Skip to main content

Advertisement

Log in

The AGE-RAGE Axis and RAGE Genetics in Chronic Obstructive Pulmonary Disease

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is a heterogeneous group of lung diseases limiting the airflow due to narrowing of airways, chronic bronchitis and emphysema that leads to difficulties in breathing. Chronic inflammation is another important characteristic of COPD which leads to immune cell infiltration and helps in the alveolar destruction. Pathology of COPD is driven by various environmental and genetic factors. COPD is mainly associated with the inhalation of toxic agents mainly the cigarette smoke. Receptor for advanced glycation end products (RAGE) has emerged as a pattern recognition receptor and is a multiligand receptor expressed moderately in various cells, tissues and highly in the lungs throughout life. RAGE recognizes various ligands produced by cigarette smoke and its role has been implicated in the pathogenesis of COPD. RAGE ligands have been reported to accumulate in the lungs of patients with COPD. RAGE is a membrane receptor but its truncated form i.e. soluble RAGE (sRAGE) mainly functions as a contender of RAGE and inhibits various RAGE dependent cell signalling. Among the various ligands of RAGE, advanced glycation end products (AGEs) are majorly linked with COPD. Accumulated AGE triggers downstream RAGE-AGE axis in COPD. Moreover, RAGE genetics has long been known to play a vital role in the pathology of various airway diseases including COPD and this gene contains an associated locus. A reliable biomarker is needed for the management of this disease. sRAGE has an inverse correlation with the RAGE showed its importance as a valuable marker in COPD. This review is focused on the role of RAGE, sRAGE, RAGE axis and RAGE genetics in COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM, Frith P, Halpin DM, Lopez Varela MV, Nishimura M, Roche N, Rodriguez-Roisin R, Sin DD, Singh D, Stockley R, Vestbo J, Wedzicha JA, Agusti A (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD Executive Summary American journal of respiratory and critical care medicine 195(5):557–582. https://doi.org/10.1164/rccm.201701-0218PP

    Article  CAS  PubMed  Google Scholar 

  2. Barnes PJ, Burney PG, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, Wouters EF (2015) Chronic obstructive pulmonary disease. Nature reviews Disease primers 1:15076. https://doi.org/10.1038/nrdp.2015.76

    Article  PubMed  Google Scholar 

  3. Sanders KA, Delker DA, Huecksteadt T, Beck E, Wuren T, Chen Y, Zhang Y, Hazel MW, Hoidal JR (2019) RAGE is a critical mediator of pulmonary oxidative stress, alveolar macrophage activation and emphysema in response to cigarette smoke. Sci Rep 9(1):231. https://doi.org/10.1038/s41598-018-36163-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hogg JC, McDonough JE, Suzuki M (2013) Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging. Chest 143(5):1436–1443. https://doi.org/10.1378/chest.12-1766

    Article  PubMed Central  PubMed  Google Scholar 

  5. Higham A, Quinn AM, Cancado JED, Singh D (2019) The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res 20(1):49. https://doi.org/10.1186/s12931-019-1017-y

    Article  PubMed Central  PubMed  Google Scholar 

  6. Szulakowski P, Mroz RM, Pierzchala W, Chyczewska E, MacNee W (2006) Pathogenesis of chronic obstructive pulmonary disease. Molecular mechanisms (part II). Wiad Lek 59(3–4):250–254

    PubMed  Google Scholar 

  7. Alsumrain M, De Giacomi F, Nasim F, Koo CW, Bartholmai BJ, Levin DL, Moua T (2019) Combined pulmonary fibrosis and emphysema as a clinicoradiologic entity: characterization of presenting lung fibrosis and implications for survival. Respir Med 146:106–112. https://doi.org/10.1016/j.rmed.2018.12.003

    Article  PubMed  Google Scholar 

  8. Wang Y, Xu J, Meng Y, Adcock IM, Yao X (2018) Role of inflammatory cells in airway remodeling in COPD. International journal of chronic obstructive pulmonary disease 13:3341–3348. https://doi.org/10.2147/COPD.S176122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Singh D, Edwards L, Tal-Singer R, Rennard S (2010) Sputum neutrophils as a biomarker in COPD: findings from the ECLIPSE study. Respir Res 11:77. https://doi.org/10.1186/1465-9921-11-77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, Nair H, Gasevic D, Sridhar D, Campbell H, Chan KY, Sheikh A, Rudan I (2015) Global and regional estimates of COPD prevalence: systematic review and meta-analysis. J Glob Health 5(2):020415. https://doi.org/10.7189/jogh.05-020415

    Article  PubMed Central  PubMed  Google Scholar 

  11. Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349(9063):1436–1442. https://doi.org/10.1016/S0140-6736(96)07495-8

    Article  CAS  PubMed  Google Scholar 

  12. Huber MB, Wacker ME, Vogelmeier CF, Leidl R (2015) Comorbid influences on generic health-related quality of life in COPD: a systematic review. PLoS One 10(7):e0132670. https://doi.org/10.1371/journal.pone.0132670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mannino DM, Gagnon RC, Petty TL, Lydick E (2000) Obstructive lung disease and low lung function in adults in the United States: data from the National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med 160(11):1683–1689. https://doi.org/10.1001/archinte.160.11.1683

    Article  CAS  PubMed  Google Scholar 

  14. Sarkar M, Srinivasa MI, Kumar K (2017) Tuberculosis associated chronic obstructive pulmonary disease. Clin Respir J 11(3):285–295. https://doi.org/10.1111/crj.12621

