Clinical Reviews in Allergy & Immunology

, Volume 42, Issue 2, pp 145–153 | Cite as

Hydroxychloroquine: From Malaria to Autoimmunity

  • Ilan Ben-Zvi
  • Shaye Kivity
  • Pnina Langevitz
  • Yehuda Shoenfeld


Quinine was first recognized as a potent antimalarial agent hundreds of years ago. Since then, the beneficial effects of quinine and its more advanced synthetic forms, chloroquine and hydroxychloroquine, have been increasingly recognized in a myriad of other diseases in addition to malaria. In recent years, antimalarials were shown to have various immunomodulatory effects, and currently have an established role in the management of rheumatic diseases, such as systemic lupus erythematosus and rheumatoid arthritis, skin diseases, and in the treatment of chronic Q fever. Lately, additional metabolic, cardiovascular, antithrombotic, and antineoplastic effects of antimalarials were shown. In this review, we discuss the known various immunomodulatory mechanisms of antimalarials and the current evidence for their beneficial effects in various diseases and in potential novel applications.


Chloroquine Hydroxychloroquine Antimalarial Novel Therapy Lupus 


  1. 1.
    Smith CD, Cyr M (1988) The history of lupus erythematosus. From Hippocrates to Osler. Rheum Dis Clin North Am 14(1):1–14PubMedGoogle Scholar
  2. 2.
    Mates M, Nesher G, Zevin S (2007) Quinines—past and present. Harefuah 146(7):560–562, 72PubMedGoogle Scholar
  3. 3.
    Wallace DJ (1996) The history of antimalarials. Lupus 5(Suppl 1):S2–S3PubMedCrossRefGoogle Scholar
  4. 4.
    Page F (1951) Treatment of lupus erythematosus with mepacrine. Lancet 2(6687):755–758PubMedCrossRefGoogle Scholar
  5. 5.
    Clark P, Casas E, Tugwell P, Medina C, Gheno C, Tenorio G et al (1993) Hydroxychloroquine compared with placebo in rheumatoid arthritis. A randomized controlled trial. Ann Intern Med 119(11):1067–1071PubMedGoogle Scholar
  6. 6.
    Molad Y, Gorshtein A, Wysenbeek AJ, Guedj D, Majadla R, Weinberger A et al (2002) Protective effect of hydroxychloroquine in systemic lupus erythematosus. Prospective long-term study of an Israeli cohort. Lupus 11(6):356–361PubMedCrossRefGoogle Scholar
  7. 7.
    Tsakonas E, Joseph L, Esdaile JM, Choquette D, Senecal JL, Cividino A et al (1998) A long-term study of hydroxychloroquine withdrawal on exacerbations in systemic lupus erythematosus. The Canadian Hydroxychloroquine Study Group. Lupus 7(2):80–85PubMedCrossRefGoogle Scholar
  8. 8.
    Kalia S, Dutz JP (2007) New concepts in antimalarial use and mode of action in dermatology. Dermatol Ther 20(4):160–174PubMedCrossRefGoogle Scholar
  9. 9.
    Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75(7):3327–3331PubMedCrossRefGoogle Scholar
  10. 10.
    Ziegler HK, Unanue ER (1982) Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc Natl Acad Sci USA 79(1):175–178PubMedCrossRefGoogle Scholar
  11. 11.
    Sperber K, Quraishi H, Kalb TH, Panja A, Stecher V, Mayer L (1993) Selective regulation of cytokine secretion by hydroxychloroquine: inhibition of interleukin 1 alpha (IL-1-alpha) and IL-6 in human monocytes and T cells. J Rheumatol 20(5):803–808PubMedGoogle Scholar
  12. 12.
    Loffler BM, Bohn E, Hesse B, Kunze H (1985) Effects of antimalarial drugs on phospholipase A and lysophospholipase activities in plasma membrane, mitochondrial, microsomal and cytosolic subcellular fractions of rat liver. Biochim Biophys Acta 835(3):448–455PubMedGoogle Scholar
  13. 13.
    Manku MS, Horrobin DF (1976) Chloroquine, quinine, procaine, quinidine, tricyclic antidepressants, and methylxanthines as prostaglandin agonists and antagonists. Lancet 2(7995):1115–1117PubMedCrossRefGoogle Scholar
  14. 14.
