Skip to main content
Log in

Interplay Between Inflammatory-immune and Interleukin-17 Signalings Plays a Cardinal Role on Liver Ischemia-reperfusion Injury—Synergic Effect of IL-17Ab, Tacrolimus and ADMSCs on Rescuing the Liver Damage

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

This study tested the hypothesis that inflammatory and interleukin (IL)-17 signalings were essential for acute liver ischemia (1 h)-reperfusion (72 h) injury (IRI) that was effectively ameliorated by adipose-derived mesenchymal stem cells (ADMSCs) and tacrolimus.

Methods

Adult-male SD rats (n = 50) were equally categorized into groups 1 (sham-operated-control), 2 (IRI), 3 [IRI + IL-17-monoclonic antibody (Ab)], 4 (IRI + tacrolimus), 5 (IRI + ADMSCs) and 6 (IRI + tacrolimus-ADMSCs) and liver was harvested at 72 h.

Results

The main findings included: (1) circulatory levels: inflammatory cells, immune cells, and proinflammatory cytokines as well as liver-damage enzyme at the time point of 72 h were highest in group 2, lowest in group 1 and significantly lower in group 6 than in groups 3 to 5 (all p < 0.0001), but they did not differ among these three latter groups; (2) histopathology: the liver injury score, fibrosis, inflammatory and immune cell infiltration in liver immunity displayed an identical pattern of inflammatory cells among the groups (all p < 0.0001); and (3) protein levels: upstream and downstream inflammatory signalings, oxidative-stress, apoptotic and mitochondrial-damaged biomarkers exhibited an identical pattern of inflammatory cells among the groups (all p < 0.0001).

Conclusion

Our results obtained from circulatory, pathology and molecular-cellular levels delineated that acute IRI was an intricate syndrome that elicited complex upstream and downstream inflammatory and immune signalings to damage liver parenchyma that greatly suppressed by combined tacrolimus and ADMSCs therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data contained within the paper are available from the authors upon reasonable request.

Abbreviations

IR:

ischemia and reperfusion

IL:

interleukin

ADMSCs:

adipose-derived mesenchymal stem cells

MPO:

Myeloperoxidase

CD:

cluster of differentiation

TLR4:

Toll-like receptor 4

TNF-α:

tumor nuclear factor-α

HMGB1:

high-mobility group box 1

TLR4:

Toll-like receptor 4

TLR2:

Toll-like receptor 2

MYD88:

myeloid differentiation primary response 88

NF-κB:

nuclear factor-κB

NOX-1:

NADPH oxidase 1

NOX-2:

NADPH oxidase 2

PARP:

Poly ADP-ribose Polymerase

γ-H2AX:

γ-Histone H2AX

WBC:

white blood cell

ALT:

alanine aminotransferase

References

  1. Khashab, M., Tector, A. J., & Kwo, P. Y. (2007). Epidemiology of acute liver failure. Current Gastroenterology Reports, 9(1), 66–73. https://doi.org/10.1007/s11894-008-0023-x.

    Article  PubMed  Google Scholar 

  2. Henrion, J. (2012). Hypoxic hepatitis. Liver International : Official Journal of the International Association for the Study of the Liver, 32(7), 1039–1052. https://doi.org/10.1111/j.1478-3231.2011.02655.x.

    Article  CAS  PubMed  Google Scholar 

  3. Fuhrmann, V., Kneidinger, N., Herkner, H., Heinz, G., Nikfardjam, M., Bojic, A., et al. (2009). Hypoxic hepatitis: Underlying conditions and risk factors for mortality in critically ill patients. Intensive Care Medicine, 35(8), 1397–1405. https://doi.org/10.1007/s00134-009-1508-2.

    Article  PubMed  Google Scholar 

  4. Zhang, X. J., Cheng, X., Yan, Z. Z., Fang, J., Wang, X., Wang, W., et al. (2018). An ALOX12-12-HETE-GPR31 signaling axis is a key mediator of hepatic ischemia-reperfusion injury. Nature Medicine, 24(1), 73–83. https://doi.org/10.1038/nm.4451.

    Article  CAS  PubMed  Google Scholar 

  5. Ito, T., Naini, B. V., Markovic, D., Aziz, A., Younan, S., Lu, M., et al. (2021). Ischemia-reperfusion injury and its relationship with early allograft dysfunction in liver transplant patients. American Journal of Transplantation, 21(2), 614–625. https://doi.org/10.1111/ajt.16219.

