Skip to main content
Log in

A Mesenchymal stem cell Aging Framework, from Mechanisms to Strategies

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are extensively researched for therapeutic applications in tissue engineering and show significant potential for clinical use. Intrinsic or extrinsic factors causing senescence may lead to reduced proliferation, aberrant differentiation, weakened immunoregulation, and increased inflammation, ultimately limiting the potential of MSCs. It is crucial to comprehend the molecular pathways and internal processes responsible for the decline in MSC function due to senescence in order to devise innovative approaches for rejuvenating senescent MSCs and enhancing MSC treatment. We investigate the main molecular processes involved in senescence, aiming to provide a thorough understanding of senescence-related issues in MSCs. Additionally, we analyze the most recent advancements in cutting-edge approaches to combat MSC senescence based on current research. We are curious whether the aging process of stem cells results in a permanent “memory” and if cellular reprogramming may potentially revert the aging epigenome to a more youthful state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Maraldi, T., Guida, M., Zavatti, M., Resca, E., Bertoni, L., La Sala, G. B., & De Pol, A. (2015). Nuclear Nox4 Role in Stemness Power of Human Amniotic Fluid Stem Cells. Oxid Med Cell Longev 2015:101304.

  2. Phinney, D. G., Galipeau, J., Krampera, M., Martin, I., Shi, Y., & Sensebe, L. (2013). MSCs: Science and trials. Nature Medicine, 19(7), 812.

    Article  CAS  PubMed  Google Scholar 

  3. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  4. Cui, J., Zhang, W., Huang, E., Wang, J., Liao, J., Li, R., Yu, X., Zhao, C., Zeng, Z., Shu, Y., et al. (2019). BMP9-induced osteoblastic differentiation requires functional notch signaling in mesenchymal stem cells. Laboratory Investigation, 99(1), 58–71.

    Article  CAS  PubMed  Google Scholar 

  5. He, Q., Wang, L., Zhao, R., Yan, F., Sha, S., Cui, C., Song, J., Hu, H., Guo, X., Yang, M., et al. (2020). Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy. Stem Cell Research & Therapy, 11(1), 223.

    Article  CAS  Google Scholar 

  6. Hashemian, S. R., Aliannejad, R., Zarrabi, M., Soleimani, M., Vosough, M., Hosseini, S. E., Hossieni, H., Keshel, S. H., Naderpour, Z., Hajizadeh-Saffar, E., et al. (2021). Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: A case series. Stem Cell Research & Therapy, 12(1), 91.

    Article  CAS  Google Scholar 

  7. Yin, J. Q., Zhu, J., & Ankrum, J. A. (2019). Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng, 3(2), 90–104.

    Article  CAS  PubMed  Google Scholar 

  8. Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., et al. (2019). Cellular Senescence: Defining a path Forward. Cell, 179(4), 813–827.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, X., Hong, Y., Zhang, H., & Li, X. (2020). Mesenchymal stem cell senescence and rejuvenation: Current Status and challenges. Front Cell Dev Biol, 8, 364.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Khademi-Shirvan, M., Ghorbaninejad, M., Hosseini, S., & Baghaban Eslaminejad, M. (2020). The importance of Stem Cell Senescence in Regenerative Medicine. Advances in Experimental Medicine and Biology, 1288, 87–102.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Q., Sun, X., Ding, J., He, P., Liu, Y., Cheng, H., Zhou, C., & Meng, X. (2015). Autoserum: An Optimal Supplement for Bone Marrow Mesenchymal Stem Cells of Liver-Injured Rats. Stem Cells Int 2015:459580.

  12. Lepperdinger, G. (2011). Inflammation and mesenchymal stem cell aging. Current Opinion in Immunology, 23(4), 518–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lei, Q., Gao, F., Liu, T., Ren, W., Chen, L., Cao, Y., Chen, W., Guo, S., Zhang, Q., Chen, W. (2021). Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and slow age-related degeneration. Sci Transl Med 13(578).

  14. Wu, Z., Zhang, W., Song, M., Wang, W., Wei, G., Li, W., Lei, J., Huang, Y., Sang, Y., Chan, P., et al. (2018). Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein and Cell, 9(4), 333–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, J., Ding, Y., Liu, Z., & Liang, X. (2020). Senescence in mesenchymal stem cells: Functional alterations, Molecular mechanisms, and rejuvenation strategies. Front Cell Dev Biol, 8, 258.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cenni, V., Capanni, C., Mattioli, E., Schena, E., Squarzoni, S., Bacalini, M. G., Garagnani, P., Salvioli, S., Franceschi, C., & Lattanzi, G. (2020). Lamin a involvement in ageing processes. Ageing Research Reviews, 62, 101073.

    Article  CAS  PubMed  Google Scholar 

  17. Liang, S., Wang, F., Han, J., & Chen, K. (2020). Latent periodic process inference from single-cell RNA-seq data. Nature Communications, 11(1), 1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hladik, D., Hofig, I., Oestreicher, U., Beckers, J., Matjanovski, M., Bao, X., Scherthan, H., Atkinson, M. J., & Rosemann, M. (2019). Long-term culture of mesenchymal stem cells impairs ATM-dependent recognition of DNA breaks and increases genetic instability. Stem Cell Research & Therapy, 10(1), 218.

    Article  Google Scholar 

  19. Bassi, C., Fortin, J., Snow, B. E., Wakeham, A., Ho, J., Haight, J., You-Ten, A., Cianci, E., Buckler, L., Gorrini, C., et al. (2021). The PTEN and ATM axis controls the G1/S cell cycle checkpoint and tumorigenesis in HER2-positive breast cancer. Cell Death and Differentiation, 28(11), 3036–3051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y., Yang, L., Mao, L., Zhang, L., Zhu, Y., Xu, Y., Cheng, Y., Sun, R., Zhang, Y., Ke, J., et al. (2022). SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell International, 22(1), 74.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alessio, N., Del Gaudio, S., Capasso, S., Di Bernardo, G., Cappabianca, S., Cipollaro, M., Peluso, G., & Galderisi, U. (2015). Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget, 6(10), 8155–8166.

    Article  PubMed  Google Scholar 

  22. Nicolay, N. H., Liang, Y., Lopez Perez, R., Bostel, T., Trinh, T., Sisombath, S., Weber, K. J., Ho, A. D., Debus, J., Saffrich, R., et al. (2015). Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget, 6(4), 2076–2087.

    Article  PubMed  Google Scholar 

  23. Cruet-Hennequart, S., Prendergast, A. M., Shaw, G., Barry, F. P., & Carty, M. P. (2012). Doxorubicin induces the DNA damage response in cultured human mesenchymal stem cells. International Journal of Hematology, 96(5), 649–656.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, H., Huang, B., Xue, S., U, K. P., Tsang, L. L., Zhang, X., Li, G., & Jiang, X. (2020). Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs. Stem Cell Research & Therapy, 11(1), 279.

