Skip to main content

Advertisement

Log in

Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

α-MSH:

Alpha-melanocyte-stimulating hormone

ACR-CRISS:

American College of Rheumatology Composite Response Index for Clinical Trials in Early Diffuse Cutaneous Systemic Sclerosis

FDA:

American Food & Drug Administration

BAFF:

B cell-activating factor

BLyS:

B Lymphocyte Stimulator

BTK:

Bruton’s tyrosine kinase

CRP:

C-reactive protein

CCR3:

C-C chemokine receptor type 3

CTGF:

Connective tissue growth factor

cGMP:

Cyclic guanosine monophosphate

CYC:

Cyclophosphamide

dcSSc:

Diffuse cutaneous systemic sclerosis

DLco:

Diffusing lung capacity of carbon monoxide

EndoMT:

Endothelial to mesenchymal transition

EMT:

Epithelial to mesenchymal transition

EUSTAR:

European Scleroderma Trials and Research group

ECM:

Extracellular matrix

FGF:

Fibroblast growth factor

FVC:

Forced vital capacity

HAQ-DI:

Health assessment questionnaire-quality index

IL-6:

Interleukin 6

ILD:

Interstitial lung disease

IVIg:

Intravenous Immunoglobulins

JAK:

Janus kinase

LcSSc:

Limited cutaneous systemic sclerosis

mRSS:

Modified Rodnan total Skin thickness Score

MMF:

Mycophenolate mofetil

PROs:

Patient reported outcomes

PDGF:

Platelet-derived growth factor

PKG:

Protein kinase G

PAH:

Pulmonary arterial hypertension

RCT:

Randomized controlled trial

SLS-I:

Scleroderma Lung Study I

SLS-II:

Scleroderma Lung Study II

SRC:

Scleroderma renal crisis

sGC:

Soluble guanylate cyclase

SSc:

Systemic sclerosis

TLR:

Toll-like receptor

TGF-β:

Transforming growth factor-β

UCLA GIT 2.0:

University of California Los Angeles Scleroderma Clinical Trials Consortium gastrointestinal tract 2.0

VEGF:

Vascular endothelial growth factor

References

  1. Denton CP, Khanna D (2017) Systemic sclerosis. The Lancet 390:1685–1699. https://doi.org/10.1016/S0140-6736(17)30933-9

    Article  Google Scholar 

  2. Allanore Y, Simms R, Distler O et al (2015) Systemic sclerosis. Nat Rev Dis Primers 1:15002. https://doi.org/10.1038/nrdp.2015.2

    Article  PubMed  Google Scholar 

  3. Lescoat A, Coiffier G, de Carlan M et al (2018) Combination of capillaroscopic and ultrasonographic evaluations in systemic sclerosis: results of a cross-sectional study. Arthritis Care Res (Hoboken) 70:938–943. https://doi.org/10.1002/acr.23413

    Article  PubMed  Google Scholar 

  4. Denton CP, Lapadula G, Mouthon L, Müller-Ladner U (2009) Renal complications and scleroderma renal crisis. Rheumatology (Oxford) 48(Suppl 3):iii32–iii35. https://doi.org/10.1093/rheumatology/ken483

  5. Nihtyanova SI, Sari A, Harvey JC et al (2020) Using autoantibodies and cutaneous subset to develop outcome-based disease classification in systemic sclerosis. Arthritis Rheumatol 72:465–476. https://doi.org/10.1002/art.41153

    Article  CAS  PubMed  Google Scholar 

  6. Lescoat A, Cavalin C, Ehrlich R et al (2019) The nosology of systemic sclerosis: how lessons from the past offer new challenges in reframing an idiopathic rheumatological disorder. The Lancet Rheumatology 1:e257–e264. https://doi.org/10.1016/S2665-9913(19)30038-4

    Article  Google Scholar 

  7. LeRoy EC, Black C, Fleischmajer R et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    CAS  PubMed  Google Scholar 

  8. Frantz C, Avouac J, Distler O et al (2016) Impaired quality of life in systemic sclerosis and patient perception of the disease: a large international survey. Semin Arthritis Rheum 46:115–123. https://doi.org/10.1016/j.semarthrit.2016.02.005

    Article  PubMed  Google Scholar 

  9. Lescoat A, Ballerie A, Belhomme N et al (2018) Synovial involvement assessed by power Doppler ultra-sonography in systemic sclerosis: results of a cross-sectional study. Rheumatology (Oxford) 57:2012–2021. https://doi.org/10.1093/rheumatology/key214

    Article  PubMed  Google Scholar 

  10. Heijnen IAFM, Foocharoen C, Bannert B et al (2013) Clinical significance of coexisting antitopoisomerase I and anticentromere antibodies in patients with systemic sclerosis: a EUSTAR group-based study. Clin Exp Rheumatol 31:96–102

    PubMed  Google Scholar 

  11. Clark KEN, Campochiaro C, Csomor E et al (2021) Molecular basis for clinical diversity between autoantibody subsets in diffuse cutaneous systemic sclerosis. Ann Rheum Dis annrheumdis-2021–220402. https://doi.org/10.1136/annrheumdis-2021-220402

  12. Tashkin DP, Elashoff R, Clements PJ et al (2006) Cyclophosphamide versus Placebo in Scleroderma lung disease. N Engl J Med 354:2655–2666. https://doi.org/10.1056/NEJMoa055120

    Article  CAS  PubMed  Google Scholar 

  13. Tashkin DP, Roth MD, Clements PJ et al (2016) Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir Med 4:708–719. https://doi.org/10.1016/S2213-2600(16)30152-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roofeh D, Lescoat A, Khanna D (2020) Emerging drugs for the treatment of scleroderma: a review of recent phase 2 and 3 trials. Expert Opin Emerg Drugs 1–12. https://doi.org/10.1080/14728214.2020.1836156

  15. Pope JE (2020) The future of treatment in systemic sclerosis: can we design better trials? Lancet Rheumatol 2:e185–e194. https://doi.org/10.1016/S2665-9913(20)30010-2

    Article  Google Scholar 

  16. van den Hoogen F, Khanna D, Fransen J et al (2013) 2013 Classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative: ACR/EULAR classification criteria for SSc. Arthritis Rheum 65:2737–2747. https://doi.org/10.1002/art.38098

    Article  PubMed  PubMed Central  Google Scholar 

  17. Distler O, Highland KB, Gahlemann M et al (2019) Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med 380:2518–2528. https://doi.org/10.1056/NEJMoa1903076

    Article  CAS  PubMed  Google Scholar 

  18. Khanna D, Denton CP, Jahreis A et al (2016) Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387:2630–2640. https://doi.org/10.1016/S0140-6736(16)00232-4

    Article  CAS  PubMed  Google Scholar 

  19. Khanna D, Lin CJF, Furst DE et al (2020) Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med 8:963–974. https://doi.org/10.1016/S2213-2600(20)30318-0