    Article  CAS  PubMed  Google Scholar 

  6. Leithead, J. A., Armstrong, M. J., Corbett, C., Andrew, M., Kothari, C., Gunson, B. K., et al. (2013). Hepatic ischemia reperfusion injury is associated with acute kidney injury following donation after brain death liver transplantation. Transplant International, 26(11), 1116–1125. https://doi.org/10.1111/tri.12175.

    Article  PubMed  Google Scholar 

  7. Klein, M., Geoghegan, J., Wangemann, R., Bockler, D., Schmidt, K., & Scheele, J. (1999). Preconditioning of donor livers with prostaglandin I2 before retrieval decreases hepatocellular ischemia-reperfusion injury. Transplantation, 67(8), 1128–1132. https://doi.org/10.1097/00007890-199904270-00007.

    Article  CAS  PubMed  Google Scholar 

  8. Bogetti, D., Sankary, H. N., Jarzembowski, T. M., Manzelli, A., Knight, P. S., Thielke, J., et al. (2005). Thymoglobulin induction protects liver allografts from ischemia/reperfusion injury. Clinical Transplantation, 19(4), 507–511. https://doi.org/10.1111/j.1399-0012.2005.00375.x.

    Article  PubMed  Google Scholar 

  9. Luntz, S. P., Unnebrink, K., Seibert-Grafe, M., Bunzendahl, H., Kraus, T. W., Buchler, M. W., et al. (2005). HEGPOL: Randomized, placebo controlled, multicenter, double-blind clinical trial to investigate hepatoprotective effects of glycine in the postoperative phase of liver transplantation [ISRCTN69350312]. Bmc Surgery, 5, 18. https://doi.org/10.1186/1471-2482-5-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Busuttil, R. W., Lipshutz, G. S., Kupiec-Weglinski, J. W., Ponthieux, S., Gjertson, D. W., Cheadle, C., et al. (2011). rPSGL-Ig for improvement of early liver allograft function: A double-blind, placebo-controlled, single-center phase II study. American Journal of Transplantation, 11(4), 786–797. https://doi.org/10.1111/j.1600-6143.2011.03441.x.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, W. M. (2012). Acute liver failure. Seminars in Respiratory and Critical Care Medicine, 33(1), 36–45. https://doi.org/10.1055/s-0032-1301733.

    Article  PubMed  Google Scholar 

  12. Singanayagam, A., & Bernal, W. (2015). Update on acute liver failure. Current Opinion in Critical Care, 21(2), 134–141. https://doi.org/10.1097/MCC.0000000000000187.

    Article  PubMed  Google Scholar 

  13. Willars, C. (2014). Update in intensive care medicine: Acute liver failure. Initial management, supportive treatment and who to transplant. Current Opinion in Critical Care, 20(2), 202–209. https://doi.org/10.1097/MCC.0000000000000073.

    Article  PubMed  Google Scholar 

  14. de Rougemont, O., Lehmann, K., & Clavien, P. A. (2009). Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver. Liver Transplantation, 15(10), 1172–1182. https://doi.org/10.1002/lt.21876.

    Article  PubMed  Google Scholar 

  15. Jaeschke, H., & Woolbright, B. L. (2012). Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplantation Reviews (Orlando, Fla.), 26(2), 103–114. https://doi.org/10.1016/j.trre.2011.10.006.

    Article  PubMed  Google Scholar 

  16. Lv, X., Yang, L., Tao, K., Liu, Y., Yang, T., Chen, G., et al. (2011). Isoflurane preconditioning at clinically relevant doses induce protective effects of heme oxygenase-1 on hepatic ischemia reperfusion in rats. Bmc Gastroenterology, 11, 31. https://doi.org/10.1186/1471-230X-11-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, C., Zhao, L., Zhang, F., & Li, L. (2021). Melatonin and its protective role in attenuating warm or cold hepatic ischaemia/reperfusion injury. Cell Proliferation, 54(4), e13021. https://doi.org/10.1111/cpr.13021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, Y., Yang, Y., Feng, Y., Yan, J., Fan, C., Jiang, S., et al. (2014). A review of melatonin in hepatic ischemia/reperfusion injury and clinical liver disease. Annals of Medicine, 46(7), 503–511. https://doi.org/10.3109/07853890.2014.934275.