    Article  CAS  Google Scholar 

  25. Raz, V., Vermolen, B. J., Garini, Y., Onderwater, J. J., Mommaas-Kienhuis, M. A., Koster, A. J., Young, I. T., Tanke, H., & Dirks, R. W. (2008). The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. Journal of Cell Science, 121(Pt 24), 4018–4028.

    Article  CAS  PubMed  Google Scholar 

  26. Ge, Y., Wu, S., Xue, Y., Tao, J., Li, F., Chen, Y., Liu, H., Ma, W., Huang, J., & Zhao, Y. (2016). Preferential extension of short telomeres induced by low extracellular pH. Nucleic Acids Research, 44(17), 8086–8096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajasingh, S., Sigamani, V., Selvam, V., Gurusamy, N., Kirankumar, S., Vasanthan, J., & Rajasingh, J. (2021). Comparative analysis of human induced pluripotent stem cell-derived mesenchymal stem cells and umbilical cord mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 25(18), 8904–8919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aguado, J., di d’Adda, F., & Wolvetang, E. (2020). Telomere transcription in ageing. Ageing Research Reviews, 62, 101115.

    Article  CAS  PubMed  Google Scholar 

  29. Sharpless, N. E., & Sherr, C. J. (2015). Forging a signature of in vivo senescence. Nature Reviews Cancer, 15(7), 397–408.

    Article  CAS  PubMed  Google Scholar 

  30. Guillot, P. V., Gotherstrom, C., Chan, J., Kurata, H., & Fisk, N. M. (2007). Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells, 25(3), 646–654.

    Article  CAS  PubMed  Google Scholar 

  31. Tong, A. S., Stern, J. L., Sfeir, A., Kartawinata, M., de Lange, T., Zhu, X. D., & Bryan, T. M. (2015). ATM and ATR Signaling Regulate the Recruitment of Human Telomerase to telomeres. Cell Rep, 13(8), 1633–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, S. S., Bohrson, C., Pike, A. M., Wheelan, S. J., & Greider, C. W. (2015). ATM kinase is required for Telomere Elongation in Mouse and Human cells. Cell Rep, 13(8), 1623–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tchirkov, A., & Lansdorp, P. M. (2003). Role of oxidative stress in telomere shortening in cultured fibroblasts from normal individuals and patients with ataxia-telangiectasia. Human Molecular Genetics, 12(3), 227–232.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Q., Cao, L., Zou, S., Feng, Y., Miao, X., Huang, L., & Wu, Y. (2022). Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying MicroRNA-181c-5p Promote BMP2-Induced Repair of Cartilage Injury through Inhibition of SMAD7 Expression. Stem Cells Int 2022:1157498.

  35. Okada, M., Kim, H. W., Matsu-ura, K., Wang, Y. G., Xu, M., & Ashraf, M. (2016). Abrogation of Age-Induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells, 34(1), 148–159.

    Article  CAS  PubMed  Google Scholar 

  36. Pervaiz, S., Taneja, R., & Ghaffari, S. (2009). Oxidative stress regulation of stem and progenitor cells. Antioxidants & Redox Signaling, 11(11), 2777–2789.

    Article  CAS  Google Scholar 

  37. Oh, J., Lee, Y. D., & Wagers, A. J. (2014). Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nature Medicine, 20(8), 870–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Korolchuk, V. I., Miwa, S., Carroll, B., & von Zglinicki, T. (2017). Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 21:7–13.

  39. Ping, Z., Zhang, L. F., Cui, Y. J., Chang, Y. M., Jiang, C. W., Meng, Z. Z., Xu, P., Liu, H. Y., Wang, D. Y., & Cao, X. B. (2015). The Protective Effects of Salidroside from Exhaustive Exercise-Induced Heart Injury by Enhancing the PGC-1 alpha -NRF1/NRF2 Pathway and Mitochondrial Respiratory Function in Rats. Oxid Med Cell Longev 2015:876825.

  40. Fang, E. F., Hou, Y., Palikaras, K., Adriaanse, B. A., Kerr, J. S., Yang, B., Lautrup, S., Hasan-Olive, M. M., Caponio, D., Dan, X., et al. (2019). Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience, 22(3), 401–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, F., Peng, W., Zhang, J., Dong, W., Wu, J., Wang, T., & Xie, Z. (2020). P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell Death and Disease, 11(1), 42.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Matsuda, N., & Tanaka, K. (2010). Uncovering the roles of PINK1 and parkin in mitophagy. Autophagy, 6(7), 952–954.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Checler, F., Goiran, T., & Alves da Costa, C. (2018). Nuclear TP53: An unraveled function as transcriptional repressor of PINK1. Autophagy, 14(6), 1099–1101.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsujimoto, T., Mori, T., Houri, K., Onodera, Y., Takehara, T., Shigi, K., Nakao, S., Teramura, T., & Fukuda, K. (2020). miR-155 inhibits mitophagy through suppression of BAG5, a partner protein of PINK1. Biochemical and Biophysical Research Communications, 523(3), 707–712.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodriguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A. L., et al. (2016). Autophagy maintains stemness by preventing senescence. Nature, 529(7584), 37–42.

    Article  CAS  PubMed  Google Scholar 

  46. Guo, S. D., Yan, S. T., Li, W., Zhou, H., Yang, J. P., Yao, Y., Shen, M. J., Zhang, L. W., Zhang, H. B., & Sun, L. C. (2020). HDAC6 promotes sepsis development by impairing PHB1-mediated mitochondrial respiratory chain function. Aging (Albany NY), 12(6), 5411–5422.

    Article  CAS  PubMed  Google Scholar 

  47. Benameur, L., Charif, N., Li, Y., Stoltz, J. F., & de Isla, N. (2015). Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells. Bio-medical Materials and Engineering, 25(1 Suppl), 41–46.

    Article  PubMed  Google Scholar 

  48. Burova, E., Borodkina, A., Shatrova, A., & Nikolsky, N. (2013). Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxidative Medicine and Cellular Longevity, 2013, 474931.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ko, E., Lee, K. Y., & Hwang, D. S. (2012). Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells and Development, 21(11), 1877–1886.

    Article  CAS  PubMed  Google Scholar 

  50. Sahin, E., & Depinho, R. A. (2010). Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature, 464(7288), 520–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeong, S. G., & Cho, G. W. (2015). Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochemical and Biophysical Research Communications, 460(4), 971–976.

    Article  CAS  PubMed  Google Scholar 

  52. Passos, J. F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., Wappler, I., Birket, M. J., Harold, G., Schaeuble, K., et al. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biology, 5(5), e110.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Passos, J. F., & von Zglinicki, T. (2005). Mitochondria, telomeres and cell senescence. Experimental Gerontology, 40(6), 466–472.

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Prat, L., Sousa-Victor, P., & Munoz-Canoves, P. (2017). Proteostatic and Metabolic Control of Stemness. Cell Stem Cell, 20(5), 593–608.