    Article  CAS  PubMed  Google Scholar 

  20. Roofeh D, Lescoat A, Khanna D (2021) Treatment for systemic sclerosis-associated interstitial lung disease. Curr Opin Rheumatol 33:240–248. https://doi.org/10.1097/BOR.0000000000000795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuwana M, Distler O (2020) Recent progress and missing gaps to achieve goal in the care of systemic sclerosis–associated interstitial lung disease. J Scleroderma Relat Disord 5:3–5. https://doi.org/10.1177/2397198320902551

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khanna D, Lescoat A, Roofeh D et al (2021) Systemic sclerosis-associated interstitial lung disease: how to incorporate two food and drug administration-approved therapies in clinical practice. Arthritis Rheumatol. https://doi.org/10.1002/art.41933

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kuwana M, Okazaki Y (2012) Quantification of circulating endothelial progenitor cells in systemic sclerosis: a direct comparison of protocols. Ann Rheum Dis 71:617–620. https://doi.org/10.1136/annrheumdis-2011-200713

    Article  PubMed  Google Scholar 

  24. Shirai Y, Okazaki Y, Inoue Y et al (2015) Elevated levels of pentraxin 3 in systemic sclerosis: associations with vascular manifestations and defective vasculogenesis. Arthritis Rheumatol 67:498–507. https://doi.org/10.1002/art.38953

    Article  CAS  PubMed  Google Scholar 

  25. Lescoat A, Ballerie A, Jouneau S et al (2019) M1/M2 polarisation state of M-CSF blood-derived macrophages in systemic sclerosis. Ann Rheum Dis 78:e127. https://doi.org/10.1136/annrheumdis-2018-214333

    Article  CAS  PubMed  Google Scholar 

  26. Lescoat A, Lecureur V, Roussel M et al (2017) CD16-positive circulating monocytes and fibrotic manifestations of systemic sclerosis. Clin Rheumatol 36:1649–1654. https://doi.org/10.1007/s10067-017-3597-6

    Article  PubMed  Google Scholar 

  27. Boleto G, Guignabert C, Pezet S et al (2018) T-cell costimulation blockade is effective in experimental digestive and lung tissue fibrosis. Arthritis Res Ther 20:197. https://doi.org/10.1186/s13075-018-1694-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567. https://doi.org/10.1172/JCI31139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lafyatis R (2014) Transforming growth factor β–at the centre of systemic sclerosis. Nat Rev Rheumatol 10:706–719. https://doi.org/10.1038/nrrheum.2014.137

    Article  CAS  PubMed  Google Scholar 

  30. Maehara T, Kaneko N, Perugino CA et al (2020) Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J Clin Invest 130:2451–2464. https://doi.org/10.1172/JCI131700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lescoat A, Yelnik CM, Coiffier G et al (2019) Ulnar artery occlusion and severity markers of vasculopathy in systemic sclerosis: a multicenter cross-sectional study. Arthritis Rheumatol (Hoboken, NJ) 71:983–990. https://doi.org/10.1002/art.40799

    Article  CAS  Google Scholar 

  32. Harris ML, Rosen A (2003) Autoimmunity in scleroderma: the origin, pathogenetic role, and clinical significance of autoantibodies. Curr Opin Rheumatol 15:778–784. https://doi.org/10.1097/00002281-200311000-00016

    Article  CAS  PubMed  Google Scholar 

  33. Raschi E, Privitera D, Bodio C et al (2020) Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: an early event in the pathogenesis of systemic sclerosis. Arthritis Res Ther 22:265. https://doi.org/10.1186/s13075-020-02360-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raschi E, Chighizola CB, Cesana L et al (2018) Immune complexes containing scleroderma-specific autoantibodies induce a profibrotic and proinflammatory phenotype in skin fibroblasts. Arthritis Res Ther 20:187. https://doi.org/10.1186/s13075-018-1689-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denton CP, Ong VH, Xu S et al (2018) Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Ann Rheum Dis 77:1362–1371. https://doi.org/10.1136/annrheumdis-2018-213031

    Article  CAS  PubMed  Google Scholar 

  36. Taher TE, Ong VH, Bystrom J et al (2018) Association of defective regulation of autoreactive interleukin-6-producing transitional B lymphocytes with disease in patients with systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ) 70:450–461. https://doi.org/10.1002/art.40390

    Article  CAS  Google Scholar 

  37. Juhl P, Bondesen S, Hawkins CL et al (2020) Dermal fibroblasts have different extracellular matrix profiles induced by TGF-β, PDGF and IL-6 in a model for skin fibrosis. Sci Rep 10:17300. https://doi.org/10.1038/s41598-020-74179-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Skaug B, Khanna D, Swindell WR et al (2020) Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann Rheum Dis 79:379–386. https://doi.org/10.1136/annrheumdis-2019-215894

    Article  CAS  PubMed  Google Scholar 

  39. Skaug B, Assassi S (2020) Type I interferon dysregulation in systemic sclerosis. Cytokine 132:154635. https://doi.org/10.1016/j.cyto.2018.12.018

    Article  CAS  PubMed  Google Scholar 

  40. Assassi S, Li N, Volkmann ER et al (2020) Predictive significance of serum interferon-inducible protein score for response to treatment in systemic sclerosis-related interstitial lung disease. Arthritis Rheumatol. https://doi.org/10.1002/art.41627

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ballerie A, Lescoat A, Augagneur Y et al (2019) Efferocytosis capacities of blood monocyte-derived macrophages in systemic sclerosis. Immunol Cell Biol 97:340–347. https://doi.org/10.1111/imcb.12217

    Article  CAS  PubMed  Google Scholar 

  42. Lescoat A, Ballerie A, Lelong M et al (2020) Crystalline silica impairs efferocytosis abilities of human and mouse macrophages: implication for silica-associated systemic sclerosis. Front Immunol 11:219. https://doi.org/10.3389/fimmu.2020.00219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhandari R, Ball MS, Martyanov V et al (2020) Pro-fibrotic activation of human macrophages in systemic sclerosis. Arthritis Rheumatol. https://doi.org/10.1002/art.41243

  44. Bellamri N, Morzadec C, Joannes A et al (2019) Alteration of human macrophage phenotypes by the anti-fibrotic drug nintedanib. Int Immunopharmacol 72:112–123. https://doi.org/10.1016/j.intimp.2019.03.061

    Article  CAS  PubMed  Google Scholar 

  45. Tabib T, Huang M, Morse N et al (2021) Myofibroblast transcriptome indicates SFRP2+ fibroblast progenitors in systemic sclerosis skin. bioRxiv 2021.04.30.442148. https://doi.org/10.1101/2021.04.30.442148

  46. Hinz B, Lagares D (2020) Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 16:11–31. https://doi.org/10.1038/s41584-019-0324-5