    Lester RS, Burnham TK, Fine G, Murray K (1967) Immunologic concepts of light reactions in lupus erythematosus and polymorphous light eruptions. I. The mechanism of action of hydroxychloroquine. Arch Dermatol 96(1):1–10PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen SN, Yielding KL (1965) Spectrophotometric studies of the interaction of chloroquine with deoxyribonucleic acid. J Biol Chem 240:3123–3131PubMedGoogle Scholar
  16. 16.
    Goldman FD, Gilman AL, Hollenback C, Kato RM, Premack BA, Rawlings DJ (2000) Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 95(11):3460–3466PubMedGoogle Scholar
  17. 17.
    Lesiak A, Narbutt J, Sysa-Jedrzejowska A, Lukamowicz J, McCauliffe DP, Wozniacka A (2010) Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus 19(6):683–688PubMedCrossRefGoogle Scholar
  18. 18.
    Kyburz D, Brentano F, Gay S (2006) Mode of action of hydroxychloroquine in RA—evidence of an inhibitory effect on toll-like receptor signaling. Nat Clin Pract Rheumatol 2(9):458–459PubMedCrossRefGoogle Scholar
  19. 19.
    Youssef W, Yan A, Russell AS (1991) Palindromic rheumatism: a response to chloroquine. J Rheumatol 18(1):35–37PubMedGoogle Scholar
  20. 20.
    Lakhanpal S, Ginsburg WW, Michet CJ, Doyle JA, Moore SB (1988) Eosinophilic fasciitis: clinical spectrum and therapeutic response in 52 cases. Semin Arthritis Rheum 17(4):221–231PubMedCrossRefGoogle Scholar
  21. 21.
    Woo TY, Callen JP, Voorhees JJ, Bickers DR, Hanno R, Hawkins C (1984) Cutaneous lesions of dermatomyositis are improved by hydroxychloroquine. J Am Acad Dermatol 10(4):592–600PubMedCrossRefGoogle Scholar
  22. 22.
    Fox RI, Dixon R, Guarrasi V, Krubel S (1996) Treatment of primary Sjogren’s syndrome with hydroxychloroquine: a retrospective, open-label study. Lupus 5(Suppl 1):S31–S36PubMedCrossRefGoogle Scholar
  23. 23.
    Ashton RE, Hawk JL, Magnus IA (1984) Low-dose oral chloroquine in the treatment of porphyria cutanea tarda. Br J Dermatol 111(5):609–613PubMedCrossRefGoogle Scholar
  24. 24.
    Valls V, Ena J, Enriquez-De-Salamanca R (1994) Low-dose oral chloroquine in patients with porphyria cutanea tarda and low–moderate iron overload. J Dermatol Sci 7(3):169–175PubMedCrossRefGoogle Scholar
  25. 25.
    Murphy GM, Hawk JL, Magnus IA (1987) Hydroxychloroquine in polymorphic light eruption: a controlled trial with drug and visual sensitivity monitoring. Br J Dermatol 116(3):379–386PubMedCrossRefGoogle Scholar
  26. 26.
    Cannistraci C, Lesnoni La Parola I, Falchi M, Picardo M (2005) Treatment of generalized granuloma annulare with hydroxychloroquine. Dermatology 211(2):167–168PubMedCrossRefGoogle Scholar
  27. 27.
    Eisen D (1993) Hydroxychloroquine sulfate (Plaquenil) improves oral lichen planus: an open trial. J Am Acad Dermatol 28(4):609–612PubMedCrossRefGoogle Scholar
  28. 28.
    Chung HS, Hann SK (1997) Lupus panniculitis treated by a combination therapy of hydroxychloroquine and quinacrine. J Dermatol 24(9):569–572PubMedGoogle Scholar
  29. 29.
    Jessop S, Whitelaw DA, Delamere FM (2009) Drugs for discoid lupus erythematosus. Cochrane Database Syst Rev. (4):CD002954Google Scholar
  30. 30.
    Rolain JM, Colson P, Raoult D (2007) Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents 30(4):297–308PubMedCrossRefGoogle Scholar
  31. 31.
    Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R (2003) Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 3(11):722–727PubMedCrossRefGoogle Scholar
  32. 32.
    Savarino A, Gennero L, Sperber K, Boelaert JR (2001) The anti-HIV-1 activity of chloroquine. J Clin Virol 20(3):131–135PubMedCrossRefGoogle Scholar
  33. 33.
    Savarino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E et al (2004) Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 35(3):223–232PubMedCrossRefGoogle Scholar
  34. 34.
    Sperber K, Kalb TH, Stecher VJ, Banerjee R, Mayer L (1993) Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes. AIDS Res Hum Retroviruses 9(1):91–98PubMedCrossRefGoogle Scholar
  35. 35.
    Paton NI, Aboulhab J (2005) Hydroxychloroquine, hydroxyurea and didanosine as initial therapy for HIV-infected patients with low viral load: safety, efficacy and resistance profile after 144 weeks. HIV Med 6(1):13–20PubMedCrossRefGoogle Scholar
  36. 36.
    Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M (2004) In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 323(1):264–268PubMedCrossRefGoogle Scholar
  37. 37.
    Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG et al (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2:69PubMedCrossRefGoogle Scholar
  38. 38.
    Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van Ranst M et al (2009) Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother 53(8):3416–3421PubMedCrossRefGoogle Scholar
  39. 39.
    Blazar BR, Whitley CB, Kitabchi AE, Tsai MY, Santiago J, White N et al (1984) In vivo chloroquine-induced inhibition of insulin degradation in a diabetic patient with severe insulin resistance. Diabetes 33(12):1133–1137PubMedCrossRefGoogle Scholar
  40. 40.
    Smith GD, Amos TA, Mahler R, Peters TJ (1987) Effect of chloroquine on insulin and glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus. Br Med J (Clin Res Ed) 294(6570):465–467CrossRefGoogle Scholar
  41. 41.
    Quatraro A, Consoli G, Magno M, Caretta F, Nardozza A, Ceriello A et al (1990) Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug? Ann Intern Med 112(9):678–681PubMedGoogle Scholar
  42. 42.
    Gerstein HC, Thorpe KE, Taylor DW, Haynes RB (2002) The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas—a randomized trial. Diabetes Res Clin Pract 55(3):209–219PubMedCrossRefGoogle Scholar
  43. 43.
    Emami J, Pasutto FM, Mercer JR, Jamali F (1999) Inhibition of insulin metabolism by hydroxychloroquine and its enantiomers in cytosolic fraction of liver homogenates from healthy and diabetic rats. Life Sci 64(5):325–335PubMedCrossRefGoogle Scholar
  44. 44.
    Powrie JK, Smith GD, Shojaee-Moradie F, Sonksen PH, Jones RH (1991) Mode of action of chloroquine in patients with non-insulin-dependent diabetes mellitus. Am J Physiol 260(6 Pt 1):E897–E904PubMedGoogle Scholar
  45. 45.
    Shojania K, Koehler BE, Elliott T (1999) Hypoglycemia induced by hydroxychloroquine in a type II diabetic treated for polyarthritis. J Rheumatol 26(1):195–196PubMedGoogle Scholar
  46. 46.
    Penn SK, Kao AH, Schott LL, Elliott JR, Toledo FG, Kuller L et al (2010) Hydroxychloroquine and glycemia in women with rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol 37(6):1136–1142PubMedCrossRefGoogle Scholar
  47. 47.
    Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries JF et al (2007) Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA 298(2):187–193PubMedCrossRefGoogle Scholar
  48. 48.
    Rekedal LR, Massarotti E, Garg R, Bhatia R, Gleeson T, Lu B et al (2010) Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases. Arthritis Rheum 62(12):3569–3573PubMedCrossRefGoogle Scholar
  49. 49.
    Wallace DJ, Metzger AL, Stecher VJ, Turnbull BA, Kern PA (1990) Cholesterol-lowering effect of hydroxychloroquine in patients with rheumatic disease: reversal of deleterious effects of steroids on lipids. Am J Med 89(3):322–326PubMedCrossRefGoogle Scholar
  50. 50.