    Article  PubMed  Google Scholar 

  15. Agusti A, Sobradillo P, Celli B (2011) Addressing the complexity of chronic obstructive pulmonary disease: from phenotypes and biomarkers to scale-free networks, systems biology, and P4 medicine. Am J Respir Crit Care Med 183(9):1129–1137. https://doi.org/10.1164/rccm.201009-1414PP

    Article  PubMed  Google Scholar 

  16. Zemans RL, Jacobson S, Keene J, Kechris K, Miller BE, Tal-Singer R, Bowler RP (2017) Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir Res 18(1):117. https://doi.org/10.1186/s12931-017-0597-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM (2002) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cellular and molecular life sciences : CMLS 59(7):1117–1128. https://doi.org/10.1007/s00018-002-8491-x

    Article  CAS  PubMed  Google Scholar 

  18. Leclerc E, Fritz G, Vetter SW, Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793(6):993–1007. https://doi.org/10.1016/j.bbamcr.2008.11.016

    Article  CAS  PubMed  Google Scholar 

  19. Wu L, Ma L, Nicholson LF, Black PN (2011) Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir Med 105(3):329–336. https://doi.org/10.1016/j.rmed.2010.11.001

    Article  PubMed  Google Scholar 

  20. Lee EJ, Park JH (2013) Receptor for advanced glycation endproducts (RAGE), its ligands, and soluble RAGE: potential biomarkers for diagnosis and therapeutic targets for human renal diseases. Genomics & informatics 11(4):224–229. https://doi.org/10.5808/GI.2013.11.4.224

    Article  Google Scholar 

  21. Rouhiainen A, Kuja-Panula J, Tumova S, Rauvala H (2013) RAGE-mediated cell signaling. Methods Mol Biol 963:239–263. https://doi.org/10.1007/978-1-62703-230-8_15

    Article  CAS  PubMed  Google Scholar 

  22. Caballero JJ, Giron MD, Vargas AM, Sevillano N, Suarez MD, Salto R (2004) AU-rich elements in the mRNA 3′-untranslated region of the rat receptor for advanced glycation end products and their relevance to mRNA stability. Biochem Biophys Res Commun 319(1):247–255. https://doi.org/10.1016/j.bbrc.2004.04.178

    Article  CAS  PubMed  Google Scholar 

  23. Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429. https://doi.org/10.1016/j.redox.2013.12.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Maillard-Lefebvre H, Boulanger E, Daroux M, Gaxatte C, Hudson BI, Lambert M (2009) Soluble receptor for advanced glycation end products: a new biomarker in diagnosis and prognosis of chronic inflammatory diseases. Rheumatology (Oxford) 48(10):1190–1196. https://doi.org/10.1093/rheumatology/kep199

    Article  CAS  Google Scholar 

  25. Geroldi D, Falcone C, Emanuele E (2006) Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target. Curr Med Chem 13(17):1971–1978

    Article  CAS  PubMed  Google Scholar 

  26. Chuah YK, Basir R, Talib H, Tie TH, Nordin N (2013) Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflamm 2013:403460–403415. https://doi.org/10.1155/2013/403460

    Article  CAS  Google Scholar 

  27. Oczypok EA, Perkins TN, Oury TD (2017) All the “RAGE” in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 23:40–49. https://doi.org/10.1016/j.prrv.2017.03.012

    Article  PubMed Central  PubMed  Google Scholar 

  28. Gonzalez I, Romero J, Rodriguez BL, Perez-Castro R, Rojas A (2013) The immunobiology of the receptor of advanced glycation end-products: trends and challenges. Immunobiology 218(5):790–797. https://doi.org/10.1016/j.imbio.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  29. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H (2010) Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110(6):911–916 e912. https://doi.org/10.1016/j.jada.2010.03.018

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM (1999) N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274(44):31740–31749

    Article  CAS  PubMed  Google Scholar 

  31. Lubitz I, Ricny J, Atrakchi-Baranes D, Shemesh C, Kravitz E, Liraz-Zaltsman S, Maksin-Matveev A, Cooper I, Leibowitz A, Uribarri J, Schmeidler J, Cai W, Kristofikova Z, Ripova D, LeRoith D, Schnaider-Beeri M (2016) High dietary advanced glycation end products are associated with poorer spatial learning and accelerated Abeta deposition in an Alzheimer mouse model. Aging Cell 15(2):309–316. https://doi.org/10.1111/acel.12436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Prog Horm Res 56:1–21

    Article  CAS  PubMed  Google Scholar 

  33. Luevano-Contreras C, Chapman-Novakofski K (2010) Dietary advanced glycation end products and aging. Nutrients 2(12):1247–1265. https://doi.org/10.3390/nu2121247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ 3rd, Lotze MT, Tang D (2014) HMGB1 in health and disease. Mol Asp Med 40:1–116. https://doi.org/10.1016/j.mam.2014.05.001

    Article  CAS  Google Scholar 

  35. Nguyen AH, Bhavsar SB, Riley EM, Caponetti GC, Agrawal DK (2016) Association of high mobility group BOX-1 and receptor for advanced glycation endproducts with clinicopathological features of haematological malignancies: a systematic review. Contemp Oncol (Pozn) 20(6):425–429. https://doi.org/10.5114/wo.2016.65600

    Article  CAS  Google Scholar 

  36. Chen Q, Guan X, Zuo X, Wang J, Yin W (2016) The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm Sin B 6(3):183–188. https://doi.org/10.1016/j.apsb.2016.02.004