    Article  CAS  PubMed  Google Scholar 

  47. Bhattacharyya S, Wang W, Morales-Nebreda L et al (2016) Tenascin-C drives persistence of organ fibrosis. Nat Commun 7:11703. https://doi.org/10.1038/ncomms11703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou Y, Huang X, Hecker L et al (2013) Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest 123:1096–1108. https://doi.org/10.1172/JCI66700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lagares D, Busnadiego O, García-Fernández RA et al (2012) Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum 64:1653–1664. https://doi.org/10.1002/art.33482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chakraborty D, Šumová B, Mallano T et al (2017) Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun 8:1130. https://doi.org/10.1038/s41467-017-01236-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lescoat A, Varga J, Matucci-Cerinic M, Khanna D (2021) New promising drugs for the treatment of systemic sclerosis: Pathogenic considerations, enhanced classifications, and personalized medicine. Expert Opin Investig Drugs. https://doi.org/10.1080/13543784.2021.1923693

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roofeh D, Khanna D (2020) Management of systemic sclerosis: the first five years. Curr Opin Rheumatol 32:228–237. https://doi.org/10.1097/BOR.0000000000000711

    Article  PubMed  PubMed Central  Google Scholar 

  53. Elhai M, Meune C, Boubaya M et al (2017) Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis 76:1897–1905. https://doi.org/10.1136/annrheumdis-2017-211448

    Article  PubMed  Google Scholar 

  54. Bernstein EJ, Jaafar S, Assassi S et al (2020) Performance characteristics of pulmonary function tests for the detection of interstitial lung disease in adults with early diffuse cutaneous systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ). https://doi.org/10.1002/art.41415

  55. Distler O, Assassi S, Cottin V et al (2020) Predictors of progression in systemic sclerosis patients with interstitial lung disease. Eur Respir J 55. https://doi.org/10.1183/13993003.02026-2019

  56. Cottin V, Brown KK (2019) Interstitial lung disease associated with systemic sclerosis (SSc-ILD). Respir Res 20:13. https://doi.org/10.1186/s12931-019-0980-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hoffmann-Vold AM, Maher TM, Philpot EE et al (2021) Assessment of recent evidence for the management of patients with systemic sclerosis-associated interstitial lung disease: a systematic review. ERJ Open Res 7. https://doi.org/10.1183/23120541.00235-2020

  58. Roofeh D, Distler O, Allanore Y et al (2020) Treatment of systemic sclerosis–associated interstitial lung disease: lessons from clinical trials. J Scleroderma Relat Disord 5:61–71. https://doi.org/10.1177/2397198320903208

    Article  PubMed  PubMed Central  Google Scholar 

  59. Desallais L, Avouac J, Fréchet M et al (2014) Targeting IL-6 by both passive or active immunization strategies prevents bleomycin-induced skin fibrosis. Arthritis Res Ther 16:R157. https://doi.org/10.1186/ar4672

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mauer J, Chaurasia B, Goldau J et al (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430. https://doi.org/10.1038/ni.2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morse C, Tabib T, Sembrat J et al (2019) Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J 54. https://doi.org/10.1183/13993003.02441-2018

  62. Gao X, Jia G, Guttman A et al (2020) Osteopontin links myeloid activation and disease progression in systemic sclerosis. Cell Rep Med 1:100140. https://doi.org/10.1016/j.xcrm.2020.100140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roofeh D, Lin CJF, Goldin J et al (2021) Tocilizumab prevents progression of early systemic sclerosis associated interstitial lung disease. Arthritis Rheumatol. https://doi.org/10.1002/art.41668

    Article  PubMed  PubMed Central  Google Scholar 

  64. Denton CP, Khanna D (2021) Rational repurposing of tocilizumab for treatment of lung fibrosis in systemic sclerosis. Lancet Rheumatol 3:e321–e323. https://doi.org/10.1016/S2665-9913(21)00111-9

    Article  CAS  Google Scholar 

  65. Flaherty KR, Wells AU, Cottin V et al (2019) Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med 381:1718–1727. https://doi.org/10.1056/NEJMoa1908681

    Article  CAS  PubMed  Google Scholar 

  66. Suleman Y, Clark KEN, Cole AR et al (2021) Real-world experience of tocilizumab in systemic sclerosis: potential benefit on lung function for anti-topoisomerase-positive patients. Rheumatology (Oxford) 60:3945–3946. https://doi.org/10.1093/rheumatology/keab273

    Article  PubMed  Google Scholar 

  67. Volkmann ER (2020) Natural history of systemic sclerosis–related interstitial lung disease: how to identify a progressive fibrosing phenotype. J Scleroderma Relat Disord 5:31–40. https://doi.org/10.1177/2397198319889549

    Article  PubMed  Google Scholar 

  68. Lescoat A, Ballerie A, Augagneur Y et al (2018) Distinct properties of human M-CSF and GM-CSF monocyte-derived macrophages to simulate pathological lung conditions in vitro: application to systemic and inflammatory disorders with pulmonary involvement. Int J Mol Sci 19. https://doi.org/10.3390/ijms19030894

  69. Jaguin M, Fardel O, Lecureur V (2015) AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation. Toxicol Appl Pharmacol 285:170–178. https://doi.org/10.1016/j.taap.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  70. Matucci-Cerinic M, Kahaleh B, Wigley FM (2013) Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum 65:1953–1962. https://doi.org/10.1002/art.37988

    Article  CAS  PubMed  Google Scholar 

  71. Wollin L, Wex E, Pautsch A et al (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45:1434–1445. https://doi.org/10.1183/09031936.00174914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang J, Maier C, Zhang Y et al (2017) Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Ann Rheum Dis 76:1941–1948. https://doi.org/10.1136/annrheumdis-2016-210823

    Article  CAS  PubMed  Google Scholar 

  73. Richeldi L, Costabel U, Selman M et al (2011) Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med 365:1079–1087. https://doi.org/10.1056/NEJMoa1103690

    Article  CAS  PubMed  Google Scholar 

  74. Richeldi L, du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082. https://doi.org/10.1056/NEJMoa1402584

    Article  CAS  PubMed  Google Scholar 

  75. Volkmann ER, Tashkin DP, LeClair H et al (2020) Treatment with mycophenolate and cyclophosphamide leads to clinically meaningful improvements in patient-reported outcomes in scleroderma lung disease: results of scleroderma lung study II. ACR Open Rheumatol 2:362–370. https://doi.org/10.1002/acr2.11125

    Article  PubMed  PubMed Central  Google Scholar 

  76. Namas R, Tashkin DP, Furst DE et al (2018) Efficacy of mycophenolate mofetil and oral cyclophosphamide on skin thickness: post hoc analyses from two randomized placebo-controlled trials. Arthritis Care Res (Hoboken) 70:439–444. https://doi.org/10.1002/acr.23282

    Article  CAS  PubMed  Google Scholar 

  77. Goldin JG, Kim GHJ, Tseng C-H et al (2018) Longitudinal changes in quantitative interstitial lung disease on computed tomography after immunosuppression in the scleroderma lung study II. Ann Am Thorac Soc 15:1286–1295. https://doi.org/10.1513/AnnalsATS.201802-079OC

    Article  PubMed  PubMed Central  Google Scholar 

  78. Highland KB, Distler O, Kuwana M et al (2021) Efficacy and safety of nintedanib in patients with systemic sclerosis-associated interstitial lung disease treated with mycophenolate: a subgroup analysis of the SENSCIS trial. Lancet Respir Med 9:96–106. https://doi.org/10.1016/S2213-2600(20)30330-1