    Article  CAS  PubMed  Google Scholar 

  19. Lu, L., Zhou, H., Ni, M., Wang, X., Busuttil, R., Kupiec-Weglinski, J., et al. (2016). Innate Immune Regulations and Liver Ischemia-Reperfusion Injury. Transplantation, 100(12), 2601–2610. https://doi.org/10.1097/TP.0000000000001411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tomiyama, K., Ikeda, A., Ueki, S., Nakao, A., Stolz, D. B., Koike, Y., et al. (2008). Inhibition of Kupffer cell-mediated early proinflammatory response with carbon monoxide in transplant-induced hepatic ischemia/reperfusion injury in rats. Hepatology, 48(5), 1608–1620. https://doi.org/10.1002/hep.22482.

    Article  CAS  PubMed  Google Scholar 

  21. Abu-Amara, M., Yang, S. Y., Tapuria, N., Fuller, B., Davidson, B., & Seifalian, A. (2010). Liver ischemia/reperfusion injury: Processes in inflammatory networks–a review. Liver Transplantation, 16(9), 1016–1032. https://doi.org/10.1002/lt.22117.

    Article  PubMed  Google Scholar 

  22. Bhogal, R. H., Curbishley, S. M., Weston, C. J., Adams, D. H., & Afford, S. C. (2010). Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation. Liver Transplantation, 16(11), 1303–1313. https://doi.org/10.1002/lt.22157.

    Article  PubMed  Google Scholar 

  23. Uchida, Y., Freitas, M. C., Zhao, D., Busuttil, R. W., & Kupiec-Weglinski, J. W. (2010). The protective function of neutrophil elastase inhibitor in liver ischemia/reperfusion injury. Transplantation, 89(9), 1050–1056. https://doi.org/10.1097/TP.0b013e3181d45a98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klune, J. R., & Tsung, A. (2010). Molecular biology of liver ischemia/reperfusion injury: Established mechanisms and recent advancements. Surgical Clinics of North America, 90(4), 665–677. https://doi.org/10.1016/j.suc.2010.04.003.

    Article  PubMed  Google Scholar 

  25. Sun, C. K., Zhang, X. Y., Sheard, P. W., Mabuchi, A., & Wheatley, A. M. (2005). Change in mitochondrial membrane potential is the key mechanism in early warm hepatic ischemia-reperfusion injury. Microvascular Research, 70(1–2), 102–110. https://doi.org/10.1016/j.mvr.2005.04.003.

    Article  CAS  PubMed  Google Scholar 

  26. Sun, C. K., Zhang, X. Y., Zimmermann, A., Davis, G., & Wheatley, A. M. (2001). Effect of ischemia-reperfusion injury on the microcirculation of the steatotic liver of the Zucker rat. Transplantation, 72(10), 1625–1631. https://doi.org/10.1097/00007890-200111270-00008.

    Article  CAS  PubMed  Google Scholar 

  27. Besnard, A. G., Togbe, D., Couillin, I., Tan, Z., Zheng, S. G., Erard, F., et al. (2012). Inflammasome-IL-1-Th17 response in allergic lung inflammation. Journal of Molecular Cell Biology, 4(1), 3–10. https://doi.org/10.1093/jmcb/mjr042.

    Article  CAS  PubMed  Google Scholar 

  28. Llacuna, L., Mari, M., Lluis, J. M., Garcia-Ruiz, C., Fernandez-Checa, J. C., & Morales, A. (2009). Reactive oxygen species mediate liver injury through parenchymal nuclear factor-kappab inactivation in prolonged ischemia/reperfusion. American Journal of Pathology, 174(5), 1776–1785. https://doi.org/10.2353/ajpath.2009.080857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bettelli, E., Korn, T., Oukka, M., & Kuchroo, V. K. (2008). Induction and effector functions of T(H)17 cells. Nature, 453(7198), 1051–1057. https://doi.org/10.1038/nature07036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kono, H., Fujii, H., Ogiku, M., Hosomura, N., Amemiya, H., Tsuchiya, M., et al. (2011). Role of IL-17A in neutrophil recruitment and hepatic injury after warm ischemia-reperfusion mice. The Journal of Immunology, 187(9), 4818–4825. https://doi.org/10.4049/jimmunol.1100490.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, X., Li, C., Ng, K. T., Liu, J., Liu, H., Zhang, W., et al. (2020). IL-17a exacerbates hepatic ischemia-reperfusion injury in fatty liver by promoting neutrophil infiltration and mitochondria-driven apoptosis. Journal of Leukocyte Biology, 108(5), 1603–1613. https://doi.org/10.1002/JLB.3MA0520-716R.