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hou C, Zhao H, Liu L, Li W, Zhou X, Lv Y, Shen X, Liang Z, Cai S, Zou F (2011) High mobility group protein B1 (HMGB1) in asthma: comparison of patients with chronic obstructive pulmonary disease and healthy controls. Mol Med 17(7–8):807–815. https://doi.org/10.2119/molmed.2010.00173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Li M, Guo L, Wang H, Wang T, Shen Y, Liao Z, Wen F, Chen L (2015) RAGE-ligands axis: a new ‘driving force’ for cigarette smoke-induced airway inflammation in COPD? Respirology 20(6):998–999. https://doi.org/10.1111/resp.12557

    Article  PubMed  Google Scholar 

  39. Wang CM, Jiang M, Wang HJ (2013) Effect of NFkappaB inhibitor on highmobility group protein B1 expression in a COPD rat model. Mol Med Rep 7(2):499–502. https://doi.org/10.3892/mmr.2012.1181

    Article  CAS  PubMed  Google Scholar 

  40. Okwor I, Jia P, Uzonna JE (2015) Interaction of macrophage antigen 1 and CD40 ligand leads to IL-12 production and resistance in CD40-deficient mice infected with Leishmania major. J Immunol 195(7):3218–3226. https://doi.org/10.4049/jimmunol.1500922

    Article  CAS  PubMed  Google Scholar 

  41. Zhang D, Hu X, Qian L, Chen SH, Zhou H, Wilson B, Miller DS, Hong JS (2011) Microglial MAC1 receptor and PI3K are essential in mediating beta-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation 8(1):3. https://doi.org/10.1186/1742-2094-8-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, Ballantyne CM, Gahmberg CG, Bianchi ME, Nawroth PP, Chavakis T (2007) A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26(4):1129–1139. https://doi.org/10.1038/sj.emboj.7601552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198(10):1507–1515. https://doi.org/10.1084/jem.20030800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Frommhold D, Kamphues A, Hepper I, Pruenster M, Lukic IK, Socher I, Zablotskaya V, Buschmann K, Lange-Sperandio B, Schymeinsky J, Ryschich E, Poeschl J, Kupatt C, Nawroth PP, Moser M, Walzog B, Bierhaus A, Sperandio M (2010) RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood 116(5):841–849. https://doi.org/10.1182/blood-2009-09-244293

    Article  CAS  PubMed  Google Scholar 

  45. Chen H, Xu C, Jin Q, Liu Z (2014) S100 protein family in human cancer. Am J Cancer Res 4(2):89–115

    PubMed Central  PubMed  Google Scholar 

  46. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kang JH, Hwang SM, Chung IY (2015) S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-kappaB pathways. Immunology 144(1):79–90. https://doi.org/10.1111/imm.12352

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Fei GH (2013) The unique alterations of hippocampus and cognitive impairment in chronic obstructive pulmonary disease. Respir Res 14:140. https://doi.org/10.1186/1465-9921-14-140

    Article  PubMed Central  PubMed  Google Scholar 

  49. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203. https://doi.org/10.1016/j.cell.2012.02.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G, Funatsu Y, Nakamichi N, Nagai T, Mizoguchi H, Ibi D, Hori O, Ogawa S, Stern DM, Yamada K, Yan SS (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A 106(47):20021–20026. https://doi.org/10.1073/pnas.0905686106

    Article  PubMed Central  PubMed  Google Scholar 

  51. Liao KM, Ho CH, Ko SC, Li CY (2015) Increased risk of dementia in patients with chronic obstructive pulmonary disease. Medicine 94(23):e930. https://doi.org/10.1097/MD.0000000000000930

    Article  PubMed Central  PubMed  Google Scholar 

  52. Bu XL, Cao GQ, Shen LL, Xiang Y, Jiao SS, Liu YH, Zhu C, Zeng F, Wang QH, Wang YR, He Y, Zhou HD, Wang YJ (2015) Serum amyloid-beta levels are increased in patients with chronic obstructive pulmonary disease. Neurotox Res 28(4):346–351. https://doi.org/10.1007/s12640-015-9552-x

    Article  CAS  PubMed  Google Scholar 

  53. Siniorakis E, Arvanitakis S, Elkouris M, Kalogirou S, Veldekis D, Limberi S (2018) Chronic obstructive pulmonary disease and sacubitril: explore the role of neprilysin before its inhibition. Advances in respiratory medicine 86(5):255–256. https://doi.org/10.5603/ARM.2018.0041

    Article  PubMed  Google Scholar 

  54. Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7(3):167–202

    CAS  PubMed  Google Scholar 

  55. Li Y, Wu R, Zhao S, Cheng H, Ji P, Yu M, Tian Z (2014) RAGE/NF-kappaB pathway mediates lipopolysaccharide-induced inflammation in alveolar type I epithelial cells isolated from neonate rats. Inflammation 37(5):1623–1629. https://doi.org/10.1007/s10753-014-9889-y

    Article  CAS  PubMed  Google Scholar 

  56. Huang J, Yang J, Shen Y, Jiang H, Han C, Zhang G, Liu L, Xu X, Li J, Lin Z, Xiong N, Zhang Z, Xiong J, Wang T (2017) HMGB1 mediates autophagy dysfunction via perturbing Beclin1-Vps34 complex in dopaminergic cell model. Front Mol Neurosci 10:13. https://doi.org/10.3389/fnmol.2017.00013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Grunwald MS, Ligabue-Braun R, Souza CS, Heimfarth L, Verli H, Gelain DP, Moreira JC (2017) Putative model for heat shock protein 70 complexation with receptor of advanced glycation end products through fluorescence proximity assays and normal mode analyses. Cell Stress Chaperones 22(1):99–111. https://doi.org/10.1007/s12192-016-0746-9