    Article  CAS  PubMed  Google Scholar 

  79. King TE, Bradford WZ, Castro-Bernardini S et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092. https://doi.org/10.1056/NEJMoa1402582

    Article  CAS  PubMed  Google Scholar 

  80. Hall CL, Wells AR, Leung KP (2018) Pirfenidone reduces profibrotic responses in human dermal myofibroblasts, in vitro. Lab Invest 98:640–655. https://doi.org/10.1038/s41374-017-0014-3

    Article  CAS  PubMed  Google Scholar 

  81. Khanna D, Albera C, Fischer A et al (2016) An open-label, phase II study of the safety and tolerability of pirfenidone in patients with scleroderma-associated interstitial lung disease: the LOTUSS Trial. J Rheumatol 43:1672–1679. https://doi.org/10.3899/jrheum.151322

    Article  PubMed  Google Scholar 

  82. Acharya N, Sharma SK, Mishra D et al (2020) Efficacy and safety of pirfenidone in systemic sclerosis-related interstitial lung disease-a randomised controlled trial. Rheumatol Int 40:703–710. https://doi.org/10.1007/s00296-020-04565-w

    Article  CAS  PubMed  Google Scholar 

  83. Behr J, Prasse A, Kreuter M et al (2021) Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 9:476–486. https://doi.org/10.1016/S2213-2600(20)30554-3

    Article  CAS  PubMed  Google Scholar 

  84. Fretheim H, Halse A-K, Seip M et al (2020) Multidimensional tracking of phenotypes and organ involvement in a complete nationwide systemic sclerosis cohort. Rheumatology keaa026. https://doi.org/10.1093/rheumatology/keaa026

  85. Khanna D, Allanore Y, Denton CP et al (2020) Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): randomised, double-blind, placebo-controlled multicentre trial. Ann Rheum Dis 79:618–625. https://doi.org/10.1136/annrheumdis-2019-216823

    Article  PubMed  Google Scholar 

  86. Khanna D, Spino C, Johnson S et al (2020) Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol 72:125–136. https://doi.org/10.1002/art.41055

    Article  CAS  PubMed  Google Scholar 

  87. Allanore Y, Wung P, Soubrane C et al (2020) A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Ann Rheum Dis 79:1600–1607. https://doi.org/10.1136/annrheumdis-2020-218447

    Article  CAS  PubMed  Google Scholar 

  88. Khanna D, Denton C, Furst D et al (2020) A phase 2a randomized, double-blind, placebo-controlled study of ziritaxestat in early diffuse cutaneous systemic sclerosis (NOVESA). Arthritis Rheumatol 72 (suppl 10)

  89. Khanna D, Berrocal VJ, Giannini EH et al (2016) The American College of rheumatology provisional composite response index for clinical trials in early diffuse cutaneous systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ) 68:299–311. https://doi.org/10.1002/art.39501

    Article  Google Scholar 

  90. Khanna D, Huang S, Lin CJF, Spino C (2020) New composite endpoint in early diffuse cutaneous systemic sclerosis: revisiting the provisional American college of rheumatology composite response index in systemic sclerosis. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-219100

    Article  PubMed  Google Scholar 

  91. Hasegawa M, Fujimoto M, Kikuchi K, Takehara K (1997) Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol 24:328–332

    CAS  PubMed  Google Scholar 

  92. Alim K, Bruyère A, Lescoat A et al (2021) Interactions of janus kinase inhibitors with drug transporters and consequences for pharmacokinetics and toxicity. Expert Opin Drug Metab Toxicol 1–13. https://doi.org/10.1080/17425255.2021.1862084

  93. Jaguin M, Houlbert N, Fardel O, Lecureur V (2013) Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 281:51–61. https://doi.org/10.1016/j.cellimm.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  94. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20. https://doi.org/10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lescoat A, Lelong M, Jeljeli M et al (2020) Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: perspectives for scleroderma-associated interstitial lung disease. Biochem Pharmacol 178:114103. https://doi.org/10.1016/j.bcp.2020.114103

    Article  CAS  PubMed  Google Scholar 

  96. Galdo FD, Hartley C, Allanore Y (2020) Randomised controlled trials in systemic sclerosis: patient selection and endpoints for next generation trials. Lancet Rheumatol 2:e173–e184. https://doi.org/10.1016/S2665-9913(20)30007-2

    Article  Google Scholar 

  97. Fox DA, Lundy SK, Whitfield ML et al (2021) Lymphocyte subset abnormalities in early diffuse cutaneous systemic sclerosis. Arthritis Res Ther 23:10. https://doi.org/10.1186/s13075-020-02383-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ponsoye M, Frantz C, Ruzehaji N et al (2016) Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann Rheum Dis 75:2142–2149. https://doi.org/10.1136/annrheumdis-2015-208213

    Article  CAS  PubMed  Google Scholar 

  99. Castellví I, Elhai M, Bruni C et al (2020) Safety and effectiveness of abatacept in systemic sclerosis: the EUSTAR experience. Semin Arthritis Rheum 50:1489–1493. https://doi.org/10.1016/j.semarthrit.2019.12.004

    Article  CAS  PubMed  Google Scholar 

  100. Chung L, Spino C, McLain R et al (2020) Safety and efficacy of abatacept in early diffuse cutaneous systemic sclerosis (ASSET): open-label extension of a phase 2, double-blind randomised trial. The Lancet Rheumatology 2:e743–e753. https://doi.org/10.1016/S2665-9913(20)30237-X

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chakravarty EF, Martyanov V, Fiorentino D et al (2015) Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res Ther 17:1–14. https://doi.org/10.1186/s13075-015-0669-3

    Article  CAS  Google Scholar 

  102. Hinchcliff M, Huang C-C, Wood TA et al (2013) Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J Invest Dermatol 133:1979–1989. https://doi.org/10.1038/jid.2013.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Franks JM, Martyanov V, Cai G et al (2019) A machine learning classifier for assigning individual patients with systemic sclerosis to intrinsic molecular subsets. Arthritis Rheumatol 71:1701–1710. https://doi.org/10.1002/art.40898

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pendergrass SA, Lemaire R, Francis IP et al (2012) Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol 132:1363–1373. https://doi.org/10.1038/jid.2011.472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hinchcliff M, Mahoney JM (2019) Towards a new classification of systemic sclerosis. Nat Rev Rheumatol 34:1–2. https://doi.org/10.1038/s41584-019-0257-z

    Article  Google Scholar 

  106. Stasch J-P, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123:2263–2273. https://doi.org/10.1161/CIRCULATIONAHA.110.981738

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ghofrani H-A, Galiè N, Grimminger F et al (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369:330–340. https://doi.org/10.1056/NEJMoa1209655