    Article  CAS  PubMed  Google Scholar 

  32. Sun, C. K., Leu, S., Hsu, S. Y., Zhen, Y. Y., Chang, L. T., Tsai, C. Y., et al. (2015). Mixed serum-deprived and normal adipose-derived mesenchymal stem cells against acute lung ischemia-reperfusion injury in rats. Am J Transl Res, 7(2), 209–231.

    PubMed  PubMed Central  Google Scholar 

  33. Chang, C. L., Sung, P. H., Sun, C. K., Chen, C. H., Chiang, H. J., Huang, T. H., et al. (2015). Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat. Journal of Pineal Research, 59(2), 206–220. https://doi.org/10.1111/jpi.12251.

    Article  CAS  PubMed  Google Scholar 

  34. Ko, S. F., Yip, H. K., Zhen, Y. Y., Lee, C. C., Lee, C. C., Huang, C. C., et al. (2015). Adipose-derived mesenchymal stem cell exosomes suppress Hepatocellular Carcinoma Growth in a rat model: Apparent diffusion coefficient, natural killer T-Cell responses, and histopathological features. Stem Cells Int, 2015, 853506. https://doi.org/10.1155/2015/853506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin, K. C., Yip, H. K., Shao, P. L., Wu, S. C., Chen, K. H., Chen, Y. T., et al. (2016). Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury. International Journal of Cardiology, 216, 173–185. https://doi.org/10.1016/j.ijcard.2016.04.061.

    Article  PubMed  Google Scholar 

  36. Chen, K. H., Chen, C. H., Wallace, C. G., Yuen, C. M., Kao, G. S., Chen, Y. L., et al. (2016). Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget, 7(46), 74537–74556. https://doi.org/10.18632/oncotarget.12902.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chang, C. L., Leu, S., Sung, H. C., Zhen, Y. Y., Cho, C. L., Chen, A., et al. (2012). Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. J Transl Med, 10, 244. https://doi.org/10.1186/1479-5876-10-244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, H. H., Lin, K. C., Wallace, C. G., Chen, Y. T., Yang, C. C., Leu, S., et al. (2014). Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. Journal of Pineal Research, 57(1), 16–32. https://doi.org/10.1111/jpi.12140.

    Article  CAS  PubMed  Google Scholar 

  39. Sung, P. H., Chiang, H. J., Chen, C. H., Chen, Y. L., Huang, T. H., Zhen, Y. Y., et al. (2016). Combined Therapy with adipose-derived mesenchymal stem cells and ciprofloxacin against Acute Urogenital Organ damage in Rat Sepsis Syndrome Induced by Intrapelvic injection of cecal Bacteria. Stem Cells Transl Med, 5(6), 782–792. https://doi.org/10.5966/sctm.2015-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Milosavljevic, N., Gazdic, M., Simovic Markovic, B., Arsenijevic, A., Nurkovic, J., Dolicanin, Z., et al. (2018). Mesenchymal stem cells attenuate liver fibrosis by suppressing Th17 cells - an experimental study. Transplant International, 31(1), 102–115. https://doi.org/10.1111/tri.13023.

    Article  CAS  PubMed  Google Scholar 

  41. Timmerman, L. A., Clipstone, N. A., Ho, S. N., Northrop, J. P., & Crabtree, G. R. (1996). Rapid shuttling of NF-AT in discrimination of Ca2 + signals and immunosuppression. Nature, 383(6603), 837–840. https://doi.org/10.1038/383837a0.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, J., Farmer, J. D. Jr., Lane, W. S., Friedman, J., Weissman, I., & Schreiber, S. L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 66(4), 807–815. https://doi.org/10.1016/0092-8674(91)90124-h.

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe, S., Zhang, Y., Fukusumi, Y., Yasuda, H., Takada, A., Kazama, J. J., et al. (2022). Th17 cells participate in Thy1.1 Glomerulonephritis which is ameliorated by Tacrolimus. American Journal of Nephrology, 53(5), 388–396. https://doi.org/10.1159/000524111.

