cai M, Kang N, Hu Y, Cui L, Zhang J, He W (2014) Global characterization of differential gene expression profiles in mouse Vγ1+ and Vγ4+ γδ T cells. PLoS One 9(11):e112964. https://doi.org/10.1371/journal.pone.0112964

  46. Horner AA, Jabara H, Ramesh N, Geha RS (1995) Gamma/delta T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes. J Exp Med 181(3):1239–1244. https://doi.org/10.1084/jem.181.3.1239

    Article  CAS  PubMed  Google Scholar 

  47. Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, O’Brien RL, Born WK (2009) The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. J Immunol 183(2):849–855. https://doi.org/10.4049/jimmunol.0804104

    Article  CAS  PubMed  Google Scholar 

  48. Svensson L, Lilliehöök B, Larsson R, Bucht A (2003) Gammadelta T cells contribute to the systemic immunoglobulin E response and local B-cell reactivity in allergic eosinophilic airway inflammation. Immunology 108(1):98–108. https://doi.org/10.1046/j.1365-2567.2003.01561.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao Y, Yang J, Gao YD (2011) Altered expressions of helper T cell (Th)1, Th2, and Th17 cytokines in CD8(+) and gammadelta T cells in patients with allergic asthma. J Asthma 48(5):429–436. https://doi.org/10.3109/02770903.2011.570403

    Article  CAS  PubMed  Google Scholar 

  50. Xuekun H, Qintai Y, Yulian C, Gehua Z (2014) Correlation of gammadelta-T-cells, Th17 cells and IL-17 in peripheral blood of patients with allergic rhinitis. Asian Pac J Allergy Immunol 32(3):235–239. https://doi.org/10.12932/AP0432.32.3.2014

  51. Kohlgruber AC, Gal-Oz ST, LaMarche NM, Shimazaki M, Duquette D, Koay HF, Nguyen HN, Mina AI, Paras T, Tavakkoli A et al (2018) gammadelta T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat Immunol 19(5):464–474. https://doi.org/10.1038/s41590-018-0094-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, Girardi M, Borst J, Hayday AC, Pennington DJ et al (2009) CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 10(4):427–436. https://doi.org/10.1038/ni.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Serre K, Silva-Santos B (2013) Molecular mechanisms of differentiation of murine pro-inflammatory γδ T cell subsets. Front Immunol 4:431. https://doi.org/10.3389/fimmu.2013.00431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McMenamin C, Pimm C, McKersey M, Holt PG (1994) Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science (American Association for the Advancement of Science) 265(5180):1869–1871. https://doi.org/10.1126/science.7916481

    Article  CAS  Google Scholar 

  55. McMenamin C, McKersey M, Kuhnlein P, Hunig T (1950) Holt PG (1995) Gamma delta T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens. J Immunol 154(9):4390–4394

    Article  Google Scholar 

  56. Bank I, Reshef A, Beniaminov M, Rosenthal E, Rechavi G, Monselise Y (1998) Role of gammadelta T cells in a patient with CD4+CD3-lymphocytosis, hypereosinophilia, and high levels of IgE. Basic and clinical immunology. https://doi.org/10.1016/s0091-6749(98)70279-9

    Article  Google Scholar 

  57. Hacker G, Kromer S, Falk M, Heeg K, Wagner H, Pfeffer K (1992) V delta 1+ subset of human gamma delta T cells responds to ligands expressed by EBV-infected Burkitt lymphoma cells and transformed B lymphocytes. J Immunol (1950) 149(12):3984–3989

    Article  CAS  Google Scholar 

  58. Papotto PH, Yilmaz B, Silva-Santos B (2021) Crosstalk between γδ T cells and the microbiota. Nat Microbiol 6(9):1110–1117. https://doi.org/10.1038/s41564-021-00948-2

