Skip to main content

Advertisement

Log in

Stem Cells and Exosome Applications for Cutaneous Wound Healing: From Ground to Microgravity Environment

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The increasing number of astronauts entering microgravity environments for long-term space missions has resulted in serious health problems, including accidental injury and trauma. Skin, as the largest organ and outermost layer of the human body, has the ability to self-renew and withstand a variety of harmful biological and environmental influences. Recent spaceflight experiments and simulated studies have begun to concern the effects of microgravity on the growth of skin cells and the process of cutaneous wound healing. However, the mechanisms of the adverse effects of microgravity on skin cells and potential intervention measures are still limited. Stem cells and their exosomes provide unique opportunities for the cutaneous wound healing as they have been used to improve skin repair. This review discusses the effects of microgravity on wound healing, from cell morphological changes to molecular level alterations. Furthermore, the current research on wound healing treatment utilizing stem cells and their exosomes on the ground is summarized. Finally, this review proposes promising therapeutic strategies using stem cells or exosomes for wound healing in the microgravity environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Cortese, F., Klokov, D., Osipov, A., Stefaniak, J., Moskalev, A., Schastnaya, J., Cantor, C., Aliper, A., Mamoshina, P., Ushakov, I., Sapetsky, A., Vanhaelen, Q., Alchinova, I., Karganov, M., Kovalchuk, O., Wilkins, R., Shtemberg, A., Moreels, M., Baatout, S., Izumchenko, E., de Magalhães, J. P., Artemov, A. V., Costes, S. V., Beheshti, A., Mao, X. W., Pecaut, M. J., Kaminskiy, D., Ozerov, I. V., Scheibye-Knudsen, M., & Zhavoronkov, A. (2018). Vive la radiorésistance!: Converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget, 9(18), 14692–14722. https://doi.org/10.18632/oncotarget.24461.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Farkas, Á., & Farkas, G. (2021). Effects of Spaceflight on Human skin. Skin Pharmacology and Physiology, 34(5), 239–245. https://doi.org/10.1159/000515963.

    Article  CAS  PubMed  Google Scholar 

  3. Strauss, S., Krog, R., & L.&Feiveson, A. H. (2005). Extravehicular mobility unit training and astronaut injuries. Aviation Space and Environmental Medicine, 76(5), 469–474.

    PubMed  Google Scholar 

  4. Kirkpatrick, A. W., Ball, C. G., Campbell, M., Williams, D. R., Parazynski, S. E., Mattox, K. L., & Broderick, T. J. (2009). Severe traumatic injury during long duration spaceflight: Light years beyond ATLS. Journal of Trauma Management & Outcomes, 3(4), https://doi.org/10.1186/1752-2897-3-4.

  5. Gontcharov, I. B., Kovachevich, I. V., Pool, S. L., Navinkov, O. L., Barratt, M. R., & Bogomolov, V. V.&House N. (2005) In-flight medical incidents in the NASA-Mir program. Aviation Space and Environmental Medicine, 76(7), 692–696.

  6. Radstake, W. E., Gautam, K., Miranda, S., Vermeesen, R., Tabury, K., Rehnberg, E., Buset, J., Janssen, A., Leysen, L., Neefs, M., Verslegers, M., Claesen, J., van Goethem, M. J., Weber, U., Fournier, C., Parisi, A., Brandenburg, S., Durante, M., Baselet, B., & Baatout, S. (2023). The Effects of combined exposure to simulated microgravity, Ionizing Radiation, and Cortisol on the In Vitro Wound Healing process. Cells, 12(2), https://doi.org/10.3390/cells12020246.

  7. Burgdorf, W. H., & C.&Hoenig, L. J. (2015). Dermatology and the american experience in space. JAMA Dermatology, 151(8), 877–877. https://doi.org/10.1001/jamadermatol.2014.2557.

    Article  PubMed  Google Scholar 

  8. Tronnier, H., Wiebusch, M., & Heinrich, U. (2008). Change in skin physiological parameters in space–report on and results of the first study on man. Skin Pharmacology and Physiology, 21(5), 283–292. https://doi.org/10.1159/000148045.