    Article  CAS  PubMed  Google Scholar 

  58. Sukkar MB, Ullah MA, Gan WJ, Wark PA, Chung KF, Hughes JM, Armour CL, Phipps S (2012) RAGE: a new frontier in chronic airways disease. Br J Pharmacol 167(6):1161–1176. https://doi.org/10.1111/j.1476-5381.2012.01984.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Dong J, Guo L, Liao Z, Zhang M, Wang T, Chen L, Xu D, Feng Y, Wen F (2013) Increased expression of heat shock protein 70 in chronic obstructive pulmonary disease. Int Immunopharmacol 17(3):885–893. https://doi.org/10.1016/j.intimp.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  60. Cui X, Xing J, Liu Y, Zhou Y, Luo X, Zhang Z, Han W, Wu T, Chen W (2015) COPD and levels of Hsp70 (HSPA1A) and Hsp27 (HSPB1) in plasma and lymphocytes among coal workers: a case-control study. Cell Stress Chaperones 20(3):473–481. https://doi.org/10.1007/s12192-015-0572-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Snelson M, Coughlan MT (2019) Dietary advanced glycation end products: digestion, metabolism and modulation of gut microbial ecology. Nutrients 11(2). https://doi.org/10.3390/nu11020215

  62. Ostendorp T, Leclerc E, Galichet A, Koch M, Demling N, Weigle B, Heizmann CW, Kroneck PM, Fritz G (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26(16):3868–3878. https://doi.org/10.1038/sj.emboj.7601805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274(28):19919–19924. https://doi.org/10.1074/jbc.274.28.19919

    Article  CAS  PubMed  Google Scholar 

  64. Byun K, Yoo Y, Son M, Lee J, Jeong GB, Park YM, Salekdeh GH, Lee B (2017) Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol Ther 177:44–55. https://doi.org/10.1016/j.pharmthera.2017.02.030

    Article  CAS  PubMed  Google Scholar 

  65. Soman S, Raju R, Sandhya VK, Advani J, Khan AA, Harsha HC, Prasad TS, Sudhakaran PR, Pandey A, Adishesha PK (2013) A multicellular signal transduction network of AGE/RAGE signaling. Journal of cell communication and signaling 7(1):19–23. https://doi.org/10.1007/s12079-012-0181-3

    Article  PubMed  Google Scholar 

  66. Ohtsu A, Shibutani Y, Seno K, Iwata H, Kuwayama T, Shirasuna K (2017) Advanced glycation end products and lipopolysaccharides stimulate interleukin-6 secretion via the RAGE/TLR4-NF-kappaB-ROS pathways and resveratrol attenuates these inflammatory responses in mouse macrophages. Experimental and therapeutic medicine 14(5):4363–4370. https://doi.org/10.3892/etm.2017.5045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Song JS, Kang CM, Park CK, Yoon HK, Lee SY, Ahn JH, Moon HS (2011) Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-beta-induced alveolar epithelial to mesenchymal transition. Exp Mol Med 43(9):517–524. https://doi.org/10.3858/emm.2011.43.9.059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Gopal P, Reynaert NL, Scheijen JL, Engelen L, Schalkwijk CG, Franssen FM, Wouters EF, Rutten EP (2014) Plasma advanced glycation end-products and skin autofluorescence are increased in COPD. Eur Respir J 43(2):430–438. https://doi.org/10.1183/09031936.00135312

    Article  CAS  PubMed  Google Scholar 

  69. Hoonhorst SJ, Lo Tam Loi AT, Pouwels SD, Faiz A, Telenga ED, van den Berge M, Koenderman L, Lammers JW, Boezen HM, van Oosterhout AJ, Lodewijk ME, Timens W, Postma DS, Ten Hacken NH (2016) Advanced glycation endproducts and their receptor in different body compartments in COPD. Respir Res 17:46. https://doi.org/10.1186/s12931-016-0363-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Smith DJ, Yerkovich ST, Towers MA, Carroll ML, Thomas R, Upham JW (2011) Reduced soluble receptor for advanced glycation end-products in COPD. Eur Respir J 37(3):516–522. https://doi.org/10.1183/09031936.00029310

    Article  CAS  PubMed  Google Scholar 

  71. Koyama H, Yamamoto H, Nishizawa Y (2007) RAGE and soluble RAGE: potential therapeutic targets for cardiovascular diseases. Mol Med 13(11–12):625–635. https://doi.org/10.2119/2007-00087.Koyama

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Morbini P, Villa C, Campo I, Zorzetto M, Inghilleri S, Luisetti M (2006) The receptor for advanced glycation end products and its ligands: a new inflammatory pathway in lung disease? Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 19(11):1437–1445. https://doi.org/10.1038/modpathol.3800661

    Article  CAS  Google Scholar 

  73. Chen L, Wang T, Guo L, Shen Y, Yang T, Wan C, Liao Z, Xu D, Wen F (2014) Overexpression of RAGE contributes to cigarette smoke-induced nitric oxide generation in COPD. Lung 192(2):267–275. https://doi.org/10.1007/s00408-014-9561-1