    Article  CAS  PubMed  Google Scholar 

  55. Vilchez, D., Boyer, L., Morantte, I., Lutz, M., Merkwirth, C., Joyce, D., Spencer, B., Page, L., Masliah, E., Berggren, W. T., et al. (2012). Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature, 489(7415), 304–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aguilo, F., Zhang, F., Sancho, A., Fidalgo, M., Di Cecilia, S., Vashisht, A., Lee, D. F., Chen, C. H., Rengasamy, M., Andino, B., et al. (2015). Coordination of m(6)a mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell, 17(6), 689–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. You, K. T., Park, J., & Kim, V. N. (2015). Role of the small subunit processome in the maintenance of pluripotent stem cells. Genes & Development, 29(19), 2004–2009.

    Article  CAS  Google Scholar 

  58. Artan, M., Hwang, A. B., Lee, S. V., & Nam, H. G. (2015). Meeting Report: International Symposium on the Genetics of Aging and Life History II. Aging (Albany NY) 7(6):362–369.

  59. Ruz, C., Alcantud, J. L., Vives Montero, F., Duran, R., & Bandres-Ciga, S. (2020). Proteotoxicity and Neurodegenerative Diseases. International journal of molecular sciences 21(16).

  60. Mizushima, N., & Komatsu, M. (2011). Autophagy: Renovation of cells and tissues. Cell, 147(4), 728–741.

    Article  CAS  PubMed  Google Scholar 

  61. Nixon, R. A. (2013). The role of autophagy in neurodegenerative disease. Nature Medicine, 19(8), 983–997.

    Article  CAS  PubMed  Google Scholar 

  62. Klionsky, D. J., Codogno, P., Cuervo, A. M., Deretic, V., Elazar, Z., Fueyo-Margareto, J., Gewirtz, D. A., Kroemer, G., Levine, B., Mizushima, N., et al. (2010). A comprehensive glossary of autophagy-related molecules and processes. Autophagy, 6(4), 438–448.

    Article  PubMed  Google Scholar 

  63. Vilchez, D., Simic, M. S., & Dillin, A. (2014). Proteostasis and aging of stem cells. Trends in Cell Biology, 24(3), 161–170.

    Article  CAS  PubMed  Google Scholar 

  64. Chichester, L., Wylie, A. T., Craft, S., & Kavanagh, K. (2015). Muscle heat shock protein 70 predicts insulin resistance with aging. The Journals of Gerontology Series A Biological Sciences and Medical Sciences, 70(2), 155–162.

    Article  CAS  PubMed  Google Scholar 

  65. Gottschling, D. E., & Nystrom, T. (2017). The upsides and downsides of Organelle Interconnectivity. Cell, 169(1), 24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goloubinoff, P. (2017). Editorial: The HSP70 Molecular Chaperone machines. Front Mol Biosci, 4, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Drew, B. G., Ribas, V., Le, J. A., Henstridge, D. C., Phun, J., Zhou, Z., Soleymani, T., Daraei, P., Sitz, D., Vergnes, L., et al. (2014). HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes, 63(5), 1488–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, J. H., Yoon, Y. M., Song, K. H., Noh, H., & Lee, S. H. (2020). Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging cell, 19(3), e13111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Andersson, S., Romero, A., Rodrigues, J. I., Hua, S., Hao, X., Jacobson, T., Karl, V., Becker, N., Ashouri, A., Rauch, S. (2021). Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. Journal of Cell Science 134(11).

  70. Ng, T. T., Mak, K. H., Popp, C., & Ng, R. K. (2020). Murine mesenchymal stromal cells retain biased differentiation plasticity towards their tissue of Origin. Cells 9(3).

  71. Lan, Y. H., Pan, H., Li, C., Banks, K. M., Sam, J., Ding, B., Elemento, O., Goll, M. G., & Evans, T. (2019). TETs regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Rep, 26(3), 720–.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, W., Qu, J., Liu, G. H., & Belmonte, J. C. I. (2020). The ageing epigenome and its rejuvenation. Nature Reviews Molecular cell Biology, 21(3), 137–150.

    Article  CAS  PubMed  Google Scholar 

  73. Torano, E. G., Bayon, G. F., Del Real, A., Sierra, M. I., Garcia, M. G., Carella, A., Belmonte, T., Urdinguio, R. G., Cubillo, I., Garcia-Castro, J., et al. (2016). Age-associated hydroxymethylation in human bone-marrow mesenchymal stem cells. J Transl Med, 14(1), 207.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schellenberg, A., Lin, Q., Schuler, H., Koch, C. M., Joussen, S., Denecke, B., Walenda, G., Pallua, N., Suschek, C. V., Zenke, M., et al. (2011). Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany NY), 3(9), 873–888.

    Article  CAS  PubMed  Google Scholar 

  75. Franzen, J., Zirkel, A., Blake, J., Rath, B., Benes, V., Papantonis, A., & Wagner, W. (2017). Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell, 16(1), 183–191.

    Article  CAS  PubMed  Google Scholar 

  76. Pasumarthy, K. K., Doni Jayavelu, N., Kilpinen, L., Andrus, C., Battle, S. L., Korhonen, M., Lehenkari, P., Lund, R., Laitinen, S., & Hawkins, R. D. (2017). Methylome Analysis of Human Bone Marrow MSCs reveals extensive age- and Culture-Induced changes at Distal Regulatory Elements. Stem Cell Reports, 9(3), 999–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koch, C. M., Reck, K., Shao, K., Lin, Q., Joussen, S., Ziegler, P., Walenda, G., Drescher, W., Opalka, B., May, T., et al. (2013). Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Research, 23(2), 248–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zheng, Y., He, L., Wan, Y., & Song, J. (2013). H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: An epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells and Development, 22(2), 256–267.

    Article  CAS  PubMed  Google Scholar 

  79. Glaser, L. V., Steiger, M., Fuchs, A., van Bömmel, A., Einfeldt, E., Chung, H. R., Vingron, M., & Meijsing, S. H. (2021). Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq. Nucleic Acids Research, 49(21), 12178–12195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, Y., Zhou, Y. L., Wu, H. W., Wang, L. S., Guo, R. Z., Yin, H. S., Wang, J., & Ai, S. Y. (2020). Photoelectrochemical assay for histone acetyltransferase based on polydopamine sensitized layered WS 2. Sensor Actuat B-Chem 319.

  81. Jung, J. W., Lee, S., Seo, M. S., Park, S. B., Kurtz, A., Kang, S. K., & Kang, K. S. (2010). Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cellular and Molecular life Sciences: CMLS, 67(7), 1165–1176.

    Article  CAS  PubMed  Google Scholar 

  82. Li, Z., Liu, C., Xie, Z., Song, P., Zhao, R. C., Guo, L., Liu, Z., & Wu, Y. (2011). Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PloS One, 6(6), e20526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kukolj, T., Trivanovic, D., Mojsilovic, S., Djordjevic, I. O., Obradovic, H., Krstic, J., Jaukovic, A., & Bugarski, D. (2019). IL-33 guides osteogenesis and increases proliferation and pluripotency marker expression in dental stem cells. Cell Proliferat 52(1).