    Article  CAS  PubMed  Google Scholar 

  59. Faustino LD, Griffith JW, Rahimi RA, Nepal K, Hamilos DL, Cho JL, Medoff BD, Moon JJ, Vignali DAA, Luster AD (2020) Interleukin-33 activates regulatory T cells to suppress innate gammadelta T cell responses in the lung. Nat Immunol 21(11):1371–1383. https://doi.org/10.1038/s41590-020-0785-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang C, Kwon DI, Kim M, Im SH, Lee YJ (2021) Commensal microbiome expands Tγδ17 cells in the lung and promotes particulate matter-induced acute neutrophilia. Front Immunol 12:645741. https://doi.org/10.3389/fimmu.2021.645741

  61. Costa MF, Bornstein VU, Candea AL, Henriques-Pons A, Henriques MG, Penido C (2012) CCL25 induces alpha(4)beta(7) integrin-dependent migration of IL-17(+) gammadelta T lymphocytes during an allergic reaction. Eur J Immunol 42(5):1250–1260. https://doi.org/10.1002/eji.201142021

    Article  CAS  PubMed  Google Scholar 

  62. Van Dyken SJ, Mohapatra A, Nussbaum JC, Molofsky AB, Thornton EE, Ziegler SF, McKenzie AN, Krummel MF, Liang HE, Locksley RM (2014) Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and gammadelta T cells. Immunity 40(3):414–424. https://doi.org/10.1016/j.immuni.2014.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murdoch JR, Lloyd CM (2010) Resolution of allergic airway inflammation and airway hyperreactivity is mediated by IL-17-producing {gamma}{delta}T cells. Am J Respir Crit Care Med 182(4):464–476. https://doi.org/10.1164/rccm.200911-1775OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakada EM, Shan J, Kinyanjui MW, Fixman ED (2014) Adjuvant-dependent regulation of interleukin-17 expressing γδ T cells and inhibition of Th2 responses in allergic airways disease. Respir Res 15(1):90–90. https://doi.org/10.1186/s12931-014-0090-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Griesenauer B, Paczesny S (2017) The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.00475

  66. Thompson-Chagoyan OC, Vieites JM, Maldonado J, Edwards C, Gil A (2010) Changes in faecal microbiota of infants with cow’s milk protein allergy–a Spanish prospective case-control 6-month follow-up study. Pediatr Allergy Immunol 21(2 Pt 2):e394–400. https://doi.org/10.1111/j.1399-3038.2009.00961.x

    Article  PubMed  Google Scholar 

  67. Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, Calignano A, Khan AA, Gilbert JA, Nagler CR (2016) Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J 10(3):742–750. https://doi.org/10.1038/ismej.2015.151

    Article  CAS  PubMed  Google Scholar 

  68. Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, Jones SM, Leung DYM, Sampson H, Sicherer S et al (2016) Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol 138(4):1122–1130. https://doi.org/10.1016/j.jaci.2016.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rachid R, Stephen-Victor E, Chatila TA (2021) The microbial origins of food allergy. J Allergy Clin Immunol 147(3):808–813. https://doi.org/10.1016/j.jaci.2020.12.624

    Article  CAS  PubMed  Google Scholar 

  70. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147(3):629–640. https://doi.org/10.1016/j.cell.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Z, Pu A, Yu M, Xiao W, Sun L, Cai Y, Yang H (2019) Aryl hydrocarbon receptor activation modulates γδ intestinal intraepithelial lymphocytes and protects against ischemia/reperfusion injury in the murine small intestine. Mol Med Rep 19(3):1840–1848. https://doi.org/10.3892/mmr.2019.9823

    Article  CAS  PubMed  Google Scholar 

  72. Lamas B, Natividad JM, Sokol H (2018) Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 11(4):1024–1038. https://doi.org/10.1038/s41385-018-0019-2

    Article  CAS  PubMed  Google Scholar 

  73. Ismail AS, Behrendt CL, Hooper LV (2009) Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol 182(5):3047–3054. https://doi.org/10.4049/jimmunol.0802705

    Article  CAS  PubMed  Google Scholar 

  74. Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL, Ruhn KA, Hou B, DeFranco AL, Yarovinsky F et al (2011) Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci U S A 108(21):8743–8748. https://doi.org/10.1073/pnas.1019574108