    Article  CAS  PubMed  Google Scholar 

  74. Miniati M, Monti S, Basta G, Cocci F, Fornai E, Bottai M (2011) Soluble receptor for advanced glycation end products in COPD: relationship with emphysema and chronic cor pulmonale: a case-control study. Respir Res 12:37. https://doi.org/10.1186/1465-9921-12-37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Iwamoto H, Gao J, Pulkkinen V, Toljamo T, Nieminen P, Mazur W (2014) Soluble receptor for advanced glycation end-products and progression of airway disease. BMC pulmonary medicine 14:68. https://doi.org/10.1186/1471-2466-14-68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Sukkar MB, Postma DS (2013) Receptor for advanced glycation end products and soluble receptor for advanced glycation end products: a balancing act in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 188(8):893–894. https://doi.org/10.1164/rccm.201308-1489ED

    Article  CAS  PubMed  Google Scholar 

  77. Cheng DT, Kim DK, Cockayne DA, Belousov A, Bitter H, Cho MH, Duvoix A, Edwards LD, Lomas DA, Miller BE, Reynaert N, Tal-Singer R, Wouters EF, Agusti A, Fabbri LM, Rames A, Visvanathan S, Rennard SI, Jones P, Parmar H, MacNee W, Wolff G, Silverman EK, Mayer RJ, Pillai SG (2013) Systemic soluble receptor for advanced glycation endproducts is a biomarker of emphysema and associated with AGER genetic variants in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 188(8):948–957. https://doi.org/10.1164/rccm.201302-0247OC

    Article  CAS  PubMed  Google Scholar 

  78. Milkowska-Dymanowska J, Bialas AJ, Szewczyk K, Kurmanowska Z, Gorski P, Piotrowski WJ (2018) The usefulness of soluble receptor for advanced glycation end-products in the identification of COPD frequent exacerbator phenotype. International journal of chronic obstructive pulmonary disease 13:3879–3884. https://doi.org/10.2147/COPD.S186170

    Article  PubMed Central  PubMed  Google Scholar 

  79. Caram LMO, Ferrari R, Nogueira DL, Oliveira M, Francisqueti FV, Tanni SE, Correa CR, Godoy I (2017) Tumor necrosis factor receptor 2 as a possible marker of COPD in smokers and ex-smokers. International journal of chronic obstructive pulmonary disease 12:2015–2021. https://doi.org/10.2147/COPD.S138558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Prasad K, Dhar I, Caspar-Bell G (2015) Role of advanced glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. The International journal of angiology : official publication of the International College of Angiology, Inc 24(2):75–80. https://doi.org/10.1055/s-0034-1396413

    Article  Google Scholar 

  81. Pouwels SD, Klont F, Kwiatkowski M, Wiersma VR, Faiz A, van den Berge M, Horvatovich P, Bischoff R, Ten Hacken NHT (2018) Cigarette smoking acutely decreases serum levels of the chronic obstructive pulmonary disease biomarker sRAGE. Am J Respir Crit Care Med 198(11):1456–1458. https://doi.org/10.1164/rccm.201807-1249LE

    Article  PubMed  Google Scholar 

  82. Pouwels SD, Klont F, Bischoff R, Ten Hacken NHT (2019) Confounding factors affecting sRAGE as a biomarker for chronic obstructive pulmonary disease. Am J Respir Crit Care Med 200(1):114. https://doi.org/10.1164/rccm.201902-0356LE

    Article  PubMed Central  PubMed  Google Scholar 

  83. de Moraes MR, da Costa AC, Correa Kde S, Junqueira-Kipnis AP, Rabahi MF (2014) Interleukin-6 and interleukin-8 blood levels’ poor association with the severity and clinical profile of ex-smokers with COPD. International journal of chronic obstructive pulmonary disease 9:735–743. https://doi.org/10.2147/COPD.S64135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Shaw JG, Vaughan A, Dent AG, O'Hare PE, Goh F, Bowman RV, Fong KM, Yang IA (2014) Biomarkers of progression of chronic obstructive pulmonary disease (COPD). Journal of thoracic disease 6(11):1532–1547. https://doi.org/10.3978/j.issn.2072-1439.2014.11.33

    Article  PubMed Central  PubMed  Google Scholar 

  85. Hurst JR, Donaldson GC, Perera WR, Wilkinson TM, Bilello JA, Hagan GW, Vessey RS, Wedzicha JA (2006) Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 174(8):867–874. https://doi.org/10.1164/rccm.200604-506OC

    Article  CAS  PubMed  Google Scholar 

  86. Pinto-Plata VM, Mullerova H, Toso JF, Feudjo-Tepie M, Soriano JB, Vessey RS, Celli BR (2006) C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax 61(1):23–28. https://doi.org/10.1136/thx.2005.042200

    Article  CAS  PubMed  Google Scholar 

  87. Fermont JM, Masconi KL, Jensen MT, Ferrari R, Di Lorenzo VAP, Marott JM, Schuetz P, Watz H, Waschki B, Mullerova H, Polkey MI, Wilkinson IB, Wood AM (2019) Biomarkers and clinical outcomes in COPD: a systematic review and meta-analysis. Thorax 74(5):439–446. https://doi.org/10.1136/thoraxjnl-2018-211855

    Article  PubMed  Google Scholar 

  88. Celli BR, Anderson JA, Brook R, Calverley P, Cowans NJ, Crim C, Dixon I, Kim V, Martinez FJ, Morris A, Newby DE, Yates J, Vestbo J (2019) Serum biomarkers and outcomes in patients with moderate COPD: a substudy of the randomised SUMMIT trial. BMJ open respiratory research 6(1):e000431. https://doi.org/10.1136/bmjresp-2019-000431