    Article  CAS  PubMed  Google Scholar 

  9. Grover, S. (2011). Skin in aviation and space environment. Indian Journal of Dermatology Venereology and Leprology, 77(4), 413–417. https://doi.org/10.4103/0378-6323.82387.

    Article  PubMed  Google Scholar 

  10. Krittanawong, C., Singh, N. K., Scheuring, R. A., Urquieta, E., Bershad, E. M., Macaulay, T. R., Kaplin, S., Dunn, C., Kry, S. F., Russomano, T., Shepanek, M., Stowe, R. P., Kirkpatrick, A. W., Broderick, T. J., Sibonga, J. D., Lee, A. G., & Crucian, B. E. (2022). Human Health during Space Travel: State-of-the-art review. Cells, 12(1), https://doi.org/10.3390/cells12010040.

  11. Golchin, A., Shams, F., Basiri, A., Ranjbarvan, P., Kiani, S., Sarkhosh-Inanlou, R., Ardeshirylajimi, A., Gholizadeh-Ghaleh Aziz, S., Sadigh, S., & Rasmi, Y. (2022). Combination therapy of Stem Cell-derived Exosomes and Biomaterials in the Wound Healing. Stem Cell Reviews and Reports, 18(6), 1892–1911. https://doi.org/10.1007/s12015-021-10309-5.

    Article  PubMed  Google Scholar 

  12. Bian, D., Wu, Y., Song, G., Azizi, R., & Zamani, A. (2022). The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem Cell Research & Therapy, 13(1), 24. https://doi.org/10.1186/s13287-021-02697-9.

    Article  CAS  Google Scholar 

  13. Li, D., & Wu, N. (2022). Mechanism and application of exosomes in the wound healing process in diabetes mellitus. Diabetes Research and Clinical Practice, 187, 109882. https://doi.org/10.1016/j.diabres.2022.109882.

    Article  CAS  PubMed  Google Scholar 

  14. Nourian Dehkordi, A., Mirahmadi Babaheydari, F., Chehelgerdi, M., & Raeisi Dehkordi, S. (2019). Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies. Stem Cell Research & Therapy, 10(1), 111. https://doi.org/10.1186/s13287-019-1212-2.

    Article  CAS  Google Scholar 

  15. Pasparakis, M., Haase, I., & Nestle, F. O. (2014). Mechanisms regulating skin immunity and inflammation. Nature Reviews Immunology, 14(5), 289–301. https://doi.org/10.1038/nri3646.

    Article  CAS  PubMed  Google Scholar 

  16. Vig, K., Chaudhari, A., Tripathi, S., Dixit, S., Sahu, R., Pillai, S., Dennis, V. A., & Singh, S. R. (2017). Advances in skin regeneration using tissue Engineering. International Journal of Molecular Sciences, 18(4), https://doi.org/10.3390/ijms18040789.

  17. Wong, R., Geyer, S., Weninger, W., & Guimberteau, J. C. (2016). The dynamic anatomy and patterning of skin. Experimental Dermatology, 25(2), 92–98. https://doi.org/10.1111/exd.12832.

    Article  PubMed  Google Scholar 

  18. Bacci, S., & Bani, D. (2022). The Epidermis in Microgravity and Unloading Conditions and their Effects on Wound Healing. Frontiers In Bioengineering and Biotechnology, 10, 666434. https://doi.org/10.3389/fbioe.2022.666434.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6(265), 265sr6. https://doi.org/10.1126/scitranslmed.3009337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilkinson, H., & N.&Hardman, M. J. (2020). Wound healing: Cellular mechanisms and pathological outcomes. Open Biology, 10(9), 200223. https://doi.org/10.1098/rsob.200223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound Healing: A Cellular Perspective. Physiological Reviews, 99(1), 665–706. https://doi.org/10.1152/physrev.00067.2017.