    Article  PubMed  PubMed Central  Google Scholar 

  75. Julie J, Karen U, Nicole C, Pia Y, Elaine F, Richard B, Wendy LH (2002) A role for skin γδ T cells in wound repair. Science (American Association for the Advancement of Science) 296(5568):747–749

    Article  Google Scholar 

  76. Boismenu R, Havran WL (1994) Modulation of epithelial cell growth by intraepithelial γδ T cells. Science (American Association for the Advancement of Science) 266(5188):1253–1255

    Article  CAS  Google Scholar 

  77. Yang H, Antony PA, Wildhaber BE, Teitelbaum DH (2004) Intestinal intraepithelial lymphocyte gamma delta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol 172(7):4151–4158. https://doi.org/10.4049/jimmunol.172.7.4151

    Article  CAS  PubMed  Google Scholar 

  78. Yaping C, Kevin C, Elaine F, Wendy LH, Richard B (2002) Protection of the intestinal mucosa by intraepithelial γδ T cells. Proceedings of the National Academy of Sciences - PNAS 99(22):14338–14343. https://doi.org/10.1073/pnas.212290499

    Article  CAS  Google Scholar 

  79. Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C et al (2021) Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep 36(1):109332. https://doi.org/10.1016/j.celrep.2021.109332

  80. Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas A-K, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of ( E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett 509(2):317–322. https://doi.org/10.1016/S0014-5793(01)03191-X

    Article  CAS  PubMed  Google Scholar 

  81. Eberl M, Hintz M, Reichenberg A, Kollas A-K, Wiesner J, Jomaa H (2003) Microbial isoprenoid biosynthesis and human γδ T cell activation. FEBS Lett 544(1–3):4–10. https://doi.org/10.1016/s0014-5793(03)00483-6

    Article  CAS  PubMed  Google Scholar 

  82. Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B (2009) A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 5(2):e1000308. https://doi.org/10.1371/journal.ppat.1000308

  83. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L et al (2010) Disordered microbial communities in asthmatic airways. PLoS One 5(1):e8578. https://doi.org/10.1371/journal.pone.0008578

  84. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD (2013) Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 131(2):346–352 e341–343. https://doi.org/10.1016/j.jaci.2012.11.013

  85. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bønnelykke K, Brasholt M, Heltberg A, Vissing NH, Thorsen SV et al (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357(15):1487–1495. https://doi.org/10.1056/NEJMoa052632

    Article  CAS  PubMed  Google Scholar 

  86. He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J (2017) Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 43(1):81–95. https://doi.org/10.1080/1040841X.2016.1176988

    Article  CAS  PubMed  Google Scholar 

  87. Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, Schiavi E, Barcik W, Rodriguez-Perez N, Wawrzyniak M et al (2019) High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74(4):799–809. https://doi.org/10.1111/all.13660

    Article  CAS  PubMed  Google Scholar 

  88. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sokolowska M, Frei R, Lunjani N, Akdis CA, O’Mahony L (2018) Microbiome and asthma. Asthma Research and Practice 4(1):1. https://doi.org/10.1186/s40733-017-0037-y

    Article  PubMed  PubMed Central  Google Scholar 

  90. Barcik W, Boutin RCT, Sokolowska M, Finlay BB (2020) The role of lung and gut microbiota in the pathology of asthma. Immunity 52(2):241–255. https://doi.org/10.1016/j.immuni.2020.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sze MA, Tsuruta M, Yang SW, Oh Y, Man SF, Hogg JC, Sin DD (2014) Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One 9(10):e111228. https://doi.org/10.1371/journal.pone.0111228

  92. Perrone EE, Jung E, Breed E, Dominguez JA, Liang Z, Clark AT, Dunne WM, Burd EM, Coopersmith CM (2012) Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis. Shock 38(1):68–75. https://doi.org/10.1097/SHK.0b013e318259abdb

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Williams MR, Gallo RL (2015) The role of the skin microbiome in atopic dermatitis. Curr Allergy Asthma Rep 15(11):65. https://doi.org/10.1007/s11882-015-0567-4