  84. Khanban, H., Fattahi, E., & Talkhabi, M. (2019). In vivo administration of G9a inhibitor A366 decreases osteogenic potential of bone marrow-derived mesenchymal stem cells. Excli Journal, 18, 300–309.

    PubMed  PubMed Central  Google Scholar 

  85. Cakouros, D., Isenmann, S., Cooper, L., Zannettino, A., Anderson, P., Glackin, C., & Gronthos, S. (2012). Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Molecular and Cellular Biology, 32(8), 1433–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10(1), 55–63.

    Article  CAS  PubMed  Google Scholar 

  87. Lyashenko, N., Winter, M., Migliorini, D., Biechele, T., Moon, R. T., & Hartmann, C. (2011). Differential requirement for the dual functions of beta-catenin in embryonic stem cell self-renewal and germ layer formation. Nature Cell Biology, 13(7), 753–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jeoung, J. Y., Nam, H. Y., Kwak, J., Jin, H. J., Lee, H. J., Lee, B. W., Baek, J. H., Eom, J. S., Chang, E. J., Shin, D. M., et al. (2015). A decline in Wnt3a signaling is necessary for mesenchymal stem cells to proceed to replicative senescence. Stem Cells and Development, 24(8), 973–982.

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, L., Zhang, Y., Gao, Y., Geng, P., Lu, Y., Liu, X., Yao, R., Hou, P., Liu, D., Lu, J., et al. (2015). JMJD3 promotes SAHF formation in senescent WI38 cells by triggering an interplay between demethylation and phosphorylation of RB protein. Cell Death and Differentiation, 22(10), 1630–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tan, Y. N., Hu, Y. T., Xiao, Q., Tang, Y., Chen, H. Y., He, J. J., Chen, L. B., Jiang, K., Wang, Z. H., Yuan, Y., et al. (2020). Silencing of brain-expressed X-linked 2 (BEX2) promotes colorectal cancer metastasis through the hedgehog signaling pathway. International Journal of Biological Sciences, 16(2), 228–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gu, Z., Tan, W., Feng, G., Meng, Y., Shen, B., Liu, H., & Cheng, C. (2014). Wnt/beta-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway. Molecular and Cellular Biochemistry, 387(1–2), 27–37.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, D. Y., Pan, Y., Zhang, C., Yan, B. X., Yu, S. S., Wu, D. L., Shi, M. M., Shi, K., Cai, X. X., Zhou, S. S., et al. (2013). Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production. Molecular and Cellular Biochemistry, 374(1–2), 13–20.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, D. Y., Wang, H. J., & Tan, Y. Z. (2011). Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS One, 6(6), e21397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y., Alexander, P. B., & Wang, X. F. (2017). TGF-beta Family Signaling in the control of cell proliferation and survival. Cold Spring Harbor Perspectives in Biology 9(4).

  95. Debacq-Chainiaux, F., Borlon, C., Pascal, T., Royer, V., Eliaers, F., Ninane, N., Carrard, G., Friguet, B., de Longueville, F., Boffe, S., et al. (2005). Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. Journal of Cell Science, 118(Pt 4), 743–758.

    Article  CAS  PubMed  Google Scholar 

  96. Minagawa, S., Araya, J., Numata, T., Nojiri, S., Hara, H., Yumino, Y., Kawaishi, M., Odaka, M., Morikawa, T., Nishimura, S. L., et al. (2011). Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 300(3), L391–401.

    Article  CAS  PubMed  Google Scholar 

  97. Quere, R., Saint-Paul, L., Carmignac, V., Martin, R. Z., Chretien, M. L., Largeot, A., Hammann, A., Pais de Barros, J. P., Bastie, J. N., & Delva, L. (2014). Tif1gamma regulates the TGF-beta1 receptor and promotes physiological aging of hematopoietic stem cells. Proc Natl Acad Sci U S A, 111(29), 10592–10597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, J., Niu, J., Li, X., Wang, X., Guo, Z., & Zhang, F. (2014). TGF-beta1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. Bmc Developmental Biology, 14, 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kawamura, H., Nakatsuka, R., Matsuoka, Y., Sumide, K., Fujioka, T., Asano, H., Iida, H., & Sonoda, Y. (2018). TGF-beta signaling accelerates senescence of human bone-derived CD271 and SSEA-4 double-positive mesenchymal stromal cells. Stem Cell Reports, 10(3), 920–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jones, K. M., Saric, N., Russell, J. P., Andoniadou, C. L., Scambler, P. J., & Basson, M. A. (2015). CHD7 maintains neural stem cell quiescence and prevents premature stem cell depletion in the adult Hippocampus. Stem Cells, 33(1), 196–210.

    Article  CAS  PubMed  Google Scholar 

  101. Forte, E., Raja, A. N., Shamulailatpam, P., Manzano, M., Schipma, M. J., Casey, J. L., & Gottwein, E. (2015). MicroRNA-Mediated Transformation by the Kaposi’s Sarcoma-Associated Herpesvirus Kaposin Locus. Journal of Virology, 89(4), 2333–2341.

    Article  PubMed  Google Scholar 

  102. Tripathi, V., Sixt, K. M., Xu, X., & Zhang, Y. E. (2017). Direct regulation of alternative splicing by Smad3 through PCBP1 is essential to the tumor-promoting role of transforming growth factor beta1. Cancer Research 77.

  103. Jo, E., Park, S. J., Choi, Y. S., Jeon, W. K., & Kim, B. C. (2015). Kaempferol suppresses transforming growth Factor-β1-Induced epithelial-to-mesenchymal transition and Migration of A549 Lung Cancer cells by inhibiting Akt1-Mediated phosphorylation of Smad3 at Threonine-179. Neoplasia (New York, N.Y.), 17(7), 525–537.

    Article  CAS  PubMed  Google Scholar 

  104. Jiang, W. J., Wang, X. Y., Su, S. W., Du, S., & Song, H. Q. (2022). Identifying the shared genes and KEGG pathways of Resolvin D1-targeted network and osteoarthritis using bioinformatics. Bioengineered, 13(4), 9839–9854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, F., Shi, J., Zhang, Y., Lian, A., Han, X., Zuo, K., Liu, M., Zheng, T., Zou, F., Liu, X. (2019). NANOG Attenuates Hair Follicle-Derived Mesenchymal Stem Cell Senescence by Upregulating PBX1 and Activating AKT Signaling. Oxidative medicine and cellular longevity 2019:4286213.

  106. Liang, X., Ding, Y., Lin, F., Zhang, Y., Zhou, X., Meng, Q., Lu, X., Jiang, G., Zhu, H., Chen, Y., et al. (2019). Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. The Faseb Journal, 33(3), 4559–4570.