    Hodis HN, Quismorio FP Jr, Wickham E, Blankenhorn DH (1993) The lipid, lipoprotein, and apolipoprotein effects of hydroxychloroquine in patients with systemic lupus erythematosus. J Rheumatol 20(4):661–665PubMedGoogle Scholar
  51. 51.
    Munro R, Morrison E, McDonald AG, Hunter JA, Madhok R, Capell HA (1997) Effect of disease modifying agents on the lipid profiles of patients with rheumatoid arthritis. Ann Rheum Dis 56(6):374–377PubMedCrossRefGoogle Scholar
  52. 52.
    Rahman P, Gladman DD, Urowitz MB, Yuen K, Hallett D, Bruce IN (1999) The cholesterol lowering effect of antimalarial drugs is enhanced in patients with lupus taking corticosteroid drugs. J Rheumatol 26(2):325–330PubMedGoogle Scholar
  53. 53.
    Tam LS, Li EK, Lam CW, Tomlinson B (2000) Hydroxychloroquine has no significant effect on lipids and apolipoproteins in Chinese systemic lupus erythematosus patients with mild or inactive disease. Lupus 9(6):413–416PubMedCrossRefGoogle Scholar
  54. 54.
    Bengtsson C, Andersson SE, Edvinsson L, Edvinsson ML, Sturfelt G, Nived O (2010) Effect of medication on microvascular vasodilatation in patients with systemic lupus erythematosus. Basic Clin Pharmacol Toxicol 107(6):919–924PubMedCrossRefGoogle Scholar
  55. 55.
    Jung H, Bobba R, Su J, Shariati-Sarabi Z, Gladman DD, Urowitz M et al (2010) The protective effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. Arthritis Rheum 62(3):863–868PubMedCrossRefGoogle Scholar
  56. 56.
    Tanay A, Leibovitz E, Frayman A, Zimlichman R, Shargorodsky M, Gavish D (2007) Vascular elasticity of systemic lupus erythematosus patients is associated with steroids and hydroxychloroquine treatment. Ann NY Acad Sci 1108:24–34PubMedCrossRefGoogle Scholar
  57. 57.
    Johnson R, Charnley J (1979) Hydroxychloroquine in prophylaxis of pulmonary embolism following hip arthroplasty. Clin Orthop Relat Res 144:174–177PubMedGoogle Scholar
  58. 58.
    Nosal R, Jancinova V, Petrikova M (1995) Chloroquine inhibits stimulated platelets at the arachidonic acid pathway. Thromb Res 77(6):531–542PubMedCrossRefGoogle Scholar
  59. 59.
    Petri M (1996) Thrombosis and systemic lupus erythematosus: the Hopkins Lupus Cohort perspective. Scand J Rheumatol 25(4):191–193PubMedCrossRefGoogle Scholar
  60. 60.
    Tektonidou MG, Laskari K, Panagiotakos DB, Moutsopoulos HM (2009) Risk factors for thrombosis and primary thrombosis prevention in patients with systemic lupus erythematosus with or without antiphospholipid antibodies. Arthritis Rheum 61(1):29–36PubMedGoogle Scholar
  61. 61.
    Belizna CC, Richard V, Thuillez C, Levesque H, Shoenfeld Y (2007) Insights into atherosclerosis therapy in antiphospholipid syndrome. Autoimmun Rev 7(1):46–51PubMedCrossRefGoogle Scholar
  62. 62.
    Erkan D, Yazici Y, Peterson MG, Sammaritano L, Lockshin MD (2002) A cross-sectional study of clinical thrombotic risk factors and preventive treatments in antiphospholipid syndrome. Rheumatology (Oxford) 41(8):924–929CrossRefGoogle Scholar
  63. 63.
    Edwards MH, Pierangeli S, Liu X, Barker JH, Anderson G, Harris EN (1997) Hydroxychloroquine reverses thrombogenic properties of antiphospholipid antibodies in mice. Circulation 96(12):4380–4384PubMedGoogle Scholar
  64. 64.
    Espinola RG, Pierangeli SS, Gharavi AE, Harris EN (2002) Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb Haemost 87(3):518–522PubMedGoogle Scholar
  65. 65.
    Rand JH, Wu XX, Quinn AS, Ashton AW, Chen PP, Hathcock JJ et al (2010) Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood 115(11):2292–2299PubMedCrossRefGoogle Scholar
  66. 66.