    Article  CAS  PubMed  Google Scholar 

  108. Humbert M, Coghlan JG, Ghofrani H-A et al (2017) Riociguat for the treatment of pulmonary arterial hypertension associated with connective tissue disease: results from PATENT-1 and PATENT-2. Ann Rheum Dis 76:422–426. https://doi.org/10.1136/annrheumdis-2015-209087

    Article  CAS  PubMed  Google Scholar 

  109. Dees C, Beyer C, Distler A et al (2015) Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies. Ann Rheum Dis 74:1621–1625. https://doi.org/10.1136/annrheumdis-2014-206809

    Article  CAS  PubMed  Google Scholar 

  110. Matei AE, Beyer C, Györfi AH et al (2018) Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Ann Rheum Dis 77:459. https://doi.org/10.1136/annrheumdis-2017-212489

    Article  CAS  PubMed  Google Scholar 

  111. Sandner P, Stasch JP (2017) Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Respir Med 122(Suppl 1):S1–S9. https://doi.org/10.1016/j.rmed.2016.08.022

    Article  PubMed  Google Scholar 

  112. Khanna D, Pope J, Matucci-Cerinic M et al (2020) Op0249 Long-term extension results of Rise-Ssc, a randomized trial of riociguat in patients with early diffuse cutaneous systemic sclerosis (dcssc). Ann Rheum Dis 79:156–157. https://doi.org/10.1136/annrheumdis-2020-eular.3671

    Article  Google Scholar 

  113. Distler O, Kramer F, Höfler J et al (2020) Fri0575 Biomarker analysis from the Rise-Ssc study of riociguat in early diffuse cutaneous systemic sclerosis (dcssc). Ann Rheum Dis 79:890–891. https://doi.org/10.1136/annrheumdis-2020-eular.3138

    Article  Google Scholar 

  114. Akhmetshina A, Dees C, Busch N et al (2009) The cannabinoid receptor CB2 exerts antifibrotic effects in experimental dermal fibrosis. Arthritis Rheum 60:1129–1136. https://doi.org/10.1002/art.24395

    Article  PubMed  Google Scholar 

  115. Garcia-Gonzalez E, Selvi E, Balistreri E et al (2009) Cannabinoids inhibit fibrogenesis in diffuse systemic sclerosis fibroblasts. Rheumatology (Oxford) 48:1050–1056. https://doi.org/10.1093/rheumatology/kep189

    Article  CAS  PubMed  Google Scholar 

  116. Gonzalez EG, Selvi E, Balistreri E et al (2012) Synthetic cannabinoid ajulemic acid exerts potent antifibrotic effects in experimental models of systemic sclerosis. Ann Rheum Dis 71:1545–1551. https://doi.org/10.1136/annrheumdis-2011-200314

    Article  CAS  PubMed  Google Scholar 

  117. Lucattelli M, Fineschi S, Selvi E et al (2016) Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 17:49. https://doi.org/10.1186/s12931-016-0373-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Spiera R, Hummers L, Chung L et al (2020) Safety and efficacy of lenabasum in a phase 2 randomized, placebo-controlled trial in adults with systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ). https://doi.org/10.1002/art.41294

  119. Hinchcliff M (2020) Lenabasum for skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ). https://doi.org/10.1002/art.41302

  120. Inc CPH (2020) Corbus pharmaceuticals announces topline results from RESOLVE-1 phase 3 study of lenabasum for treatment of systemic sclerosis. In: GlobeNewswire News Room. https://www.globenewswire.com/news-release/2020/09/08/2089940/0/en/Corbus-Pharmaceuticals-Announces-Topline-Results-from-RESOLVE-1-Phase-3-Study-of-Lenabasum-for-Treatment-of-Systemic-Sclerosis.html. Accessed 6 May 2021

  121. Ruzehaji N, Frantz C, Ponsoye M et al (2016) Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis. Ann Rheum Dis 75:2175–2183. https://doi.org/10.1136/annrheumdis-2015-208029

    Article  CAS  PubMed  Google Scholar 

  122. Bros M, Haas K, Moll L, Grabbe S (2019) RhoA as a key regulator of innate and adaptive immunity. Cells 8:733. https://doi.org/10.3390/cells8070733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oh RS, Haak AJ, Smith KMJ et al (2018) RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. J Cell Sci 131. https://doi.org/10.1242/jcs.209932

  124. Zhao Y, Natarajan V (2013) Lysophosphatidic acid (LPA) and its receptors: role in airway inflammation and remodeling. Biochim Biophys Acta 1831:86–92. https://doi.org/10.1016/j.bbalip.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  125. Castelino FV, Bain G, Pace VA et al (2016) An autotaxin/lysophosphatidic acid/interleukin-6 amplification loop drives scleroderma fibrosis. Arthritis Rheumatol 68:2964–2974. https://doi.org/10.1002/art.39797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Allanore Y, Distler O, Jagerschmidt A et al (2018) Lysophosphatidic acid receptor 1 antagonist SAR100842 for patients with diffuse cutaneous systemic sclerosis: a double-blind, randomized, eight-week placebo-controlled study followed by a sixteen-week open-label extension study. Arthritis Rheumatol 70:1634–1643. https://doi.org/10.1002/art.40547

    Article  CAS  PubMed  Google Scholar 

  127. Jagasia M, Lazaryan A, Bachier CR et al (2021) ROCK2 Inhibition with belumosudil (KD025) for the treatment of chronic graft-versus-host disease. J Clin Oncol JCO2002754. https://doi.org/10.1200/JCO.20.02754

  128. Sullivan KM, Goldmuntz EA, Keyes-Elstein L et al (2018) Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med 378:35–47. https://doi.org/10.1056/nejmoa1703327

    Article  PubMed  PubMed Central  Google Scholar 

  129. van Laar JM, Farge D, Sont JK et al (2014) Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311:2490–2498. https://doi.org/10.1001/jama.2014.6368

    Article  CAS  PubMed  Google Scholar 

  130. Di Benedetto P, Ruscitti P, Cipriani P, Giacomelli R (2020) Haematopoietic stem cell transplantation in systemic sclerosis: Challenges and perspectives. Autoimmun Rev 19:102662. https://doi.org/10.1016/j.autrev.2020.102662

    Article  CAS  PubMed  Google Scholar 

  131. Maria ATJ, Maumus M, Le Quellec A et al (2017) Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis. Clin Rev Allergy Immunol 52:234–259. https://doi.org/10.1007/s12016-016-8552-9

    Article  CAS  PubMed  Google Scholar 

  132. Rozier P, Maria A, Goulabchand R et al (2018) Mesenchymal stem cells in systemic sclerosis: allogenic or autologous approaches for therapeutic use? Front Immunol 9:2938. https://doi.org/10.3389/fimmu.2018.02938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maria ATJ, Toupet K, Bony C et al (2016) Antifibrotic, antioxidant, and immunomodulatory effects of mesenchymal stem cells in HOCl-induced systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ) 68:1013–1025. https://doi.org/10.1002/art.39477