    Article  CAS  PubMed  Google Scholar 

  107. Schaub, T., Gurgen, D., Maus, D., Lange, C., Tarabykin, V., Dragun, D., & Hegner, B. (2019). mTORC1 and mTORC2 differentially regulate cell Fate Programs to Coordinate Osteoblastic differentiation in mesenchymal stromal cells. Scientific Reports, 9(1), 20071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Antonioli, E., Torres, N., Ferretti, M., Piccinato, C. A., & Sertie, A. L. (2019). Individual response to mTOR inhibition in delaying replicative senescence of mesenchymal stromal cells. PloS One, 14(1), e0204784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, M., Teng, S., Ma, C., Yu, Y., Wang, P., & Yi, C. (2018). Ascorbic acid inhibits senescence in mesenchymal stem cells through ROS and AKT/mTOR signaling. Cytotechnology, 70(5), 1301–1313.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang, D., Lu, H., Chen, Z., Wang, Y., Lin, J., Xu, S., Zhang, C., Wang, B., Yuan, Z., Feng, X., et al. (2017). High glucose induces the aging of mesenchymal stem cells via Akt/mTOR signaling. Molecular Medicine Reports, 16(2), 1685–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gharibi, B., Farzadi, S., Ghuman, M., & Hughes, F. J. (2014). Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem Cells, 32(8), 2256–2266.

    Article  CAS  PubMed  Google Scholar 

  112. Al-Azab, M., Wang, B., Elkhider, A., Walana, W., Li, W., Yuan, B., Ye, Y., Tang, Y., Almoiliqy, M., Adlat, S., et al. (2020). Indian hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany Ny), 12(7), 5693–5715.

    Article  CAS  PubMed  Google Scholar 

  113. Coutu, D. L., Francois, M., & Galipeau, J. (2011). Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood, 117(25), 6801–6812.

    Article  CAS  PubMed  Google Scholar 

  114. Ito, T., Sawada, R., Fujiwara, Y., Seyama, Y., & Tsuchiya, T. (2007). FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochemical and Biophysical Research Communications, 359(1), 108–114.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, J. M., Feng, F. E., Wang, Q. M., Zhu, X. L., Fu, H. X., Xu, L. P., Liu, K. Y., Huang, X. J., & Zhang, X. H. (2016). Platelet-derived growth Factor-BB protects mesenchymal stem cells (MSCs) derived from Immune Thrombocytopenia patients against apoptosis and senescence and maintains MSC-Mediated immunosuppression. Stem Cells Transl Med, 5(12), 1631–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Song, H. F., He, S., Li, S. H., Yin, W. J., Wu, J., Guo, J., Shao, Z. B., Zhai, X. Y., Gong, H., Lu, L., et al. (2017). Aged human multipotent mesenchymal stromal cells can be rejuvenated by neuron-derived neurotrophic factor and improve heart function after Injury. JACC Basic to Translational Science, 2(6), 702–716.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chen, C. Y., Tseng, K. Y., Lai, Y. L., Chen, Y. S., Lin, F. H., & Lin, S. (2017). Overexpression of insulin-like Growth factor 1 enhanced the osteogenic capability of aging bone marrow mesenchymal stem cells. Theranostics, 7(6), 1598–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, D., Yan, B., Yu, S., Zhang, C., Wang, B., Wang, Y., Wang, J., Yuan, Z., Zhang, L., & Pan, J. (2015). Coenzyme Q10 inhibits the aging of mesenchymal stem cells induced by D-galactose through Akt/mTOR signaling. Oxidative medicine and cellular longevity 2015:867293.

  119. Cao, Y., Yang, T., Gu, C., & Yi, D. (2013). Pigment epithelium-derived factor delays cellular senescence of human mesenchymal stem cells in vitro by reducing oxidative stress. Cell Biology International, 37(4), 305–313.

    Article  CAS  PubMed  Google Scholar 

  120. Xia, W., & Hou, M. (2018). Macrophage migration inhibitory factor rescues mesenchymal stem cells from doxorubicin-induced senescence though the PI3K-Akt signaling pathway. International Journal of Molecular Medicine, 41(2), 1127–1137.

    CAS  PubMed  Google Scholar 

  121. Park, S. Y., Jeong, A. J., Kim, G. Y., Jo, A., Lee, J. E., Leem, S. H., Yoon, J. H., Ye, S. K., & Chung, J. W. (2017). Lactoferrin protects human mesenchymal stem cells from oxidative stress-Induced Senescence and apoptosis. Journal of Microbiology and Biotechnology, 27(10), 1877–1884.

    Article  CAS  PubMed  Google Scholar 

  122. Bahmani, B., Roudkenar, M. H., Halabian, R., Jahanian-Najafabadi, A., Amiri, F., & Jalili, M. A. (2014). Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress & Chaperones, 19(5), 685–693.

    Article  CAS  Google Scholar 

  123. Alessio, N., Stellavato, A., Squillaro, T., Del Gaudio, S., Di Bernardo, G., Peluso, G., De Rosa, M., Schiraldi, C., & Galderisi, U. (2018). Hybrid complexes of high and low molecular weight hyaluronan delay in vitro replicative senescence of mesenchymal stromal cells: A pilot study for future therapeutic application. Aging (Albany Ny), 10(7), 1575–1585.

    Article  CAS  PubMed  Google Scholar 

  124. Wu, G., Xu, R., Zhang, P., Xiao, T., Fu, Y., Zhang, Y., Du, Y., Ye, J., Cheng, J., & Jiang, H. (2018). Estrogen regulates stemness and senescence of bone marrow stromal cells to prevent osteoporosis via ERbeta-SATB2 pathway. Journal of Cellular Physiology, 233(5), 4194–4204.

    Article  CAS  PubMed  Google Scholar 

  125. Breu, A., Sprinzing, B., Merkl, K., Bechmann, V., Kujat, R., Jenei-Lanzl, Z., Prantl, L., & Angele, P. (2011). Estrogen reduces cellular aging in human mesenchymal stem cells and chondrocytes. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 29(10), 1563–1571.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, M., Du, Y., Lu, R., Shu, Y., Zhao, W., Li, Z., Zhang, Y., Liu, R., Yang, T., Luo, S. (2016). Cholesterol Retards Senescence in Bone Marrow Mesenchymal Stem Cells by Modulating Autophagy and ROS/p53/p21(Cip1/Waf1) Pathway. Oxidative medicine and cellular longevity 2016:7524308.