    Rand JH, Wu XX, Quinn AS, Chen PP, Hathcock JJ, Taatjes DJ (2008) Hydroxychloroquine directly reduces the binding of antiphospholipid antibody-beta2-glycoprotein I complexes to phospholipid bilayers. Blood 112(5):1687–1695PubMedCrossRefGoogle Scholar
  67. 67.
    Geser A, Brubaker G, Draper CC (1989) Effect of a malaria suppression program on the incidence of African Burkitt’s lymphoma. Am J Epidemiol 129(4):740–752PubMedGoogle Scholar
  68. 68.
    Maclean KH, Dorsey FC, Cleveland JL, Kastan MB (2008) Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 118(1):79–88PubMedCrossRefGoogle Scholar
  69. 69.
    Lagneaux L, Delforge A, Carlier S, Massy M, Bernier M, Bron D (2001) Early induction of apoptosis in B-chronic lymphocytic leukaemia cells by hydroxychloroquine: activation of caspase-3 and no protection by survival factors. Br J Haematol 112(2):344–352PubMedCrossRefGoogle Scholar
  70. 70.
    Lagneaux L, Delforge A, Dejeneffe M, Massy M, Bernier M, Bron D (2002) Hydroxychloroquine-induced apoptosis of chronic lymphocytic leukemia involves activation of caspase-3 and modulation of Bcl-2/bax/ratio. Leuk Lymphoma 43(5):1087–1095PubMedGoogle Scholar
  71. 71.
    Mansilla E, Marin GH, Nunez L, Drago H, Sturla F, Mertz C et al (2010) The lysosomotropic agent, hydroxychloroquine, delivered in a biodegradable nanoparticle system, overcomes drug resistance of B-chronic lymphocytic leukemia cells in vitro. Cancer Biother Radiopharm 25(1):97–103PubMedCrossRefGoogle Scholar
  72. 72.
    Jiang PD, Zhao YL, Shi W, Deng XQ, Xie G, Mao YQ et al (2008) Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell Physiol Biochem 22(5–6):431–440PubMedCrossRefGoogle Scholar
  73. 73.
    Rahim R, Strobl JS (2009) Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs 20(8):736–745PubMedCrossRefGoogle Scholar
  74. 74.
    Zhou Q, McCracken MA, Strobl JS (2002) Control of mammary tumor cell growth in vitro by novel cell differentiation and apoptosis agents. Breast Cancer Res Treat 75(2):107–117PubMedCrossRefGoogle Scholar
  75. 75.
    Zheng Y, Zhao YL, Deng X, Yang S, Mao Y, Li Z et al (2009) Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest 27(3):286–292PubMedCrossRefGoogle Scholar
  76. 76.
    Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y et al (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10:370PubMedCrossRefGoogle Scholar
  77. 77.
    Fan C, Wang W, Zhao B, Zhang S, Miao J (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 14(9):3218–3222PubMedCrossRefGoogle Scholar
  78. 78.
    Sotelo J, Briceno E, Lopez-Gonzalez MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144(5):337–343PubMedGoogle Scholar
  79. 79.
    Hu C, Solomon VR, Ulibarri G, Lee H (2008) The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine. Bioorg Med Chem 16(17):7888–7893PubMedCrossRefGoogle Scholar
  80. 80.
    Solomon VR, Lee H (2009) Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625(1–3):220–233PubMedCrossRefGoogle Scholar
  81. 81.
    Schultz KR, Gilman AL (1997) The lysosomotropic amines, chloroquine and hydroxychloroquine: a potentially novel therapy for graft-versus-host disease. Leuk Lymphoma 24(3–4):201–210PubMedGoogle Scholar
  82. 82.
    Khoury H, Trinkaus K, Zhang MJ, Adkins D, Brown R, Vij R et al (2003) Hydroxychloroquine for the prevention of acute graft-versus-host disease after unrelated donor transplantation. Biol Blood Marrow Transplant 9(11):714–721PubMedCrossRefGoogle Scholar
  83. 83.
    Fong T, Trinkaus K, Adkins D, Vij R, Devine SM, Tomasson M et al (2007) A randomized double-blind trial of hydroxychloroquine for the prevention of chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 13(10):1201–1206PubMedCrossRefGoogle Scholar
  84. 84.