    Article  CAS  Google Scholar 

  134. Magalon J, Velier M, Simoncini S et al (2019) Molecular profile and proangiogenic activity of the adipose-derived stromal vascular fraction used as an autologous innovative medicinal product in patients with systemic sclerosis. Ann Rheum Dis 78:391–398. https://doi.org/10.1136/annrheumdis-2018-214218

    Article  CAS  PubMed  Google Scholar 

  135. Granel B, Daumas A, Jouve E et al (2015) Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial. Ann Rheum Dis 74:2175–2182. https://doi.org/10.1136/annrheumdis-2014-205681

    Article  CAS  PubMed  Google Scholar 

  136. Guillaume-Jugnot P, Daumas A, Magalon J et al (2016) Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis: 12-month follow-up. Rheumatology (Oxford) 55:301–306. https://doi.org/10.1093/rheumatology/kev323

    Article  PubMed  Google Scholar 

  137. Dees C, Tomcik M, Palumbo-Zerr K et al (2012) JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis Rheum 64:3006–3015. https://doi.org/10.1002/art.34500

    Article  CAS  PubMed  Google Scholar 

  138. Thannickal VJ, Lee DY, White ES et al (2003) Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 278:12384–12389. https://doi.org/10.1074/jbc.M208544200

    Article  CAS  PubMed  Google Scholar 

  139. Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 83:4167–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Varga J, Rosenbloom J, Jimenez SA (1987) Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 247:597–604. https://doi.org/10.1042/bj2470597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rice LM, Padilla CM, McLaughlin SR et al (2015) Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest 125:2795–2807. https://doi.org/10.1172/JCI77958

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kim B-G, Malek E, Choi SH et al (2021) Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 14:55. https://doi.org/10.1186/s13045-021-01053-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lafyatis R, Spiera R, Domsic R et al (2020) Thu0329 safety, target engagement, and initial efficacy of Avid200, a first-in-class potent and isoform-selective inhibitor of Tgf-beta 1 and 3, in patients with diffuse cutaneous systemic sclerosis (dcssc): a phase 1 dose escalation study. Ann Rheum Dis 79:394–395. https://doi.org/10.1136/annrheumdis-2020-eular.1753

    Article  Google Scholar 

  144. Huynh LK, Hipolito CJ, Ten Dijke P (2019) A perspective on the development of TGF-β inhibitors for cancer treatment. Biomolecules 9. https://doi.org/10.3390/biom9110743

  145. Khanna D, Tashkin DP, Wells AU et al (2021) STRATUS: a phase II study of abituzumab in patients with systemic sclerosis–associated interstitial lung disease. J Rheumatol. in press

  146. Murphy-Marshman H, Quensel K, Shi-Wen X et al (2017) Antioxidants and NOX1/NOX4 inhibition blocks TGFβ1-induced CCN2 and α-SMA expression in dermal and gingival fibroblasts. PLoS One 12:e0186740. https://doi.org/10.1371/journal.pone.0186740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen Y, Shi-wen X, Eastwood M et al (2006) Contribution of activin receptor-like kinase 5 (transforming growth factor beta receptor type I) signaling to the fibrotic phenotype of scleroderma fibroblasts. Arthritis Rheum 54:1309–1316. https://doi.org/10.1002/art.21725

    Article  CAS  PubMed  Google Scholar 

  148. Da Q, Yan Z, Li Z et al (2020) TAK1 is involved in sodium L-lactate-stimulated p38 signaling and promotes apoptosis. Mol Cell Biochem. https://doi.org/10.1007/s11010-020-03952-y

    Article  PubMed  Google Scholar 

  149. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1–24. https://doi.org/10.1016/s0378-1119(02)00398-0

    Article  CAS  PubMed  Google Scholar 

  150. Deverapalli SC, Rosmarin D (2018) The use of JAK inhibitors in the treatment of progressive systemic sclerosis. J Eur Acad Dermatol Venereol 32:e328. https://doi.org/10.1111/jdv.14876

    Article  CAS  PubMed  Google Scholar 

  151. Lee EB, Fleischmann R, Hall S et al (2014) Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 370:2377–2386. https://doi.org/10.1056/NEJMoa1310476

    Article  CAS  PubMed  Google Scholar 

  152. Genovese MC, Kremer J, Zamani O et al (2016) Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med 374:1243–1252. https://doi.org/10.1056/NEJMoa1507247

    Article  CAS  PubMed  Google Scholar 

  153. Reich K, Kabashima K, Peris K et al (2020) Efficacy and safety of baricitinib combined with topical corticosteroids for treatment of moderate to severe atopic dermatitis: a randomized clinical trial. JAMA Dermatol 156:1333–1343. https://doi.org/10.1001/jamadermatol.2020.3260

    Article  PubMed  Google Scholar 

  154. Wang W, Bhattacharyya S, Marangoni RG et al (2020) The JAK/STAT pathway is activated in systemic sclerosis and is effectively targeted by tofacitinib. J Scleroderma Relat Disord 5:40–50. https://doi.org/10.1177/2397198319865367

    Article  CAS  PubMed  Google Scholar 

  155. Aung WW, Wang C, Xibei J et al (2020) Immunomodulating role of the JAKs inhibitor tofacitinib in a mouse model of bleomycin-induced scleroderma. J Dermatol Sci. https://doi.org/10.1016/j.jdermsci.2020.12.007

    Article  PubMed  Google Scholar 

  156. Talotta R (2020) The rationale for targeting the JAK/STAT pathway in scleroderma-associated interstitial lung disease. Immunotherapy 13:241–256. https://doi.org/10.2217/imt-2020-0270

    Article  CAS  PubMed  Google Scholar 

  157. Khanna D, Nagaraja V, Koenig A et al (2019) Tofacitinib in early diffuse cutaneous systemic sclerosis— results of phase I/II investigator-initiated, double-blind randomized placebo-controlled trial. ACR Meeting Abstracts

  158. Jagasia M, Zeiser R, Arbushites M et al (2018) Ruxolitinib for the treatment of patients with steroid-refractory GVHD: an introduction to the REACH trials. Immunotherapy 10:391–402. https://doi.org/10.2217/imt-2017-0156

    Article  CAS  PubMed  Google Scholar 

  159. Zeiser R (2020) Ruxolitinib (RUX) vs best available therapy (BAT) in patients with steroid-refractory/steroid-dependent chronic graft-vs-host disease (cGVHD): primary findings from the phase 3, randomized REACH3 study. ASH

  160. Rheumatology TL (2021) JAK inhibitors: fate in doubt for rheumatoid arthritis? Lancet Rheumatol 3:e161. https://doi.org/10.1016/S2665-9913(21)00041-2

    Article  Google Scholar 

  161. Baroni SS, Santillo M, Bevilacqua F et al (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354:2667–2676. https://doi.org/10.1056/NEJMoa052955

    Article  CAS  PubMed  Google Scholar 

  162. Becker MO, Kill A, Kutsche M et al (2014) Vascular receptor autoantibodies in pulmonary arterial hypertension associated with systemic sclerosis. Am J Respir Crit Care Med 190:808–817. https://doi.org/10.1164/rccm.201403-0442OC