  127. Zhou, T., Yan, Y., Zhao, C., Xu, Y., Wang, Q., & Xu, N. (2019). Resveratrol improves osteogenic differentiation of senescent bone mesenchymal stem cells through inhibiting endogenous reactive oxygen species production via AMPK activation. Redox Report: Communications in free Radical Research, 24(1), 62–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lv, Y. J., Yang, Y., Sui, B. D., Hu, C. H., Zhao, P., Liao, L., Chen, J., Zhang, L. Q., Yang, T. T., Zhang, S. F., et al. (2018). Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice. Theranostics, 8(9), 2387–2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhou, L., Chen, X., Liu, T., Gong, Y., Chen, S., Pan, G., Cui, W., Luo, Z. P., Pei, M., Yang, H., et al. (2015). Melatonin reverses H2 O2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. Journal of Pineal Research, 59(2), 190–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang, F., Yang, L., Li, Y., Yan, G., Feng, C., Liu, T., Gong, R., Yuan, Y., Wang, N., Idiiatullina, E. (2017). Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence. Journal of Pineal Research 63(3).

  131. Shuai, Y., Liao, L., Su, X., Yu, Y., Shao, B., Jing, H., Zhang, X., Deng, Z., & Jin, Y. (2016). Melatonin Treatment improves mesenchymal stem cells therapy by preserving stemness during long-term in Vitro Expansion. Theranostics, 6(11), 1899–1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, C., Wei, G. J., Xu, L., Rong, J. S., Tao, S. Q., & Wang, Y. S. (2017). The involvement of senescence induced by the telomere shortness in the decline of osteogenic differentiation in BMSCs. European Review for Medical and Pharmacological Sciences, 21(5), 1117–1124.

    CAS  PubMed  Google Scholar 

  133. Chen, H., Shi, B., Feng, X., Kong, W., Chen, W., Geng, L., Chen, J., Liu, R., Li, X., Chen, W., et al. (2015). Leptin and neutrophil-activating peptide 2 promote mesenchymal stem cell senescence through activation of the phosphatidylinositol 3-Kinase/Akt pathway in patients with systemic Lupus Erythematosus. Arthritis & Rheumatology (Hoboken NJ), 67(9), 2383–2393.

    Article  CAS  Google Scholar 

  134. Gurung, S., Williams, S., Deane, J. A., Werkmeister, J. A., & Gargett, C. E. (2018). The transcriptome of human endometrial mesenchymal stem cells under TGFbetaR inhibition reveals improved potential for cell-based therapies. Front Cell Dev Biol, 6, 164.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Khorraminejad-Shirazi, M., Sani, M., Talaei-Khozani, T., Dorvash, M., Mirzaei, M., Faghihi, M. A., Monabati, A., & Attar, A. (2020). AICAR and nicotinamide treatment synergistically augment the proliferation and attenuate senescence-associated changes in mesenchymal stromal cells. Stem Cell Research & Therapy, 11(1), 45.

    Article  CAS  Google Scholar 

  136. Li, Y., Zhang, W., Chang, L., Han, Y., Sun, L., Gong, X., Tang, H., Liu, Z., Deng, H., Ye, Y., et al. (2016). Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein and Cell, 7(7), 478–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yan, X., Ehnert, S., Culmes, M., Bachmann, A., Seeliger, C., Schyschka, L., Wang, Z., Rahmanian-Schwarz, A., Stockle, U., De Sousa, P. A., et al. (2014). 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PloS One, 9(6), e90846.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Marycz, K., Houston, J. M. I., Weiss, C., Rocken, M., & Kornicka, K. (2019). 5-Azacytidine and Resveratrol Enhance Chondrogenic Differentiation of Metabolic Syndrome-Derived Mesenchymal Stem Cells by Modulating Autophagy. Oxidative medicine and cellular longevity 2019:1523140.

  139. Chang, T. C., Hsu, M. F., Shih, C. Y., & Wu, K. K. (2017). 5-methoxytryptophan protects MSCs from stress induced premature senescence by upregulating FoxO3a and mTOR. Scientific Reports, 7(1), 11133.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Klotz, B., Mentrup, B., Regensburger, M., Zeck, S., Schneidereit, J., Schupp, N., Linden, C., Merz, C., Ebert, R., & Jakob, F. (2012). 1,25-dihydroxyvitamin D3 treatment delays cellular aging in human mesenchymal stem cells while maintaining their multipotent capacity. PloS One, 7(1), e29959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ji, J., Fu, T., Dong, C., Zhu, W., Yang, J., Kong, X., Zhang, Z., Bao, Y., Zhao, R., Ge, X., et al. (2019). Targeting HMGB1 by ethyl pyruvate ameliorates systemic lupus erythematosus and reverses the senescent phenotype of bone marrow-mesenchymal stem cells. Aging (Albany Ny), 11(13), 4338–4353.

    Article  CAS  PubMed  Google Scholar 

  142. Wei, N., Yu, Y., Joshi, V., Schmidt, T., Qian, F., Salem, A. K., Stanford, C., & Hong, L. (2013). Glucocorticoid receptor antagonist and siRNA prevent senescence of human bone marrow mesenchymal stromal cells in vitro. Cell and Tissue Research, 354(2), 461–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xu, Y., Yuan, H., Luo, Y., Zhao, Y. J., & Xiao, J. H. (2020). Ganoderic Acid D Protects Human Amniotic Mesenchymal Stem Cells against Oxidative Stress-Induced Senescence through the PERK/NRF2 Signaling Pathway. Oxidative medicine and cellular longevity 2020:8291413.

  144. Strong, A. L., Jones, R. B. Jr., Glowacki, J., Boue, S. M., Burow, M. E., & Bunnell, B. A. (2017). Glycinol enhances osteogenic differentiation and attenuates the effects of age on mesenchymal stem cells. Regenerative Medicine, 12(5), 513–524.

    Article  CAS  PubMed  Google Scholar 

  145. Wang, Z., Jiang, R., Wang, L., Chen, X., Xiang, Y., Chen, L., Xiao, M., Ling, L., & Wang, Y. (2020). Ginsenoside Rg1 Improves Differentiation by Inhibiting Senescence of Human Bone Marrow Mesenchymal Stem Cell via GSK-3beta and beta-Catenin. Stem Cells Int 2020:2365814.

  146. Wang, K., Su, Y., Liang, Y. T., Song, Y. H., & Wang, L. P. (2019). Oral DhHP-6 for the treatment of type 2 diabetes Mellitus. International Journal of Molecular Sciences 20(6).

  147. Geng, L., Liu, Z., Zhang, W., Li, W., Wu, Z., Wang, W., Ren, R., Su, Y., Wang, P., Sun, L., et al. (2019). Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein and Cell, 10(6), 417–435.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, D., Yu, K., Yang, J., Xie, S., Yang, J., & Tan, L. (2020). Senolytic controls bone marrow mesenchymal stem cells fate improving bone formation. Am J Transl Res, 12(6), 3078–3088.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Suvakov, S., Cubro, H., White, W. M., Butler Tobah, Y. S., Weissgerber, T. L., Jordan, K. L., Zhu, X. Y., Woollard, J. R., Chebib, F. T., Milic, N. M., et al. (2019). Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biology of sex Differences, 10(1), 49.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chen, G., Zhang, Y., Yu, S., Sun, W., & Miao, D. (2019). Bmi1 overexpression in mesenchymal stem cells exerts Antiaging and Antiosteoporosis effects by inactivating p16/p19 signaling and inhibiting oxidative stress. Stem Cells, 37(9), 1200–1211.