    Article  CAS  PubMed  Google Scholar 

  22. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science (New York N Y), 303(5663), 1532–1535.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, S., Yu, Y., Ren, Y., Xu, L., Wang, H., Ling, X., Jin, L., Hu, Y., Zhang, H., Miao, C., & Guo, K. (2021). The emerging roles of neutrophil extracellular traps in wound healing. Cell Death & Disease, 12(11), 984. https://doi.org/10.1038/s41419-021-04294-3.

    Article  CAS  Google Scholar 

  24. Willenborg, S., Injarabian, L., & Eming, S. A. (2022). Role of Macrophages in Wound Healing. Cold Spring Harbor Perspectives In Biology, 14(12), https://doi.org/10.1101/cshperspect.a041216.

  25. Maschalidi, S., Mehrotra, P., Keçeli, B. N., De Cleene, H. K., L., Lecomte, K., Van der Cruyssen, R., Janssen, P., Pinney, J., van Loo, G., Elewaut, D., Massie, A., Hoste, E., & Ravichandran, K. S. (2022). Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature, 606(7915), 776–784. https://doi.org/10.1038/s41586-022-04754-6.

    Article  CAS  PubMed  Google Scholar 

  26. Nosbaum, A., Prevel, N., Truong, H. A., Mehta, P., Ettinger, M., Scharschmidt, T. C., Ali, N. H., Pauli, M. L., Abbas, A. K., & Rosenblum, M. D. (2016). Cutting Edge: Regulatory T cells facilitate cutaneous Wound Healing. Journal of Immunology (Baltimore Md : 1950), 196(5), 2010–2014. https://doi.org/10.4049/jimmunol.1502139.

    Article  CAS  PubMed  Google Scholar 

  27. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C., & Longaker, M. T. (2022). Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell, 29(8), 1161–1180. https://doi.org/10.1016/j.stem.2022.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiaojie, W., Banda, J., Qi, H., Chang, A. K., Bwalya, C., Chao, L., & Li, X. (2022). Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine & Growth Factor Reviews, 66, 26–37. https://doi.org/10.1016/j.cytogfr.2022.03.001.

    Article  CAS  Google Scholar 

  29. Broughton, G., Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. Plastic and Reconstructive Surgery, 117(7 Suppl), 12S–34S.

    Article  CAS  PubMed  Google Scholar 

  30. Gao, Y., Li, S., Xu, D., Wang, J., & Sun, Y. (2015). Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission. Journal of Radiation Research, 56(6), 872–882. https://doi.org/10.1093/jrr/rrv050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neutelings, T., Nusgens, B. V., Liu, Y., Tavella, S., Ruggiu, A., Cancedda, R., Gabriel, M., Colige, A., & Lambert, C. (2015). Skin physiology in microgravity: A 3-month stay aboard ISS induces dermal atrophy and affects cutaneous muscle and hair follicles cycling in mice. NPJ Microgravity, 1, 15002. https://doi.org/10.1038/npjmgrav.2015.2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, Z., Rivera, C. A., Burns, A. R., & Smith, C. W. (2004). Hindlimb unloading depresses corneal epithelial wound healing in mice. Journal of Applied Physiology (Bethesda Md : 1985), 97(2), 641–647.

    Article  PubMed  Google Scholar 

  33. Kaur, I., Simons, E. R., Castro, V. A., Mark Ott, C., & Pierson, D. L. (2004). Changes in neutrophil functions in astronauts. Brain Behavior and Immunity, 18(5), 443–450.

    Article  CAS  PubMed  Google Scholar 

  34. Kaur, I., Simons, E. R., Castro, V. A., Ott, C. M., & Pierson, D. L. (2005). Changes in monocyte functions of astronauts. Brain Behavior and Immunity, 19(6), 547–554.

