Skip to main content

Advertisement

Log in

Estrogen-Related Receptor Alpha (ERRα) Promotes Cancer Stem Cell-Like Characteristics in Breast Cancer

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells drive tumor initiation, invasion, metastasis and recurrence. In the present study, we have evaluated the role of ERRα in the maintenance of breast cancer stem cells (BCSCs) using breast cancer cell lines. The inhibition of ERRα with the inverse agonist, XCT-790, or the knockdown of ERRα in breast cancer cells significantly reduced the mammosphere formation efficiency and mammosphere size along with a significant reduction in the CD44+/CD24 BCSCs. Treatment with XCT-790 significantly downregulated expression of the transcription factors involved in stem cell maintenance such as Oct4, Klf4, Sox2, Nanog and c-Myc in the mammosphere forming stem cells of MCF7 and MDA-MB-231. In addition, XCT-790 induced cell cycle arrest and apoptosis in the mammosphere-forming cells. The knockdown or inhibition of ERRα downregulated the expression of Notch1 and β-catenin, whereas the overexpression of ERRα in MCF7 cells upregulated the expression of these proteins. Moreover, the inhibition of ERRα synergistically enhanced the efficacy of paclitaxel in inhibiting the BCSCs. These results show that ERRα is crucial for the maintenance of BCSCs and suggest that ERRα could be a potential target for breast cancer treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data generated in this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

Abbreviations

ALDH:

Aldehyde dehydrogenase

BCSC:

Breast cancer stem cell

bFGF:

Human basic fibroblast growth factor

c-Myc:

Cellular myelocytomatosis oncogene

CSC:

Cancer stem cell

DMEM:

Dulbecco’s modified eagle medium

EGF:

Recombinant human epidermal growth factor

ER:

Estrogen receptor

ERRα:

Estrogen-related receptor alpha

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

HER2:

Human epidermal growth factor receptor 2

KLF4:

Kruppel-like factor 4

L15:

Leibovitz 15

M231:

MDA-MB-231

M468:

MDA-MB-468

NFkβ:

Nuclear factor kappa B

OCT4:

Octamer-binding transcription factor 4

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator-1alpha

PI:

Propidium Iodide

PR:

Progesterone receptor

SOX2:

SRY (sex determining region Y)-box 2

TGFβ:

Transforming growth factor beta

TNBC:

Triple-negative breast cancer

VEGF:

Vascular endothelial growth factor

XCT-790:

3-[4-(2,4-Bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)acrylamide

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. C Ca: A Cancer Journal For Clinicians, 71, 209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. Hart, C. D., Migliaccio, I., Malorni, L., Guarducci, C., Biganzoli, L., & Di Leo, A. (2015). Challenges in the management of advanced, ER-positive, HER2-negative breast cancer. Nature Reviews Clinical Oncology, 12, 541–552. https://doi.org/10.1038/nrclinonc.2015.99

    Article  PubMed  Google Scholar 

  3. Misawa, A., & Inoue, S. (2015). Estrogen-related receptors in breast cancer and prostate cancer. Frontiers In Endocrinology, 6,. https://doi.org/10.3389/fendo.2015.00083

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y., Ma, H., & Yao, J. (2020). ERα, a key target for cancer therapy: A review. Oncotargets and Therapy, 13, 2183–2191. https://doi.org/10.2147/OTT.S236532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deblois, G., & Giguère, V. (2013). Oestrogen-related receptors in breast cancer: Control of cellular metabolism and beyond. Nature Reviews Cancer, 13, 27–36. https://doi.org/10.1038/nrc3396

    Article  CAS  PubMed  Google Scholar 

  6. Huss, J. M., Torra, I. P., Staels, B., Giguère, V., & Kelly, D. P. (2004). Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Molecular and Cellular Biology, 24, 9079–9091. https://doi.org/10.1128/MCB.24.20.9079-9091.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stein, R. A., Chang, C. Y., Kazmin, D. A., Way, J., Schroeder, T., Wergin, M., Dewhirst, M. W., & McDonnell, D. P. (2008). Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer. Cancer Research, 68, 8805–8812. https://doi.org/10.1158/0008-5472.CAN-08-1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, T., Miki, Y., Moriya, T., Shimada, N., Ishida, T., Hirakawa, H., Ohuchi, N., & Sasano, H. (2004). Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. Cancer Research, 64, 4670–4676. https://doi.org/10.1158/0008-5472.CAN-04-0250

    Article  CAS  PubMed  Google Scholar 

  9. Manna, S., Bostner, J., Sun, Y., Miller, L. D., Alayev, A., Schwartz, N. S., Lager, E., Fornander, T., Nordenskjöld, B., Yu, J. J., Stål, O., & Holz, M. K. (2016). ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer. Clinical Cancer Research, 22, 1421–1431. https://doi.org/10.1158/1078-0432.CCR-15-0857