    Article  CAS  PubMed  Google Scholar 

  151. Son, S., Liang, M. S., Lei, P., Xue, X., Furlani, E. P., & Andreadis, S. T. (2015). Magnetofection mediated transient NANOG overexpression enhances proliferation and myogenic differentiation of human hair follicle derived mesenchymal stem cells. Bioconjugate Chemistry, 26(7), 1314–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, H., Liu, P., Xu, S., Li, Y., Dekker, J. D., Li, B., Fan, Y., Zhang, Z., Hong, Y., Yang, G., et al. (2017). FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. The Journal of Clinical Investigation, 127(4), 1241–1253.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Fu, L., Hu, Y., Song, M., Liu, Z., Zhang, W., Yu, F. X., Wu, J., Wang, S., Izpisua Belmonte, J. C., Chan, P., et al. (2019). Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biology, 17(4), e3000201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li, Z. G., Li, J., Kong, Y. F., Yan, S., Ahmad, N., & Liu, X. Q. (2017). Plk1 phosphorylation of Mre11 antagonizes the DNA damage response. Cancer Research, 77(12), 3169–3180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang, Y. L., Zhu, W. W., He, H. W., Fan, B. H., Deng, R., Hong, Y. M., Liang, X. T., Zhao, H. Y., Li, X., & Zhang, F. X. (2019). Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging-Us, 11(24), 12641–12660.

    Article  CAS  Google Scholar 

  156. Chen, X. Y., Wang, Q., Gu, K., Li, A. N., Fu, X. C., Wang, Y., Gu, W. T., & Wen, Y. (2019). Effect of YAP on an Immortalized Periodontal Ligament Stem Cell Line. Stem Cells International 2019.

  157. Mazzoni, E., D’Agostino, A., Iaquinta, M. R., Bononi, I., Trevisiol, L., Rotondo, J. C., Patergnani, S., Giorgi, C., Gunson, M. J., Arnett, G. W., et al. (2020). Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients. Stem Cells Transl Med, 9(3), 377–388.

    Article  CAS  PubMed  Google Scholar 

  158. Hayashida, K., Sano, M., Ohsawa, I., Shinmura, K., Tamaki, K., Kimura, K., Endo, J., Katayama, T., Kawamura, A., Kohsaka, S., et al. (2008). Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochemical and Biophysical Research Communications, 373(1), 30–35.

    Article  CAS  PubMed  Google Scholar 

  159. Cardinal, J. S., Zhan, J., Wang, Y., Sugimoto, R., Tsung, A., McCurry, K. R., Billiar, T. R., & Nakao, A. (2010). Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney International, 77(2), 101–109.

    Article  CAS  PubMed  Google Scholar 

  160. Klichko, V. I., Safonov, V. L., Safonov, M. Y., & Radyuk, S. N. (2019). Supplementation with hydrogen-producing composition confers beneficial effects on physiology and life span in Drosophila. Heliyon, 5(5), e01679.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Sakai, T., Kurokawa, R., Hirano, S. I., & Imai, J. (2019). Hydrogen indirectly suppresses increases in hydrogen peroxide in cytoplasmic Hydroxyl Radical-Induced cells and suppresses Cellular Senescence. International Journal of Molecular Sciences 20(2).

  162. Sakai, T., Imai, J., Takagaki, H., Ui, M., & Hatta, S. (2019). Cytoplasmic OH scavenger TA293 attenuates cellular senescence and fibrosis by activating macrophages through oxidized phospholipids/TLR4. Life Sciences, 221, 284–292.

    Article  CAS  PubMed  Google Scholar 

  163. Paduszynski, P., Aleksander-Konert, E., Zajdel, A., Wilczok, A., Jelonek, K., Witek, A., & Dzierzewicz, Z. (2016). Changes in expression of cartilaginous genes during chondrogenesis of Wharton’s jelly mesenchymal stem cells on three-dimensional biodegradable poly(L-lactide-co-glycolide) scaffolds. Cellular & Molecular Biology Letters, 21, 14.

    Article  Google Scholar 

  164. Zhang, W., Huang, C., Sun, A., Qiao, L., Zhang, X., Huang, J., Sun, X., Yang, X., & Sun, S. (2018). Hydrogen alleviates cellular senescence via regulation of ROS/p53/p21 pathway in bone marrow-derived mesenchymal stem cells in vivo. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 106, 1126–1134.

    Article  CAS  Google Scholar 

  165. Li, P., Lan, W., Li, J., Zhang, Y., Xiong, Q., Ye, J., Wu, C., & Xiao, H. (2022). Identification and functional evaluation of a Novel TBX4 mutation underlies small Patella syndrome. International Journal of Molecular Sciences 23(4).

  166. Gao, S., Xiang, C., Qin, K., & Sun, C. (2018). Mathematical Modeling Reveals the Role of Hypoxia in the Promotion of Human Mesenchymal Stem Cell Long-Term Expansion. Stem Cells Int 2018:9283432.

  167. Kim, D. S., Ko, Y. J., Lee, M. W., Park, H. J., Park, Y. J., Kim, D. I., Sung, K. W., Koo, H. H., & Yoo, K. H. (2016). Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells. Cell Stress & Chaperones, 21(6), 1089–1099.

    Article  CAS  Google Scholar 

  168. Abdulkina, L. R., Kobayashi, C., Lovell, J. T., Chastukhina, I. B., Aklilu, B. B., Agabekian, I. A., Suescun, A. V., Valeeva, L. R., Nyamsuren, C., Aglyamova, G. V., et al. (2019). Components of the ribosome biogenesis pathway underlie establishment of telomere length set point in Arabidopsis. Nature Communications, 10(1), 5479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Waseem, M., Khan, I., Iqbal, H., Eijaz, S., Usman, S., Ahmed, N., Alam, G., & Salim, A. (2016). Hypoxic preconditioning improves the therapeutic potential of aging bone marrow mesenchymal stem cells in Streptozotocin-Induced Type-1 Diabetic mice. Cellular Reprogramming, 18(5), 344–355.

    Article  CAS  PubMed  Google Scholar 

  170. Tsai, C. C., Chen, Y. J., Yew, T. L., Chen, L. L., Wang, J. Y., Chiu, C. H., & Hung, S. C. (2011). Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood, 117(2), 459–469.

    Article  CAS  PubMed  Google Scholar 

  171. Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science 367(6478).

  172. Jeppesen, D. K., Fenix, A. M., Franklin, J. L., Higginbotham, J. N., Zhang, Q., Zimmerman, L. J., Liebler, D. C., Ping, J., Liu, Q., Evans, R., et al. (2019). Reassessment of Exosome Composition. Cell, 177(2), 428–445e418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228.