    Article  CAS  PubMed  Google Scholar 

  35. Funes, S. C., Rios, M., Escobar-Vera, J., & Kalergis, A. M. (2018). Implications of macrophage polarization in autoimmunity. Immunology, 154(2), 186–195. https://doi.org/10.1111/imm.12910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. α expression in macrophage cells. Inflammation Research: Official Journal of the European Histamine Research Society… et Al.], 63(1), 91–98. https://doi.org/10.1007/s00011-013-0676-2

  37. β pathway to regulate the expression of arginase and inflammatory cytokines in macrophages.Inflammation Research: Official Journal of the European Histamine Research Society… et Al.], 64(5), 303–311. https://doi.org/10.1007/s00011-015-0811-3

  38. Shi, L., Tian, H., Wang, P., Li, L., Zhang, Z., Zhang, J., & Zhao, Y. (2021). Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cellular & Molecular Immunology, 18(6), 1489–1502. https://doi.org/10.1038/s41423-019-0346-6.

    Article  CAS  Google Scholar 

  39. Schwarzenberg, M., Pippia, P., Meloni, M. A., Cossu, G., Cogoli-Greuter, M., & Cogoli, A. (1999). Signal transduction in T lymphocytes–a comparison of the data from space, the free fall machine and the random positioning machine. Advances In Space Research: the Official Journal of the Committee On Space Research (COSPAR), 24(6), 793–800.

    Article  CAS  PubMed  Google Scholar 

  40. Crucian, B. E., Stowe, R. P., Pierson, D. L., & Sams, C. F. (2008). Immune system dysregulation following short- vs long-duration spaceflight. Aviation Space and Environmental Medicine, 79(9), 835–843.

    Article  PubMed  Google Scholar 

  41. Thiel, C. S., Paulsen, K., Bradacs, G., Lust, K., Tauber, S., Dumrese, C., Hilliger, A., Schoppmann, K., Biskup, J., Gölz, N., Sang, C., Ziegler, U., Grote, K. H., Zipp, F., Zhuang, F., Engelmann, F., Hemmersbach, R., Cogoli, A., & Ullrich, O. (2012). Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Communication and Signaling: CCS, 10(1), 1. https://doi.org/10.1186/1478-811X-10-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boonyaratanakornkit, J. B., Cogoli, A., Li, C. F., Schopper, T., Pippia, P., Galleri, G., Meloni, M. A., & Hughes-Fulford, M. (2005). Key gravity-sensitive signaling pathways drive T cell activation. FASEB Journal: Official Publication of the Federation of American Societies For Experimental Biology, 19(14), 2020–2022.

    Article  CAS  PubMed  Google Scholar 

  43. Chang, T. T., Walther, I., Li, C. F., Boonyaratanakornkit, J., Galleri, G., Meloni, M. A., Pippia, P., Cogoli, A., & Hughes-Fulford, M. (2012). The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. Journal of Leukocyte Biology, 92(6), 1133–1145. https://doi.org/10.1189/jlb.0312157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tackett, N., Bradley, J. H., Moore, E. K., Baker, S. H., Minter, S. L., DiGiacinto, B., Arnold, J. P., & Gregg, R. K. (2019). Prolonged exposure to simulated microgravity diminishes dendritic cell immunogenicity. Scientific Reports, 9(1), 13825. https://doi.org/10.1038/s41598-019-50311-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carlsson, S. I. M., Bertilaccio, M. T. S., Ballabio, E., & Maier, J. A. M. (2003). Endothelial stress by gravitational unloading: Effects on cell growth and cytoskeletal organization. Biochimica Et Biophysica Acta, 1642(3), 173–179.

    Article  CAS  PubMed  Google Scholar 

  46. Kong, L., Wang, Y., Wang, H., Pan, Q., Zuo, R., Bai, S., Zhang, X., Lee, W. Y., Kang, Q., & Li, G. (2021). Conditioned media from endothelial progenitor cells cultured in simulated microgravity promote angiogenesis and bone fracture healing. Stem Cell Research & Therapy, 12(1), 47. https://doi.org/10.1186/s13287-020-02074-y.