    Chen PH, Huang YF, Tang CW, Wann SR, Chang HT (2010) Kikuchi–Fujimoto disease: an amazing response to hydroxychloroquine. Eur J Pediatr 169(12):1557–1559PubMedCrossRefGoogle Scholar
  85. 85.
    Rezai K, Kuchipudi S, Chundi V, Ariga R, Loew J, Sha BE (2004) Kikuchi–Fujimoto disease: hydroxychloroquine as a treatment. Clin Infect Dis 39(12):e124–e126PubMedCrossRefGoogle Scholar
  86. 86.
    DeSimone DP, Brilliant HL, Basile J, Bell NH (1989) Granulomatous infiltration of the talus and abnormal vitamin D and calcium metabolism in a patient with sarcoidosis: successful treatment with hydroxychloroquine. Am J Med 87(6):694–696PubMedCrossRefGoogle Scholar
  87. 87.
    O’Leary TJ, Jones G, Yip A, Lohnes D, Cohanim M, Yendt ER (1986) The effects of chloroquine on serum 1, 25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med 315(12):727–730PubMedCrossRefGoogle Scholar
  88. 88.
    Shimoni A, Hershcovici T, Mekhmandarov S, Maor-Kendler Y, Beigel Y (2000) Skeletal sarcoidosis: successful treatment with hydroxychloroquine. Isr Med Assoc J 2(7):558–559PubMedGoogle Scholar
  89. 89.
    Hirshoren N, Eliashar R, Weinberger JM (2010) Hydroxychloroquine for subglottic stenosis: a novel therapy in the battle for air. Laryngoscope 120(4):743–744PubMedCrossRefGoogle Scholar
  90. 90.
    Hussain A, Scelsa SN (2010) Sensory neuronopathy with Ro antibodies: response to combination immunosuppression. J Clin Neuromuscul Dis 11(3):120–123PubMedCrossRefGoogle Scholar
  91. 91.
    Izmirly PM CP, Kim MY DF, Llanos C, C-C N et al (2010) Hydroxychloroquine and prevention of anti-SSA/Ro associated cardiac disease in mothers with a previous child with Neonatal Lupus. Arthritis Rheum 62(10):S306Google Scholar
  92. 92.
    Izmirly PM, Kim MY, Llanos C, Le PU, Guerra MM, Askanase AD et al (2010) Evaluation of the risk of anti-SSA/Ro-SSB/La antibody-associated cardiac manifestations of neonatal lupus in fetuses of mothers with systemic lupus erythematosus exposed to hydroxychloroquine. Ann Rheum Dis. doi:10.1136/ard.2009.119263 PubMedGoogle Scholar
  93. 93.
    Iyamu E, Perdew H, Woods G (2009) Growth inhibitory and differentiation effects of chloroquine and its analogue on human leukemic cells potentiate fetal hemoglobin production by targeting the polyamine pathway. Biochem Pharmacol 77(6):1021–1028PubMedCrossRefGoogle Scholar
  94. 94.
    Taylor WR, White NJ (2004) Antimalarial drug toxicity: a review. Drug Saf 27(1):25–61PubMedCrossRefGoogle Scholar
  95. 95.
    Hochstein P (1971) Glucose-6-phosphate dehydrogenase deficiency: mechanisms of drug-induced hemolysis. Exp Eye Res 11(3):389–395PubMedCrossRefGoogle Scholar
  96. 96.
    Kleinegger CL, Hammond HL, Finkelstein MW (2000) Oral mucosal hyperpigmentation secondary to antimalarial drug therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90(2):189–194PubMedCrossRefGoogle Scholar
  97. 97.
    Bortoli R, Santiago M (2007) Chloroquine ototoxicity. Clin Rheumatol 26(11):1809–1810PubMedCrossRefGoogle Scholar
  98. 98.
    Tehrani R, Ostrowski RA, Hariman R, Jay WM (2008) Ocular toxicity of hydroxychloroquine. Semin Ophthalmol 23(3):201–209PubMedCrossRefGoogle Scholar
  99. 99.