    Article  CAS  PubMed  Google Scholar 

  163. Matsushita T, Kobayashi T, Mizumaki K et al (2018) BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci Adv 4:eaas9944. https://doi.org/10.1126/sciadv.aas9944

  164. Hasegawa M, Hamaguchi Y, Yanaba K et al (2006) B-lymphocyte depletion reduces skin fibrosis and autoimmunity in the tight-skin mouse model for systemic sclerosis. Am J Pathol 169:954–966. https://doi.org/10.2353/ajpath.2006.060205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Elhai M, Boubaya M, Distler O et al (2019) Outcomes of patients with systemic sclerosis treated with rituximab in contemporary practice: a prospective cohort study. Ann Rheum Dis 78:979–987. https://doi.org/10.1136/annrheumdis-2018-214816

    Article  CAS  PubMed  Google Scholar 

  166. Goswami RP, Ray A, Chatterjee M et al (2020) Rituximab in the treatment of systemic sclerosis-related interstitial lung disease: a systematic review and meta-analysis. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/keaa550

    Article  Google Scholar 

  167. Tang R, Yu J, Shi Y et al (2020) Safety and efficacy of Rituximab in systemic sclerosis: a systematic review and meta-analysis. Int Immunopharmacol 83:106389. https://doi.org/10.1016/j.intimp.2020.106389

    Article  CAS  PubMed  Google Scholar 

  168. Zamanian RT, Badesch D, Chung L et al (2021) Safety and efficacy of B-cell depletion with rituximab for the treatment of systemic sclerosis associated pulmonary arterial hypertension: a multi-center, double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.202009-3481OC

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ebata S, Yoshizaki A, Oba K et al (2021) Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blind, investigator-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. https://doi.org/10.1016/S2665-9913(21)00107-7

    Article  Google Scholar 

  170. Hughes M, Khanna D (2021) Rituximab for the treatment of systemic sclerosis: urgent need for an international randomised controlled trial. Lancet Rheumatol. https://doi.org/10.1016/S2665-9913(21)00149-1

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gordon JK, Martyanov V, Franks JM et al (2018) Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol 70:308–316. https://doi.org/10.1002/art.40358

    Article  CAS  PubMed  Google Scholar 

  172. Einhaus J, Pecher A-C, Asteriti E et al (2020) Inhibition of effector B cells by ibrutinib in systemic sclerosis. Arthritis Res Ther 22:66. https://doi.org/10.1186/s13075-020-02153-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Waller EK, Miklos D, Cutler C et al (2019) Ibrutinib for chronic graft-versus-host disease after failure of prior therapy: 1-year update of a phase 1b/2 study. Biol Blood Marrow Transplant 25:2002–2007. https://doi.org/10.1016/j.bbmt.2019.06.023

    Article  CAS  PubMed  Google Scholar 

  174. Dinparastisaleh R, Mirsaeidi M (2021) Antifibrotic and anti-inflammatory actions of α-melanocytic hormone: new roles for an old player. Pharmaceuticals (Basel) 14. https://doi.org/10.3390/ph14010045

  175. Spana C, Taylor AW, Yee DG et al (2018) Probing the role of melanocortin type 1 receptor agonists in diverse immunological diseases. Front Pharmacol 9:1535. https://doi.org/10.3389/fphar.2018.01535

    Article  CAS  PubMed  Google Scholar 

  176. Kokot A, Sindrilaru A, Schiller M et al (2009) alpha-melanocyte-stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: melanocortin peptides as a novel treatment strategy for scleroderma? Arthritis Rheum 60:592–603. https://doi.org/10.1002/art.24228

    Article  CAS  PubMed  Google Scholar 

  177. Leroy V, Henrot P, Barnetche T et al (2019) Association of skin hyperpigmentation disorders with digital ulcers in systemic sclerosis: analysis of a cohort of 239 patients. J Am Acad Dermatol 80:478–484. https://doi.org/10.1016/j.jaad.2018.07.033

    Article  PubMed  Google Scholar 

  178. Colombo G, Gatti S, Sordi A et al (2007) Production and effects of alpha-melanocyte-stimulating hormone during acute lung injury. Shock 27:326–333. https://doi.org/10.1097/01.shk.0000239764.80033.7e

    Article  CAS  PubMed  Google Scholar 

  179. Forssmann U, Uguccioni M, Loetscher P et al (1997) Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. J Exp Med 185:2171–2176. https://doi.org/10.1084/jem.185.12.2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee R, Reese C, Perry B et al (2015) Enhanced chemokine-receptor expression, function, and signaling in healthy African American and scleroderma-patient monocytes are regulated by caveolin-1. Fibrogenesis Tissue Repair 8:11. https://doi.org/10.1186/s13069-015-0028-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mor A, Salto MS, Katav A et al (2019) Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann Rheum Dis 78:1260–1268. https://doi.org/10.1136/annrheumdis-2019-215119

    Article  CAS  PubMed  Google Scholar 

  182. Buskermolen JK, Roffel S, Gibbs S (2017) Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets. J Cell Physiol 232:2996–3005. https://doi.org/10.1002/jcp.25946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Foster MW, Morrison LD, Todd JL et al (2015) Quantitative proteomics of bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. J Proteome Res 14:1238–1249. https://doi.org/10.1021/pr501149m

    Article  CAS  PubMed  Google Scholar 

  184. Domínguez-Soto Á, Simón-Fuentes M, de Las C-E et al (2018) IVIg promote cross-tolerance against inflammatory stimuli in vitro and in vivo. J Immunol 201:41–52. https://doi.org/10.4049/jimmunol.1701093

    Article  CAS  PubMed  Google Scholar 

  185. Schwab I, Nimmerjahn F (2013) Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 13:176–189. https://doi.org/10.1038/nri3401

    Article  CAS  PubMed  Google Scholar 

  186. Kozicky LK, Zhao ZY, Menzies SC et al (2015) Intravenous immunoglobulin skews macrophages to an anti-inflammatory, IL-10-producing activation state. J Leukoc Biol 98:983–994. https://doi.org/10.1189/jlb.3VMA0315-078R

    Article  CAS  PubMed  Google Scholar 

  187. Asano Y, Ihn H, Asashima N et al (2005) A case of diffuse scleroderma successfully treated with high-dose intravenous immune globulin infusion. Rheumatology (Oxford) 44:824–826. https://doi.org/10.1093/rheumatology/keh600

    Article  CAS  PubMed  Google Scholar 

  188. Chaigne B, Rodeia S, Benmostefa N et al (2020) Corticosteroid-sparing benefit of intravenous immunoglobulin in systemic sclerosis-associated myopathy: a comparative study in 52 patients. Autoimmun Rev 19:102431. https://doi.org/10.1016/j.autrev.2019.102431