    Article  CAS  Google Scholar 

  47. Siamwala, J. H., Majumder, S., Tamilarasan, K. P., Muley, A., Reddy, S. H., Kolluru, G. K., Sinha, S., & Chatterjee, S. (2010). Simulated microgravity promotes nitric oxide-supported angiogenesis via the iNOS-cGMP-PKG pathway in macrovascular endothelial cells. FEBS Letters, 584(15), 3415–3423. https://doi.org/10.1016/j.febslet.2010.06.039.

    Article  CAS  PubMed  Google Scholar 

  48. Lang, I., Pabst, M. A., Hiden, U., Blaschitz, A., Dohr, G., Hahn, T., & Desoye, G. (2003). Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. European Journal of Cell Biology, 82(4), 163–173.

    Article  PubMed  Google Scholar 

  49. Cotrupi, S., Ranzani, D., & Maier, J. A. M. (2005). Impact of modeled microgravity on microvascular endothelial cells. Biochimica Et Biophysica Acta, 1746(2), 163–168.

    Article  CAS  PubMed  Google Scholar 

  50. Mariotti, M., & Maier, J. A. M. (2008). Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells. Journal of Cellular Biochemistry, 104(1), 129–135.

    Article  CAS  PubMed  Google Scholar 

  51. Feuerecker, M., van Oosterhout, W. P. J., Feuerecker, B., Matzel, S., Schelling, G., Rehm, M., & Vein, A. A. (2016). Headache under simulated microgravity is related to endocrine, fluid distribution, and tight junction changes. Pain, 157(5), 1072–1078. https://doi.org/10.1097/j.pain.0000000000000481.

    Article  CAS  PubMed  Google Scholar 

  52. Shen, M., & Frishman, W. H. (2019). Effects of Spaceflight on Cardiovascular Physiology and Health. Cardiology In Review, 27(3), 122–126. https://doi.org/10.1097/CRD.0000000000000236.

    Article  PubMed  Google Scholar 

  53. Lei, X., Ning, L., Cao, Y., Liu, S., Zhang, S., Qiu, Z., Hu, H., Zhang, H.s., Liu, S., & Duan, E.-k (Eds.). (2011). NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PloS One, 6(11), e26603. https://doi.org/10.1371/journal.pone.0026603

  54. Ranieri, D., Cucina, A., Bizzarri, M., Alimandi, M., & Torrisi, M. R. (2015). Microgravity influences circadian clock oscillation in human keratinocytes. FEBS Open Bio, 5, 717–723. https://doi.org/10.1016/j.fob.2015.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, B. B., Chen, Z. Y., Jiang, N., Guo, S., Yang, J. Q., Chai, S. B., Yan, H. F., Sun, P. M., Hu, G., Zhang, T., Xu, B. X., Sun, H. W., Zhou, J. L., Yang, H. M., & Cui, Y. (2020). Simulated microgravity significantly altered metabolism in epidermal stem cells. In Vitro Cellular & Developmental Biology Animal, 56(3), 200–212. https://doi.org/10.1007/s11626-020-00435-8.

    Article  CAS  Google Scholar 

  56. Ranieri, D., Proietti, S., Dinicola, S., Masiello, M. G., Rosato, B., Ricci, G., Cucina, A., Catizone, A., Bizzarri, M., & Torrisi, M. R. (2017). Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes. Scientific Reports, 7(1), 538. https://doi.org/10.1038/s41598-017-00602-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Semov, A., Semova, N., Lacelle, C., Marcotte, R., Petroulakis, E., Proestou, G., & Wang, E. (2002). Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts. FASEB Journal: Official Publication of the Federation of American Societies For Experimental Biology, 16(8), 899–901.