    Article  CAS  PubMed  Google Scholar 

  44. Jurewicz, W. A. (2003). Tacrolimus versus cyclosporin immunosuppression: Long-term outcome in renal transplantation. Nephrology, Dialysis, Transplantation, 18(Suppl 1), i7–11. https://doi.org/10.1093/ndt/gfg1028.

    Article  PubMed  Google Scholar 

  45. Chua, S., Leu, S., Sheu, J. J., Lin, Y. C., Chang, L. T., Kao, Y. H., et al. (2012). Intra-coronary administration of tacrolimus markedly attenuates infarct size and preserves heart function in porcine myocardial infarction. Journal of Inflammation (London), 9(1), 21. https://doi.org/10.1186/1476-9255-9-21.

    Article  CAS  Google Scholar 

  46. Yang, C. H., Sheu, J. J., Tsai, T. H., Chua, S., Chang, L. T., Chang, H. W., et al. (2013). Effect of tacrolimus on myocardial infarction is associated with inflammation, ROS, MAP kinase and akt pathways in mini-pigs. J Atheroscler Thromb, 20(1), 9–22. https://doi.org/10.5551/jat.14316.

    Article  PubMed  Google Scholar 

  47. Sheu, J. J., Sung, P. H., Leu, S., Chai, H. T., Zhen, Y. Y., Chen, Y. C., et al. (2013). Innate immune response after acute myocardial infarction and pharmacomodulatory action of tacrolimus in reducing infarct size and preserving myocardial integrity. Journal of Biomedical Science, 20(1), 82. https://doi.org/10.1186/1423-0127-20-82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, C. C., Sung, P. H., Chiang, J. Y., Chai, H. T., Chen, C. H., Chu, Y. C., et al. (2021). Combined tacrolimus and melatonin effectively protected kidney against acute ischemia-reperfusion injury. The Faseb Journal, 35(6), e21661. https://doi.org/10.1096/fj.202100174R.

    Article  CAS  PubMed  Google Scholar 

  49. Sun, C. K., Chang, C. L., Lin, Y. C., Kao, Y. H., Chang, L. T., Yen, C. H., et al. (2012). Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats. Critical Care Medicine, 40(4), 1279–1290. https://doi.org/10.1097/CCM.0b013e31823dae23.

    Article  PubMed  Google Scholar 

  50. Ko, S. F., Yip, H. K., Leu, S., Lee, C. C., Sheu, J. J., Lee, C. C., et al. (2014). Therapeutic potential of tacrolimus on acute myocardial infarction in minipigs: Analysis with serial cardiac magnetic resonance and changes at histological and protein levels. Biomed Research International, 2014, 524078. https://doi.org/10.1155/2014/524078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuen, C. M., Yeh, K. H., Wallace, C. G., Chen, K. H., Lin, H. S., Sung, P. H., et al. (2017). EPO-cyclosporine combination therapy reduced brain infarct area in rat after acute ischemic stroke: Role of innate immune-inflammatory response, micro-RNAs and MAPK family signaling pathway. Am J Transl Res, 9(4), 1651–1666.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, Y. C., Chen, C. H., Chang, C. L., Chiang, J. Y., Chu, C. H., Chen, H. H., et al. (2021). Melatonin and hyperbaric oxygen therapies suppress colorectal carcinogenesis through pleiotropic effects and multifaceted mechanisms. International Journal of Biological Sciences, 17(14), 3728–3744. https://doi.org/10.7150/ijbs.62280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, Y. C., Sung, P. H., Yang, Y. H., Chiang, J. Y., Yip, H. K., & Yang, C. C. (2021). Dipeptidyl peptidase 4 promotes peritoneal fibrosis and its inhibitions prevent failure of peritoneal dialysis. Commun Biol, 4(1), 144. https://doi.org/10.1038/s42003-021-01652-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gaffen, S. L., Kramer, J. M., Yu, J. J., & Shen, F. (2006). The IL-17 cytokine family. Vitamins and Hormones, 74, 255–282. https://doi.org/10.1016/S0083-6729(06)74010-9.

    Article  CAS  PubMed  Google Scholar 

  55. Maxwell, J. R., Zhang, Y., Brown, W. A., Smith, C. L., Byrne, F. R., Fiorino, M., et al. (2015). Differential Roles for Interleukin-23 and Interleukin-17 in intestinal immunoregulation. Immunity, 43(4), 739–750. https://doi.org/10.1016/j.immuni.2015.08.019.