    Wolfe F, Marmor MF (2010) Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care Res (Hoboken) 62(6):775–784CrossRefGoogle Scholar
  100. 100.
    Costedoat-Chalumeau N, Hulot JS, Amoura Z, Delcourt A, Maisonobe T, Dorent R et al (2007) Cardiomyopathy related to antimalarial therapy with illustrative case report. Cardiology 107(2):73–80PubMedCrossRefGoogle Scholar
  101. 101.
    Keating RJ, Bhatia S, Amin S, Williams A, Sinak LJ, Edwards WD (2005) Hydroxychloroquine-induced cardiotoxicity in a 39-year-old woman with systemic lupus erythematosus and systolic dysfunction. J Am Soc Echocardiogr 18(9):981PubMedGoogle Scholar
  102. 102.
    Kwon JB, Kleiner A, Ishida K, Godown J, Ciafaloni E, Looney RJ Jr (2010) Hydroxychloroquine-induced myopathy. J Clin Rheumatol 16(1):28–31PubMedCrossRefGoogle Scholar
  103. 103.
    Siddiqui AK, Huberfeld SI, Weidenheim KM, Einberg KR, Efferen LS (2007) Hydroxychloroquine-induced toxic myopathy causing respiratory failure. Chest 131(2):588–590PubMedCrossRefGoogle Scholar
  104. 104.
    Estes ML, Ewing-Wilson D, Chou SM, Mitsumoto H, Hanson M, Shirey E et al (1987) Chloroquine neuromyotoxicity. Clinical and pathologic perspective. Am J Med 82(3):447–455PubMedCrossRefGoogle Scholar
  105. 105.
    Costedoat-Chalumeau N, Amoura Z, Aymard G, Le TH, Wechsler B, Vauthier D et al (2002) Evidence of transplacental passage of hydroxychloroquine in humans. Arthritis Rheum 46(4):1123–1124PubMedCrossRefGoogle Scholar
  106. 106.
    Clowse ME, Magder L, Witter F, Petri M (2006) Hydroxychloroquine in lupus pregnancy. Arthritis Rheum 54(11):3640–3647PubMedCrossRefGoogle Scholar
  107. 107.
    Levy M, Buskila D, Gladman DD, Urowitz MB, Koren G (1991) Pregnancy outcome following first trimester exposure to chloroquine. Am J Perinatol 8(3):174–178PubMedCrossRefGoogle Scholar
  108. 108.
    Klinger G, Morad Y, Westall CA, Laskin C, Spitzer KA, Koren G et al (2001) Ocular toxicity and antenatal exposure to chloroquine or hydroxychloroquine for rheumatic diseases. Lancet 358(9284):813–814PubMedCrossRefGoogle Scholar
  109. 109.
    Motta M, Tincani A, Faden D, Zinzini E, Lojacono A, Marchesi A et al (2005) Follow-up of infants exposed to hydroxychloroquine given to mothers during pregnancy and lactation. J Perinatol 25(2):86–89PubMedCrossRefGoogle Scholar
  110. 110.
    Costedoat-Chalumeau N, Amoura Z, Huong DL, Lechat P, Piette JC (2005) Safety of hydroxychloroquine in pregnant patients with connective tissue diseases. Review of the literature. Autoimmun Rev 4(2):111–115PubMedCrossRefGoogle Scholar
  111. 111. [online] [database on the Internet]. Available from: Accessed 22 Nov 2010

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ilan Ben-Zvi
    • 1
  • Shaye Kivity
    • 2
  • Pnina Langevitz
    • 3
  • Yehuda Shoenfeld
    • 4
  1. 1.Rheumatology Unit, Zabludowicz Center for Autoimmune Diseases and Department of Internal Medicine FSheba Medical CenterTel-HashomerIsrael
  2. 2.Rheumatology Unit, Zabludowicz Center for Autoimmune Diseases and Department of Internal Medicine A and CSheba Medical CenterTel-HashomerIsrael
  3. 3.Rheumatology Unit, Zabludowicz Center for Autoimmune DiseasesSheba Medical CenterTel-HashomerIsrael
  4. 4.Zabludowicz Center for Autoimmune Diseases and Department of Internal Medicine BSheba Medical CenterTel-HashomerIsrael

Personalised recommendations