    Article  CAS  PubMed  Google Scholar 

  58. Buken, C., Sahana, J., Corydon, T. J., Melnik, D., Bauer, J., Wehland, M., Krüger, M., Balk, S., Abuagela, N., Infanger, M., & Grimm, D. (2019). Morphological and molecular changes in juvenile normal human fibroblasts exposed to simulated microgravity. Scientific Reports, 9(1), 11882. https://doi.org/10.1038/s41598-019-48378-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fedeli, V., Cucina, A., Dinicola, S., Fabrizi, G., Catizone, A., Gesualdi, L., Ceccarelli, S., Harrath, A. H., Alwasel, S. H., Ricci, G., Pedata, P., Bizzarri, M., & Monti, N. (2022). Microgravity modifies the phenotype of fibroblast and promotes remodeling of the Fibroblast-Keratinocyte Interaction in a 3D co-culture model. International Journal of Molecular Sciences, 23(4), https://doi.org/10.3390/ijms23042163.

  60. Ikeda, H., Muratani, M., Hidema, J., Hada, M., Fujiwara, K., Souda, H., Yoshida, Y., & Takahashi, A. (2019). Expression Profile of Cell cycle-related genes in human fibroblasts exposed simultaneously to Radiation and simulated microgravity. International Journal of Molecular Sciences, 20(19), https://doi.org/10.3390/ijms20194791.

  61. Golchin, A. (2022). Stem cell technology and skin Disorders: From Stem Cell Biology to Clinical Applications. Stem Cell Reviews and Reports, 18(6), 1881–1882. https://doi.org/10.1007/s12015-022-10381-5.

    Article  PubMed  Google Scholar 

  62. Guillamat-Prats, R. (2021). The role of MSC in Wound Healing, Scarring and Regeneration. Cells, 10(7), https://doi.org/10.3390/cells10071729.

  63. Rosochowicz, M. A., Lach, M. S., Richter, M., Suchorska, W. M., & Trzeciak, T. (2023). Conditioned medium - is it an undervalued lab Waste with the potential for Osteoarthritis Management? Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-023-10517-1.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hong, S. J., Jia, S. X., Xie, P., Xu, W., Leung, K. P., Mustoe, T. A., & Galiano, R. D. (2013). Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PloS One, 8(1), e55640. https://doi.org/10.1371/journal.pone.0055640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, Q. Z., Su, W. R., Shi, S. H., Wilder-Smith, P., Xiang, A. P., Wong, A., Nguyen, A. L., Kwon, C. W., & Le, A. D. (2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells (Dayton Ohio), 28(10), 1856–1868. https://doi.org/10.1002/stem.503.

    Article  CAS  PubMed  Google Scholar 

  66. Jiang, D., Qi, Y., Walker, N. G., Sindrilaru, A., Hainzl, A., Wlaschek, M., MacNeil, S., & Scharffetter-Kochanek, K. (2013). The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing. Biomaterials, 34(10), 2501–2515. https://doi.org/10.1016/j.biomaterials.2012.12.014.

    Article  CAS  PubMed  Google Scholar 

  67. Chiossone, L., Conte, R., Spaggiari, G. M., Serra, M., Romei, C., Bellora, F., Becchetti, F., Andaloro, A., Moretta, L., & Bottino, C. (2016). Mesenchymal stromal cells induce Peculiar alternatively activated macrophages capable of dampening both innate and adaptive Immune responses. Stem Cells (Dayton Ohio), 34(7), 1909–1921. https://doi.org/10.1002/stem.2369.

    Article  CAS  PubMed  Google Scholar 

  68. Luz-Crawford, P., Djouad, F., Toupet, K., Bony, C., Franquesa, M., Hoogduijn, M. J., Jorgensen, C., & Noël, D. (2016). Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells (Dayton Ohio), 34(2), 483–492. https://doi.org/10.1002/stem.2254.

    Article  CAS  PubMed  Google Scholar 

  69. He, X., Dong, Z., Cao, Y., Wang, H., Liu, S., Liao, L., Jin, Y., Yuan, L., & Li, B. (2019). MSC-Derived Exosome Promotes M2 Polarization and Enhances Cutaneous Wound Healing. Stem Cells International, 2019(7132708. https://doi.org/10.1155/2019/7132708

  70. Kim, H., Wang, S. Y., Kwak, G., Yang, Y., Kwon, I. C., & Kim, S. H. (2019). Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 6(20), 1900513. https://doi.org/10.1002/advs.201900513

  71. Shi, R., Jin, Y., Zhao, S., Yuan, H., Shi, J., & Zhao, H. (2022). Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 153, 113463. https://doi.org/10.1016/j.biopha.2022.113463.