    Article  CAS  PubMed  Google Scholar 

  56. Yang, X. O., Chang, S. H., Park, H., Nurieva, R., Shah, B., Acero, L., et al. (2008). Regulation of inflammatory responses by IL-17F. Journal of Experimental Medicine, 205(5), 1063–1075. https://doi.org/10.1084/jem.20071978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., et al. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology, 6(11), 1133–1141. https://doi.org/10.1038/ni1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hurst, S. D., Muchamuel, T., Gorman, D. M., Gilbert, J. M., Clifford, T., Kwan, S., et al. (2002). New IL-17 family members promote Th1 or Th2 responses in the lung: In vivo function of the novel cytokine IL-25. The Journal of Immunology, 169(1), 443–453. https://doi.org/10.4049/jimmunol.169.1.443.

    Article  CAS  PubMed  Google Scholar 

  59. Caldwell, C. C., Okaya, T., Martignoni, A., Husted, T., Schuster, R., & Lentsch, A. B. (2005). Divergent functions of CD4 + T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion. American Journal of Physiology. Gastrointestinal and Liver Physiology, 289(5), G969–G976. https://doi.org/10.1152/ajpgi.00223.2005.

    Article  CAS  PubMed  Google Scholar 

  60. Mills, K. H. G. (2023). IL-17 and IL-17-producing cells in protection versus pathology. Nature Reviews Immunology, 23(1), 38–54. https://doi.org/10.1038/s41577-022-00746-9.

    Article  CAS  PubMed  Google Scholar 

  61. Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M., et al. (2005). Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology, 6(11), 1123–1132. https://doi.org/10.1038/ni1254.

    Article  CAS  PubMed  Google Scholar 

  62. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J., & Gurney, A. L. (2003). Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. Journal of Biological Chemistry, 278(3), 1910–1914. https://doi.org/10.1074/jbc.M207577200.

    Article  CAS  PubMed  Google Scholar 

  63. Iwakura, Y., & Ishigame, H. (2006). The IL-23/IL-17 axis in inflammation. J Clin Invest, 116(5), 1218–1222. https://doi.org/10.1172/JCI28508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ko, S. F., Sung, P. H., Yang, C. C., Chiang, J. Y., & Yip, H. K. (2022). Combined therapy with dapagliflozin and entresto offers an additional benefit on improving the heart function in rat after ischemia-reperfusion injury. Biomed J. https://doi.org/10.1016/j.bj.2022.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chang, C. L., Chen, H. H., Chen, K. H., Chiang, J. Y., Li, Y. C., Lin, H. S., et al. (2019). Adipose-derived mesenchymal stem cell-derived exosomes markedly protected the brain against sepsis syndrome induced injury in rat. Am J Transl Res, 11(7), 3955–3971.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by a project grant from Chang Gung Memorial Hospital, Chang Gung University [CMRPG8L0791]. The funding body played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SFK, and HKY supervised the study and wrote the manuscript. SFK and YLC applied the grant project. SFK, YLC and PLS performed the experiments. YCL, JYC, PHS and YLC collected and analyzed data. YCL reviewed and revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Yi-Ling Chen or Hon-Kan Yip.

Ethics declarations

Ethics Approval and Consent to Participate

All animal procedures were approved by the Institute of Animal Care and Use Committee at Kaohsiung Chang Gung Memorial Hospital (Affidavit of Approval of Animal Use Protocol No. 2020092301) on 10/26/2020 and performed in accordance with the Guide for the Care and Use of Laboratory Animals. The approved title was “Interleukin-17 signaling pathway plays a crucial role on participating in acute liver ischemia-reperfusion injury—impact of immune-pharmaco-modulation of ADMSCs and tacrolimus.“

Consent for Publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi-Ling Chen and Hon-Kan Yip contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, SF., Li, YC., Shao, PL. et al. Interplay Between Inflammatory-immune and Interleukin-17 Signalings Plays a Cardinal Role on Liver Ischemia-reperfusion Injury—Synergic Effect of IL-17Ab, Tacrolimus and ADMSCs on Rescuing the Liver Damage. Stem Cell Rev and Rep 19, 2852–2868 (2023). https://doi.org/10.1007/s12015-023-10611-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10611-4

Keywords

Navigation