    Article  PubMed Central  PubMed  Google Scholar 

  89. Kattula S, Byrnes JR, Wolberg AS (2017) Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 37(3):e13–e21. https://doi.org/10.1161/ATVBAHA.117.308564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Ronnow SR, Sand JMB, Langholm LL, Manon-Jensen T, Karsdal MA, Tal-Singer R, Miller BE, Vestbo J, Leeming DJ (2019) Type IV collagen turnover is predictive of mortality in COPD: a comparison to fibrinogen in a prospective analysis of the ECLIPSE cohort. Respir Res 20(1):63. https://doi.org/10.1186/s12931-019-1026-x

    Article  PubMed Central  PubMed  Google Scholar 

  91. Duvoix A, Dickens J, Haq I, Mannino D, Miller B, Tal-Singer R, Lomas DA (2013) Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax 68(7):670–676. https://doi.org/10.1136/thoraxjnl-2012-201871

    Article  PubMed  Google Scholar 

  92. Ingebrigtsen TS, Marott JL, Rode L, Vestbo J, Lange P, Nordestgaard BG (2015) Fibrinogen and alpha1-antitrypsin in COPD exacerbations. Thorax 70(11):1014–1021. https://doi.org/10.1136/thoraxjnl-2015-207561

    Article  PubMed  Google Scholar 

  93. Resendiz-Hernandez JM, Falfan-Valencia R (2018) Genetic polymorphisms and their involvement in the regulation of the inflammatory response in asthma and COPD. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 27 (1):125-133. Doi:https://doi.org/10.17219/acem/65691

  94. Geng X, Wang X, Luo M, Xing M, Wu Y, Li W, Chen Z, Shen H, Ying S (2018) Induction of neutrophil apoptosis by a Bcl-2 inhibitor reduces particulate matter-induced lung inflammation. Aging 10 (6):1415-1423. Doi:https://doi.org/10.18632/aging.101477

  95. Sluiter HJ, Koeter GH, de Monchy JG, Postma DS, de Vries K, Orie NG (1991) The Dutch hypothesis (chronic non-specific lung disease) revisited. Eur Respir J 4(4):479–489

    CAS  PubMed  Google Scholar 

  96. Ragland MF, Benway CJ, Lutz SM, Bowler RP, Hecker J, Hokanson JE, Crapo JD, Castaldi PJ, DeMeo DL, Hersh CP, Hobbs BD, Lange C, Beaty TH, Cho MH, Silverman EK (2019) Genetic advances in chronic obstructive pulmonary disease. Insights from COPDGene. Am J Respir Crit Care Med 200 (6):677–690. doi:https://doi.org/10.1164/rccm.201808-1455SO

  97. Silverman EK, Sandhaus RA (2009) Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med 360(26):2749–2757. https://doi.org/10.1056/NEJMcp0900449

    Article  CAS  PubMed  Google Scholar 

  98. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, Feng S, Hersh CP, Bakke P, Gulsvik A, Ruppert A, Lodrup Carlsen KC, Roses A, Anderson W, Rennard SI, Lomas DA, Silverman EK, Goldstein DB (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5(3):e1000421. https://doi.org/10.1371/journal.pgen.1000421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, DeMeo DL, Hunninghake GM, Litonjua AA, Sparrow D, Lange C, Won S, Murphy JR, Beaty TH, Regan EA, Make BJ, Hokanson JE, Crapo JD, Kong X, Anderson WH, Tal-Singer R, Lomas DA, Bakke P, Gulsvik A, Pillai SG, Silverman EK (2010) Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 42(3):200–202. https://doi.org/10.1038/ng.535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, Himes BE, Sylvia JS, Klanderman BJ, Ziniti JP, Lange C, Litonjua AA, Sparrow D, Regan EA, Make BJ, Hokanson JE, Murray T, Hetmanski JB, Pillai SG, Kong X, Anderson WH, Tal-Singer R, Lomas DA, Coxson HO, Edwards LD, MacNee W, Vestbo J, Yates JC, Agusti A, Calverley PM, Celli B, Crim C, Rennard S, Wouters E, Bakke P, Gulsvik A, Crapo JD, Beaty TH, Silverman EK (2012) A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet 21(4):947–957. https://doi.org/10.1093/hmg/ddr524

    Article  CAS  PubMed  Google Scholar 

  101. Cho MH, McDonald ML, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, Demeo DL, Sylvia JS, Ziniti J, Laird NM, Lange C, Litonjua AA, Sparrow D, Casaburi R, Barr RG, Regan EA, Make BJ, Hokanson JE, Lutz S, Dudenkov TM, Farzadegan H, Hetmanski JB, Tal-Singer R, Lomas DA, Bakke P, Gulsvik A, Crapo JD, Silverman EK, Beaty TH (2014) Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med 2(3):214–225. https://doi.org/10.1016/S2213-2600(14)70002-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Chen W, Brehm JM, Manichaikul A, Cho MH, Boutaoui N, Yan Q, Burkart KM, Enright PL, Rotter JI, Petersen H, Leng S, Obeidat M, Bosse Y, Brandsma CA, Hao K, Rich SS, Powell R, Avila L, Soto-Quiros M, Silverman EK, Tesfaigzi Y, Barr RG, Celedon JC (2015) A genome-wide association study of chronic obstructive pulmonary disease in Hispanics. Annals of the American Thoracic Society 12(3):340–348. https://doi.org/10.1513/AnnalsATS.201408-380OC