    Article  PubMed  Google Scholar 

  174. Eitan, E., Green, J., Bodogai, M., Mode, N. A., Baek, R., Jorgensen, M. M., Freeman, D. W., Witwer, K. W., Zonderman, A. B., Biragyn, A., et al. (2017). Age-related changes in plasma extracellular vesicle characteristics and internalization by Leukocytes. Scientific Reports, 7(1), 1342.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Yu, L., Wen, H., Liu, C., Wang, C., Yu, H., Zhang, K., Han, Q., Liu, Y., Han, Z., Li, Z., et al. (2023). Embryonic stem cell-derived extracellular vesicles rejuvenate senescent cells and antagonize aging in mice. Bioact Mater, 29, 85–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Hu, G., Xia, Y., Zhang, J., Chen, Y., Yuan, J., Niu, X., Zhao, B., Li, Q., Wang, Y., & Deng, Z. (2020). ESC-sEVs rejuvenate senescent hippocampal NSCs by activating lysosomes to improve cognitive dysfunction in vascular dementia. Adv Sci (Weinh), 7(10), 1903330.

    Article  CAS  PubMed  Google Scholar 

  177. Oh, M., Lee, J., Kim, Y. J., Rhee, W. J., & Park, J. H. (2018). Exosomes Derived from Human Induced Pluripotent stem cells ameliorate the aging of skin fibroblasts. International Journal of Molecular Sciences 19(6).

  178. Liu, S., Mahairaki, V., Bai, H., Ding, Z., Li, J., Witwer, K. W., & Cheng, L. (2019). Highly purified human extracellular vesicles produced by stem cells alleviate Aging Cellular phenotypes of senescent human cells. Stem Cells, 37(6), 779–790.

    Article  CAS  PubMed  Google Scholar 

  179. Sahu, A., Clemens, Z. J., Shinde, S. N., Sivakumar, S., Pius, A., Bhatia, A., Picciolini, S., Carlomagno, C., Gualerzi, A., Bedoni, M., et al. (2021). Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nat Aging, 1(12), 1148–1161.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Antoni, D., Burckel, H., Josset, E., & Noel, G. (2015). Three-dimensional cell culture: A breakthrough in vivo. International Journal of Molecular Sciences, 16(3), 5517–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lee, Y. W., Fu, S. C., Yeung, M. Y., Lau, C. M. L., Chan, K. M., & Hung, L. K. (2017). Effects of Redox Modulation on Cell Proliferation, viability, and Migration in cultured rat and human tendon progenitor cells. Oxid Med Cell Longev, 2017, 8785042.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Rustad, K. C., Wong, V. W., Sorkin, M., Glotzbach, J. P., Major, M. R., Rajadas, J., Longaker, M. T., & Gurtner, G. C. (2012). Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 33(1), 80–90.

    Article  CAS  PubMed  Google Scholar 

  183. Garg, R. K., Rennert, R. C., Duscher, D., Sorkin, M., Kosaraju, R., Auerbach, L. J., Lennon, J., Chung, M. T., Paik, K., Nimpf, J., et al. (2014). Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med, 3(9), 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cheng, N. C., Chen, S. Y., Li, J. R., & Young, T. H. (2013). Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl Med, 2(8), 584–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tseng, T. C., Wong, C. W., Hsieh, F. Y., & Hsu, S. H. (2017). Biomaterial substrate-mediated multicellular spheroid formation and their applications in tissue Engineering. Biotechnology Journal 12(12).

  186. Gionet-Gonzales, M., Casella, A., Diloretto, D., Ginnell, C., Griffin, K. H., Bigot, A., & Leach, J. K. (2021). Sulfated Alginate Hydrogels prolong the therapeutic potential of MSC spheroids by sequestering the Secretome. Adv Healthc Mater, 10(21), e2101048.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Shen, H., Ding, C., Yuan, S., Pan, T., Li, D., Li, H., Huang, B., & Liu, Q. (2020). Vitamin C- and Valproic Acid-Induced fetal RPE stem-like cells recover retinal degeneration via regulating SOX2. Molecular Therapy, 28(7), 1645–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ha, J., Kim, B. S., Min, B., Nam, J., Lee, J. G., Lee, M., Yoon, B. H., Choi, Y. H., Im, I., Park, J. S., et al. (2022). Intermediate cells of in vitro cellular reprogramming and in vivo tissue regeneration require desmoplakin. Science Advances, 8(43), eabk1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Rando, T. A., & Chang, H. Y. (2012). Aging, rejuvenation, and epigenetic reprogramming: Resetting the aging clock. Cell, 148(1–2), 46–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Domingues, S., Darle, A., Masson, Y., Saidani, M., Lagoutte, E., Bejanariu, A., Coutier, J., Ayata, R. E., Bouschbacher, M., Peschanski, M. (2022). Clinical Grade Human Pluripotent Stem Cell-Derived Engineered Skin Substitutes Promote Keratinocytes Wound Closure In Vitro. Cells 11(7).

  191. Victor, M. B., Richner, M., Olsen, H. E., Lee, S. W., Monteys, A. M., Ma, C., Huh, C. J., Zhang, B., Davidson, B. L., Yang, X. W., et al. (2020). Author correction: Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nature Neuroscience, 23(10), 1307.

    Article  CAS  PubMed  Google Scholar 

  192. Wang, S., Liu, Z., Ye, Y., Li, B., Liu, T., Zhang, W., Liu, G. H., Zhang, Y. A., Qu, J., Xu, D., et al. (2018). Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death and Disease, 9(9), 923.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Shao, K., Koch, C., Gupta, M. K., Lin, Q., Lenz, M., Laufs, S., Denecke, B., Schmidt, M., Linke, M., Hennies, H. C., et al. (2013). Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Molecular Therapy: The Journal of the American Society of Gene Therapy, 21(1), 240–250.

    Article  CAS  PubMed  Google Scholar 

  194. Frobel, J., Hemeda, H., Lenz, M., Abagnale, G., Joussen, S., Denecke, B., Saric, T., Zenke, M., & Wagner, W. (2014). Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem cell Reports, 3(3), 414–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kim, M., Bae, Y. K., Um, S., Kwon, J. H., Kim, G. H., Choi, S. J., Oh, W., & Jin, H. J. (2020). A Small-Sized Population of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Shows High Stemness Properties and Therapeutic Benefit. Stem Cells Int 2020:5924983.

  196. Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146), 651–654.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Hongqing Zhao: Conceptualization, Investigation, Writing - original draft. Houming Zhao: Methodology, Draw. Shuaifei Ji: Supervision, Writing - original draft and revision. All of the authors have read and approved the final manuscript. Hongqing Zhao and Houming Zhao contributed to this work equally.

Corresponding author

Correspondence to Shuaifei Ji.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that there is no confict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhao, H. & Ji, S. A Mesenchymal stem cell Aging Framework, from Mechanisms to Strategies. Stem Cell Rev and Rep (2024). https://doi.org/10.1007/s12015-024-10732-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12015-024-10732-4

Keywords

Navigation