    Article  CAS  PubMed  Google Scholar 

  189. Sanges S, Rivière S, Mekinian A et al (2017) Intravenous immunoglobulins in systemic sclerosis: data from a French nationwide cohort of 46 patients and review of the literature. Autoimmun Rev 16:377–384. https://doi.org/10.1016/j.autrev.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  190. Takehara K, Ihn H, Sato S (2013) A randomized, double-blind, placebo-controlled trial: intravenous immunoglobulin treatment in patients with diffuse cutaneous systemic sclerosis. Clin Exp Rheumatol 31:151–156

    PubMed  Google Scholar 

  191. Broen JCA, Radstake TRDJ, Rossato M (2014) The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol 10:671–681. https://doi.org/10.1038/nrrheum.2014.128

    Article  CAS  PubMed  Google Scholar 

  192. Wohlfahrt T, Rauber S, Uebe S et al (2019) PU.1 controls fibroblast polarization and tissue fibrosis. Nature 566:344–349. https://doi.org/10.1038/s41586-019-0896-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Martyanov V, Whitfield ML, Varga J (2019) Senescence signature in skin biopsies from systemic sclerosis patients treated with senolytic therapy: potential predictor of clinical response? Arthritis Rheumatol 71:1766–1767. https://doi.org/10.1002/art.40934

    Article  PubMed  PubMed Central  Google Scholar 

  194. De Maeyer RPH, van de Merwe RC, Louie R et al (2020) Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat Immunol 21:615–625. https://doi.org/10.1038/s41590-020-0646-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Volkmann ER, Varga J (2019) Emerging targets of disease-modifying therapy for systemic sclerosis. Nat Rev Rheumatol 15:208–224. https://doi.org/10.1038/s41584-019-0184-z

    Article  PubMed  Google Scholar 

  196. Kanemaru R, Takahashi F, Kato M et al (2018) Dasatinib suppresses TGFβ-mediated epithelial-mesenchymal transition in alveolar epithelial cells and inhibits pulmonary fibrosis. Lung 196:531–541. https://doi.org/10.1007/s00408-018-0134-6

    Article  CAS  PubMed  Google Scholar 

  197. Frantz C, Auffray C, Avouac J, Allanore Y (2018) Regulatory T cells in systemic sclerosis. Front Immunol 9:2356. https://doi.org/10.3389/fimmu.2018.02356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rosenzwajg M, Lorenzon R, Cacoub P et al (2019) Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis 78:209–217. https://doi.org/10.1136/annrheumdis-2018-214229

    Article  CAS  PubMed  Google Scholar 

  199. Barbieri A, Dolcino M, Tinazzi E et al (2015) Characterization of CD30/CD30L+ cells in peripheral blood and synovial fluid of patients with rheumatoid arthritis. J Immunol Res 2015. https://doi.org/10.1155/2015/729654

  200. Higashioka K, Kikushige Y, Ayano M et al (2020) Generation of a novel CD30+ B cell subset producing GM-CSF and its possible link to the pathogenesis of systemic sclerosis. Clin Exp Immunol 201:233–243. https://doi.org/10.1111/cei.13477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Shea L, Mehta-Shah N (2020) Brentuximab vedotin in the treatment of peripheral T cell lymphoma and cutaneous T cell lymphoma. Curr Hematol Malig Rep 15:9–19. https://doi.org/10.1007/s11899-020-00561-w

    Article  PubMed  Google Scholar 

  202. Makino K, Makino T, Stawski L et al (2017) Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis. Arthritis Res Ther 19:134. https://doi.org/10.1186/s13075-017-1356-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Guo X, Higgs BW, Bay-Jensen AC et al (2015) Suppression of T cell activation and collagen accumulation by an Anti-IFNAR1 mAb, anifrolumab, in adult patients with systemic sclerosis. J Invest Dermatol 135:2402–2409. https://doi.org/10.1038/jid.2015.188

    Article  CAS  PubMed  Google Scholar 

  204. Morand EF, Furie R, Tanaka Y et al (2020) Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med 382:211–221. https://doi.org/10.1056/NEJMoa1912196

    Article  CAS  PubMed  Google Scholar 

  205. Bruce IN, Nami A, Schwetje E et al (2021) Pharmacokinetics, pharmacodynamics, and safety of subcutaneous anifrolumab in patients with systemic lupus erythematosus, active skin disease, and high type I interferon gene signature: a multicentre, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Rheumatol 3:e101–e110. https://doi.org/10.1016/S2665-9913(20)30342-8

    Article  CAS  Google Scholar 

  206. Lescoat A, Murphy SL, Roofeh D et al (2020) Considerations for a combined index for limited cutaneous systemic sclerosis to support drug development and improve outcomes. J Scleroderma Relat Disord 2397198320961967. https://doi.org/10.1177/2397198320961967

Download references

Funding

Dr. Khanna was supported by the NIH/NIAMS K24-AR063120 and R01- AR-070470. Dr. Lescoat was funded by the French network of the University Hospitals HUGO (Hôpitaux Universitaires du Grand Ouest) (AAP JCM2020) and a grant from Rennes University Hospital (CORECT Visiting Grant 2020). Dr. Roofeh was funded by the NIH/NIAMS T32-AR007080. Dr. Lafyatis was funded by NIH/NIAMS P50 AR060780.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the writing of this review, revised it critically for important intellectual content, approved the version to be published and agreed to be accountable for all aspects of this review. All authors agreed with the content of this review and gave explicit consent to submit.

Corresponding author

Correspondence to Dinesh Khanna.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

AL: Nothing to disclose. DR: Nothing to disclose. MK: Grant support from Boehringer-Ingelheim, Ono Pharmaceuticals, Consultant: AbbVie, Boehringer-Ingelheim, Corbus, Mochida, Kissei, Galapagos NV, Speaker bureau: Asahi Kasei Pharma, Astellas, Boehringer-Ingelheim, Chugai. GSK, Janssen. Mitsubishi-Tanabe, Nippon Shinyaku. RL: has served as a consultant for Pfizer, Bristol Myers Squibb, Boehringer-Ingleheim, Formation, Sanofi, Boehringer-Mannheim, Merck and Genentech/Roche; holds or recently had research grants from Corbus, Formation, Moderna, Regeneron, Pfizer and Kiniksa and holds equity in Thirona Bio. YA: Grant support from Alpine ImmunoSciences, Roche and Sanofi. Consultant: Bayer, Boehringer Ingelheim, Genentech/Roche, Medsenic, Sanofi-Aventis. DK: Grant support from NIH, Immune Tolerance Network, Bayer, BMS, Horizon, Pfizer. Consultant: Acceleron, Actelion, Abbvie, Amgen, Bayer, Boehringer Ingelheim, CSL Behring, Corbus, Gilead, Galapagos, Genentech/Roche, GSK, Horizon, Merck, Mitsubishi Tanabe Pharma, Sanofi-Aventis, and United Therapeutics. Stocks: Eicos Sciences, Inc (less than 5%). Leadership/Equity position – Chief Medical Officer, CiviBioPharma/Eicos Sciences, Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lescoat, A., Roofeh, D., Kuwana, M. et al. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clinic Rev Allerg Immunol 64, 239–261 (2023). https://doi.org/10.1007/s12016-021-08891-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08891-0

Keywords

Navigation