    Article  CAS  PubMed  Google Scholar 

  10. Bianco, S., Lanvin, O., Tribollet, V., Macari, C., North, S., & Vanacker, J. M. (2009). Modulating estrogen receptor-related receptor-alpha activity inhibits cell proliferation. Journal of Biological Chemistry, 284, 23286–23292. https://doi.org/10.1074/jbc.M109.028191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berman, A. Y., Manna, S., Schwartz, N. S., Katz, Y. E., Sun, Y., Behrmann, C. A., Yu, J. J., Plas, D. R., Alayev, A., & Holz, M. K. (2017). ERRα regulates the growth of triple-negative breast cancer cells via S6K1-dependent mechanism. Signal Transduction and Targeted Therapy, 2, 17035. https://doi.org/10.1038/sigtrans.2017.35

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhartiya, D., Sharma, N., Dutta, S., Kumar, P., Tripathi, A., & Tripathi, A. (2023). Very small embryonic-like stem cells transform into cancer stem cells and are novel candidates for detecting/monitoring cancer by a simple blood test. Stem Cells, 41, 310–318. https://doi.org/10.1093/stmcls/sxad015

    Article  PubMed  Google Scholar 

  13. Atashzar, M. R., Baharlou, R., Karami, J., Abdollahi, H., Rezaei, R., Pourramezan, F., & Zoljalali Moghaddam, S. H. (2020). Cancer stem cells: A review from origin to therapeutic implications. Journal of Cellular Physiology, 235, 790–803. https://doi.org/10.1002/jcp.29044

    Article  CAS  PubMed  Google Scholar 

  14. Butti, R., Gunasekaran, V. P., Kumar, T. V. S., Banerjee, P., & Kundu, G. C. (2019). Breast cancer stem cells: Biology and therapeutic implications. International Journal of Biochemistry & Cell Biology, 107, 38–52. https://doi.org/10.1016/j.biocel.2018.12.001

    Article  CAS  Google Scholar 

  15. Fillmore, C. M., & Kuperwasser, C. (2008). Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Research, 10, R25. https://doi.org/10.1186/bcr1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grimshaw, M. J., Cooper, L., Papazisis, K., Coleman, J. A., Bohnenkamp, H. R., Chiapero-Stanke, L., Taylor-Papadimitriou, J., & Burchell, J. M. (2008). Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Research, 10, R52. https://doi.org/10.1186/bcr2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ricardo, S., Vieira, A. F., Gerhard, R., Leitão, D., Pinto, R., Cameselle-Teijeiro, J. F., Milanezi, F., Schmitt, F., & Paredes, J. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology, 64, 937–946. https://doi.org/10.1136/jcp.2011.090456

    Article  PubMed  Google Scholar 

  18. Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., Zhang, G., Wang, X., Dong, Z., Chen, F., & Cui, H. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy, 5, 8. https://doi.org/10.1038/s41392-020-0110-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang, C., Kazmin, D., Jasper, J. S., Kunder, R., Zuercher, W. J., & McDonnell, D. P. (2011). The metabolic regulator ERRα, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell, 20, 500–510. https://doi.org/10.1016/j.ccr.2011.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Luca, A., Fiorillo, M., Peiris-Pagès, M., Ozsvari, B., Smith, D. L., Sanchez-Alvarez, R., Martinez-Outschoorn, U. E., Cappello, A. R., Pezzi, V., Lisanti, M. P., & Sotgia, F. (2015). Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget, 6, 14777–14795. https://doi.org/10.18632/oncotarget.4401

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lam, S. S., Mak, A. S., Yam, J. W., Cheung, A. N., Ngan, H. Y., & Wong, A. S. (2014). Targeting estrogen-related receptor alpha inhibits epithelial-to-mesenchymal transition and stem cell properties of ovarian cancer cells. Molecular Therapy, 22, 743–751. https://doi.org/10.1038/mt.2014.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du, W., Goldstein, R., Jiang, Y., Aly, O., Cerchietti, L., Melnick, A., & Elemento, O. (2017). Effective combination therapies for B-cell lymphoma predicted by a virtual disease model. Cancer Research, 77, 1818–1830. https://doi.org/10.1158/0008-5472.CAN-16-0476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shan, N. L., Shin, Y., Yang, G., Furmanski, P., & Suh, N. (2021). Breast cancer stem cells: A review of their characteristics and the agents that affect them. Molecular Carcinogenesis, 60, 73–100. https://doi.org/10.1002/mc.23277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garrido-Castro, A. C., Lin, N. U., & Polyak, K. (2019). Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discovery, 9, 176–198. https://doi.org/10.1158/2159-8290.CD-18-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lv, Y., Cang, W., Li, Q., Liao, X., Zhan, M., Deng, H., Li, S., Jin, W., Pang, Z., Qiu, X., Zhao, K., Chen, G., Qiu, L., & Huang, L. (2019). Erlotinib overcomes paclitaxel-resistant cancer stem cells by blocking the EGFR-CREB/GRβ-IL-6 axis in MUC1-positive cervical cancer. Oncogenesis, 8, 70. https://doi.org/10.1038/s41389-019-0179-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shackleton, M., Quintana, E., Fearon, E. R., & Morrison, S. J. (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 138, 822–829. https://doi.org/10.1016/j.cell.2009.08.017