    Article  PubMed Central  PubMed  Google Scholar 

  103. Hobbs BD, de Jong K, Lamontagne M, Bosse Y, Shrine N, Artigas MS, Wain LV, Hall IP, Jackson VE, Wyss AB, London SJ, North KE, Franceschini N, Strachan DP, Beaty TH, Hokanson JE, Crapo JD, Castaldi PJ, Chase RP, Bartz TM, Heckbert SR, Psaty BM, Gharib SA, Zanen P, Lammers JW, Oudkerk M, Groen HJ, Locantore N, Tal-Singer R, Rennard SI, Vestbo J, Timens W, Pare PD, Latourelle JC, Dupuis J, O'Connor GT, Wilk JB, Kim WJ, Lee MK, Oh YM, Vonk JM, de Koning HJ, Leng S, Belinsky SA, Tesfaigzi Y, Manichaikul A, Wang XQ, Rich SS, Barr RG, Sparrow D, Litonjua AA, Bakke P, Gulsvik A, Lahousse L, Brusselle GG, Stricker BH, Uitterlinden AG, Ampleford EJ, Bleecker ER, Woodruff PG, Meyers DA, Qiao D, Lomas DA, Yim JJ, Kim DK, Hawrylkiewicz I, Sliwinski P, Hardin M, Fingerlin TE, Schwartz DA, Postma DS, MacNee W, Tobin MD, Silverman EK, Boezen HM, Cho MH (2017) Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet 49(3):426–432. https://doi.org/10.1038/ng.3752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Burkart KM, Sofer T, London SJ, Manichaikul A, Hartwig FP, Yan Q, Soler Artigas M, Avila L, Chen W, Davis Thomas S, Diaz AA, Hall IP, Horta BL, Kaplan RC, Laurie CC, Menezes AM, Morrison JV, Oelsner EC, Rastogi D, Rich SS, Soto-Quiros M, Stilp AM, Tobin MD, Wain LV, Celedon JC, Barr RG (2018) A genome-wide association study in Hispanics/Latinos identifies novel signals for lung function. The Hispanic community health study/study of Latinos. Am J Respir Crit Care Med 198(2):208–219. https://doi.org/10.1164/rccm.201707-1493OC

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Kumar A, Gupta V, Changotra H, Sarin BC, Sehajpal PK (2008) Tumor necrosis factor--alpha and transforming growth factor--beta1 polymorphisms in bronchial asthma. Indian J Med Sci 62(8):323–330. https://doi.org/10.4103/0019-5359.42483

    Article  PubMed  Google Scholar 

  106. Ranjan A, Singh A, Walia GK, Sachdeva MP, Gupta V (2019) Genetic underpinnings of lung function and COPD. J Genet 98

  107. Silverman EK (2020) Genetics of COPD. Annu Rev Physiol 82:413–431. https://doi.org/10.1146/annurev-physiol-021317-121224

    Article  CAS  PubMed  Google Scholar 

  108. Li Y, Yang C, Ma G, Gu X, Chen M, Chen Y, Zhao B, Cui L, Li K (2014) Association of polymorphisms of the receptor for advanced glycation end products gene with COPD in the Chinese population. DNA Cell Biol 33(4):251–258. https://doi.org/10.1089/dna.2013.2303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Miller S, Henry AP, Hodge E, Kheirallah AK, Billington CK, Rimington TL, Bhaker SK, Obeidat M, Melen E, Merid SK, Swan C, Gowland C, Nelson CP, Stewart CE, Bolton CE, Kilty I, Malarstig A, Parker SG, Moffatt MF, Wardlaw AJ, Hall IP, Sayers I (2016) The Ser82 RAGE variant affects lung function and serum RAGE in smokers and sRAGE production in vitro. PLoS One 11(10):e0164041. https://doi.org/10.1371/journal.pone.0164041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Gaens KH, Ferreira I, van der Kallen CJ, van Greevenbroek MM, Blaak EE, Feskens EJ, Dekker JM, Nijpels G, Heine RJ, t Hart LM, de Groot PG, Stehouwer CD, Schalkwijk CG (2009) Association of polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating RAGE levels. J Clin Endocrinol Metab 94 (12):5174–5180. doi:https://doi.org/10.1210/jc.2009-1067

  111. Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Muller M (1998) Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-grand) 44(7):1147–1157

    CAS  Google Scholar 

  112. Serveaux-Dancer M, Jabaudon M, Creveaux I, Belville C, Blondonnet R, Gross C, Constantin JM, Blanchon L, Sapin V (2019) Pathological implications of receptor for advanced glycation end-product (AGER) gene polymorphism. Dis Markers 2019:2067353–2067317. https://doi.org/10.1155/2019/2067353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, Zhao JH, Ramasamy A, Zhai G, Vitart V, Huffman JE, Igl W, Albrecht E, Deloukas P, Henderson J, Granell R, McArdle WL, Rudnicka AR, Barroso I, Loos RJ, Wareham NJ, Mustelin L, Rantanen T, Surakka I, Imboden M, Wichmann HE, Grkovic I, Jankovic S, Zgaga L, Hartikainen AL, Peltonen L, Gyllensten U, Johansson A, Zaboli G, Campbell H, Wild SH, Wilson JF, Glaser S, Homuth G, Volzke H, Mangino M, Soranzo N, Spector TD, Polasek O, Rudan I, Wright AF, Heliovaara M, Ripatti S, Pouta A, Naluai AT, Olin AC, Toren K, Cooper MN, James AL, Palmer LJ, Hingorani AD, Wannamethee SG, Whincup PH, Smith GD, Ebrahim S, McKeever TM, Pavord ID, MacLeod AK, Morris AD, Porteous DJ, Cooper C, Dennison E, Shaheen S, Karrasch S, Schnabel E, Schulz H, Grallert H, Bouatia-Naji N, Delplanque J, Froguel P, Blakey JD, Britton JR, Morris RW, Holloway JW, Lawlor DA, Hui J, Nyberg F, Jarvelin MR, Jackson C, Kahonen M, Kaprio J, Probst-Hensch NM, Koch B, Hayward C, Evans DM, Elliott P, Strachan DP, Hall IP, Tobin MD (2010) Genome-wide association study identifies five loci associated with lung function. Nat Genet 42(1):36–44. https://doi.org/10.1038/ng.501