    Article  CAS  PubMed  Google Scholar 

  94. Nakatsuji T, Gallo RL (2019) The role of the skin microbiome in atopic dermatitis. Ann Allergy Asthma Immunol 122(3):263–269. https://doi.org/10.1016/j.anai.2018.12.003

    Article  PubMed  Google Scholar 

  95. Huang YJ, Marsland BJ, Bunyavanich S, O’Mahony L, Leung DY, Muraro A, Fleisher TA (2017) The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol 139(4):1099–1110. https://doi.org/10.1016/j.jaci.2017.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tauber M, Balica S, Hsu CY, Jean-Decoster C, Lauze C, Redoules D, Viode C, Schmitt AM, Serre G, Simon M et al (2016) Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol 137(4):1272–1274 e1273. https://doi.org/10.1016/j.jaci.2015.07.052

  97. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Program NCS et al (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22(5):850–859. https://doi.org/10.1101/gr.131029.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Myles IA, Earland NJ, Anderson ED, Moore IN, Kieh MD, Williams KW, Saleem A, Fontecilla NM, Welch PA, Darnell DA et al (2018) First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight 3(9). https://doi.org/10.1172/jci.insight.120608

  99. Paharik AE, Parlet CP, Chung N, Todd DA, Rodriguez EI, Van Dyke MJ, Cech NB, Horswill AR (2017) Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22(6):746–756 e745. https://doi.org/10.1016/j.chom.2017.11.001

  100. Volz T, Skabytska Y, Guenova E, Chen KM, Frick JS, Kirschning CJ, Kaesler S, Rocken M, Biedermann T (2014) Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J Invest Dermatol 134(1):96–104. https://doi.org/10.1038/jid.2013.291

    Article  CAS  PubMed  Google Scholar 

  101. Jones AL, Curran-Everett D, Leung DYM (2016) Food allergy is associated with Staphylococcus aureus colonization in children with atopic dermatitis. J Allergy Clin Immunol 137(4):1247–1248 e1243. https://doi.org/10.1016/j.jaci.2016.01.010

  102. Merches K, Schiavi A, Weighardt H, Steinwachs S, Teichweyde N, Förster I, Hochrath K, Schumak B, Ventura N, Petzsch P et al (2020) AHR signaling dampens inflammatory signature in neonatal skin γδ T cells. Int J Mol Sci 21(6):2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jee MH, Mraz V, Geisler C, Bonefeld CM (2020) Gammadelta T cells and inflammatory skin diseases. Immunol Rev 298(1):61–73. https://doi.org/10.1111/imr.12913

    Article  CAS  PubMed  Google Scholar 

  104. Spidale NA, Malhotra N, Frascoli M, Sylvia K, Miu B, Freeman C, Stadinski BD, Huseby E, Kang J (2020) Neonatal-derived IL-17 producing dermal γδ T cells are required to prevent spontaneous atopic dermatitis. Elife 9. https://doi.org/10.7554/eLife.51188

  105. De Libero G, Lau S-Y, Mori L (2015) Phosphoantigen presentation to TCR γδ cells, a conundrum getting less gray zones. Front Immunol 5:679–679. https://doi.org/10.3389/fimmu.2014.00679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yazdanifar M, Barbarito G, Bertaina A, Airoldi I (2020) γδ T cells: the ideal tool for cancer immunotherapy. Cells 9(5). https://doi.org/10.3390/cells9051305

  107. Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S (2020) Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 17(9):925–939. https://doi.org/10.1038/s41423-020-0504-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/ht79V9.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in drafting and revising the article and approved the final version.

Corresponding author

Correspondence to Bor-Luen Chiang.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any author.

Competing Interests

The corresponding author Prof. Bor-Luen Chiang also serves as an editorial board member of Clinical Reviews in Allergy & Immunology. There was no other conflicting interest of the authors to declare relevant to this article’s content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, UH., Chiang, BL. γδ T Cells and Allergic Diseases. Clinic Rev Allerg Immunol 65, 172–182 (2023). https://doi.org/10.1007/s12016-023-08966-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-023-08966-0

Keywords

Navigation