    Article  CAS  PubMed  Google Scholar 

  27. Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. Cell Communication and Signaling: CCS, 19, 19. https://doi.org/10.1186/s12964-020-00627-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takebe, N., Miele, L., Harris, P. J., Jeong, W., Bando, H., Kahn, M., Yang, S. X., & Ivy, S. P. (2015). Targeting notch, hedgehog, and wnt pathways in cancer stem cells: Clinical update. Nature Reviews Clinical Oncology, 12, 445–464. https://doi.org/10.1038/nrclinonc.2015.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M. A., & Daidone, M. G. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65, 5506–5511. https://doi.org/10.1158/0008-5472.CAN-05-0626

    Article  CAS  PubMed  Google Scholar 

  30. Robinson, M., Gilbert, S. F., Waters, J. A., Lujano-Olazaba, O., Lara, J., Alexander, L. J., Green, S. E., Burkeen, G. A., Patrus, O., Sarwar, Z., Holmberg, R., Wang, C., and House, C. D. (2021). Characterization of SOX2, OCT4 and NANOG in ovarian cancer tumor-initiating cells. Cancers (Basel), 13. https://doi.org/10.3390/cancers13020262

  31. Wu, Y. M., Chen, Z. J., Jiang, G. M., Zhang, K. S., Liu, Q., Liang, S. W., Zhou, Y., Huang, H. B., Du, J., & Wang, H. S. (2016). Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways. Oncotarget, 7, 12568–12581. https://doi.org/10.18632/oncotarget.7276

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garcia-Heredia, J. M., Lucena-Cacace, A., Verdugo-Sivianes, E. M., Pérez, M., & Carnero, A. (2017). The cargo protein MAP17 (PDZK1IP1) regulates the cancer stem cell pool activating the notch pathway by abducting NUMB. Clinical Cancer Research, 23, 3871–3883. https://doi.org/10.1158/1078-0432.CCR-16-2358

    Article  CAS  PubMed  Google Scholar 

  33. Krishna, B. M., Jana, S., Singhal, J., Horne, D., Awasthi, S., Salgia, R., & Singhal, S. S. (2019). Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Letters, 461, 123–131. https://doi.org/10.1016/j.canlet.2019.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klinakis, A., Szabolcs, M., Politi, K., Kiaris, H., Artavanis-Tsakonas, S., & Efstratiadis, A. (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proceedings of the National Academy of Science U S A, 103, 9262–9267. https://doi.org/10.1073/pnas.0603371103

    Article  CAS  Google Scholar 

  35. Jang, G. B., Hong, I. S., Kim, R. J., Lee, S. Y., Park, S. J., Lee, E. S., Park, J. H., Yun, C. H., Chung, J. U., Lee, K. J., Lee, H. Y., & Nam, J. S. (2015). Wnt/β-Catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Research, 75, 1691–1702. https://doi.org/10.1158/0008-5472.CAN-14-2041

    Article  CAS  PubMed  Google Scholar 

  36. Ravindran, G., Sawant, S. S., Hague, A., Kingsley, K., & Devaraj, H. (2015). Association of differential β-catenin expression with Oct-4 and nanog in oral squamous cell carcinoma and their correlation with clinicopathological factors and prognosis. Head and Neck, 37, 982–993. https://doi.org/10.1002/hed.23699

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The graphical abstract has been created using BioRender.

Funding

This work was supported by the Science and Engineering Research Board (SERB), DST (EMR/2016/006964) and Indian Council of Medical Research (ICMR) (45/30/2020-BIO/BMS), Government of India. We also acknowledge the infrastructure support available through the DBT-BUILDER program (BT/INF/22/SP42155/2021). KM, MP and JP are supported by Research Fellowships from UGC, ICMR and CSIR, respectively, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

KM, KSR and SE contributed to the study conception and design. KM, MP, JP, APS and DSR performed the experiments, data collection and analysis. BS analyzed the flow cytometry data. SE contributed to the project administration, supervision and funding acquisition. KM, SR, and SE prepared the first draft of the manuscript and all authors contributed to the revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Selvakumar Elangovan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.09 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muduli, K., Prusty, M., Pradhan, J. et al. Estrogen-Related Receptor Alpha (ERRα) Promotes Cancer Stem Cell-Like Characteristics in Breast Cancer. Stem Cell Rev and Rep 19, 2807–2819 (2023). https://doi.org/10.1007/s12015-023-10605-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10605-2

Keywords

Navigation