    Article  CAS  PubMed  Google Scholar 

  114. Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, Franceschini N, van Durme YM, Chen TH, Barr RG, Schabath MB, Couper DJ, Brusselle GG, Psaty BM, van Duijn CM, Rotter JI, Uitterlinden AG, Hofman A, Punjabi NM, Rivadeneira F, Morrison AC, Enright PL, North KE, Heckbert SR, Lumley T, Stricker BH, O'Connor GT, London SJ (2010) Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 42(1):45–52. https://doi.org/10.1038/ng.500

    Article  CAS  PubMed  Google Scholar 

  115. Soler Artigas M, Wain LV, Repapi E, Obeidat M, Sayers I, Burton PR, Johnson T, Zhao JH, Albrecht E, Dominiczak AF, Kerr SM, Smith BH, Cadby G, Hui J, Palmer LJ, Hingorani AD, Wannamethee SG, Whincup PH, Ebrahim S, Smith GD, Barroso I, Loos RJ, Wareham NJ, Cooper C, Dennison E, Shaheen SO, Liu JZ, Marchini J, Dahgam S, Naluai AT, Olin AC, Karrasch S, Heinrich J, Schulz H, McKeever TM, Pavord ID, Heliovaara M, Ripatti S, Surakka I, Blakey JD, Kahonen M, Britton JR, Nyberg F, Holloway JW, Lawlor DA, Morris RW, James AL, Jackson CM, Hall IP, Tobin MD (2011) Effect of five genetic variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects on lung function. Am J Respir Crit Care Med 184(7):786–795. https://doi.org/10.1164/rccm.201102-0192OC

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Li J, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272(26):16498–16506. https://doi.org/10.1074/jbc.272.26.16498

    Article  CAS  PubMed  Google Scholar 

  117. Guo Y, Gong Y, Pan C, Qian Y, Shi G, Cheng Q, Li Q, Ren L, Weng Q, Chen Y, Cheng T, Fan L, Jiang Z, Wan H (2012) Association of genetic polymorphisms with chronic obstructive pulmonary disease in the Chinese Han population: a case-control study. BMC Med Genet 5:64. https://doi.org/10.1186/1755-8794-5-64

    Article  CAS  Google Scholar 

  118. Hall R, Hall IP, Sayers I (2019) Genetic risk factors for the development of pulmonary disease identified by genome-wide association. Respirology 24(3):204–214. https://doi.org/10.1111/resp.13436

    Article  PubMed  Google Scholar 

  119. Niu H, Niu W, Yu T, Dong F, Huang K, Duan R, Qumu S, Lu M, Li Y, Yang T, Wang C (2019) Association of RAGE gene multiple variants with the risk for COPD and asthma in northern Han Chinese. Aging 11 (10):3220-3237. doi:https://doi.org/10.18632/aging.101975

  120. Faiz A, van den Berge M, Vermeulen CJ, Ten Hacken NHT, Guryev V, Pouwels SD (2019) AGER expression and alternative splicing in bronchial biopsies of smokers and never smokers. Respir Res 20(1):70. https://doi.org/10.1186/s12931-019-1038-6

    Article  PubMed Central  PubMed  Google Scholar 

  121. Cho HJ, Xie C, Cai H (2018) AGE-induced neuronal cell death is enhanced in G2019S LRRK2 mutation with increased RAGE expression. Translational neurodegeneration 7:1. https://doi.org/10.1186/s40035-018-0106-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Derakhshanian H, Djazayery A, Javanbakht MH, Eshraghian MR, Mirshafiey A, Jahanabadi S, Ghadbeigi S, Zarei M, Alvandi E, Djalali M (2019) Vitamin D downregulates key genes of diabetes complications in cardiomyocyte. J Cell Physiol 234(11):21352–21358. https://doi.org/10.1002/jcp.28743

    Article  CAS  PubMed  Google Scholar 

  123. Rosenberg SR, Kalhan R (2012) Biomarkers in chronic obstructive pulmonary disease. Translational research : the journal of laboratory and clinical medicine 159(4):228–237. https://doi.org/10.1016/j.trsl.2012.01.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AS and SK are thankful to the Jaypee University of Information Technology, Solan, Himachal Pradesh, India, for the Junior Research Fellowship. An apology is due to the researchers for not citing their contribution in the field due to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

AS and SK performed the literature survey and wrote the first draft and following revisions of the manuscript. MS and BCS participated in the manuscript writing and reviewed the manuscript. HC participated in the manuscript writing, reviewed and edited the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Harish Changotra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kaur, S., Sarkar, M. et al. The AGE-RAGE Axis and RAGE Genetics in Chronic Obstructive Pulmonary Disease. Clinic Rev Allerg Immunol 60, 244–258 (2021). https://doi.org/10.1007/s12016-020-08815-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08815-4

Keywords

Navigation