    Article  CAS  Google Scholar 

  72. Abd-Allah, S. H., El-Shal, A. S., Shalaby, S. M., Abd-Elbary, E., Mazen, N. F.&Abdel, & Kader, R. R. (2015). The role of placenta-derived mesenchymal stem cells in healing of induced full-thickness skin wound in a mouse model. IUBMB Life, 67(9), 701–709. https://doi.org/10.1002/iub.1427

  73. Kim, H., Choi, K., Kweon, O. K., & Kim, W. H. (2012). Enhanced wound healing effect of canine adipose-derived mesenchymal stem cells with low-level laser therapy in athymic mice. Journal of Dermatological Science, 68(3), 149–156. https://doi.org/10.1016/j.jdermsci.2012.09.013.

    Article  CAS  PubMed  Google Scholar 

  74. Shou, K., Niu, Y., Zheng, X., Ma, Z., Jian, C., Qi, B., Hu, X., & Yu, A. (2017). Enhancement of bone-marrow-derived mesenchymal stem cell angiogenic capacity by NPWT for a combinatorial therapy to promote Wound Healing with large defect. BioMed Research International, 2017, 7920265. https://doi.org/10.1155/2017/7920265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lopatina, T., Bruno, S., Tetta, C., Kalinina, N., Porta, M., & Camussi, G. (2014). Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Communication and Signaling: CCS, 12, 26. https://doi.org/10.1186/1478-811X-12-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, X., Xie, X., Lian, W., Shi, R., Han, S., Zhang, H., Lu, L., & Li, M. (2018). Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Experimental & Molecular Medicine, 50(4), https://doi.org/10.1038/s12276-018-0058-5.

  77. Las Heras, K., Royo, F., Garcia-Vallicrosa, C., Igartua, M., Santos-Vizcaino, E., Falcon-Perez, J. M., & Hernandez, R. M. (2022). Extracellular vesicles from hair follicle-derived mesenchymal stromal cells: Isolation, characterization and therapeutic potential for chronic wound healing. Stem Cell Research & Therapy, 13(1), 147. https://doi.org/10.1186/s13287-022-02824-0.

    Article  CAS  Google Scholar 

  78. Shabbir, A., Cox, A., Rodriguez-Menocal, L., Salgado, M., & Van Badiavas, E. (2015). Mesenchymal stem cell exosomes induce Proliferation and Migration of normal and chronic wound fibroblasts, and enhance Angiogenesis in Vitro. Stem Cells and Development, 24(14), 1635–1647. https://doi.org/10.1089/scd.2014.0316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hu, L., Wang, J., Zhou, X., Xiong, Z., Zhao, J., Yu, R., Huang, F., Zhang, H., & Chen, L. (2016). Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Scientific Reports, 6, 32993. https://doi.org/10.1038/srep32993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, B., Luan, S., Chen, J., Zhou, Y., Wang, T., Li, Z., Fu, Y., Zhai, A., & Bi, C. (2020). The MSC-Derived Exosomal lncRNA H19 promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p. Molecular Therapy Nucleic Acids, 19, 814–826. https://doi.org/10.1016/j.omtn.2019.11.034.

    Article  CAS  PubMed  Google Scholar 

  81. He, L., Zhu, C., Jia, J., Hao, X. Y., Yu, X. Y., Liu, X. Y., & Shu, M. G. (2020). ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. Bioscience Reports, 40(5), https://doi.org/10.1042/BSR20192549.

  82. Hu, Y., Rao, S. S., Wang, Z. X., Cao, J., Tan, Y. J., Luo, J., Li, H. M., Zhang, W. S., Chen, C. Y., & Xie, H. (2018). Exosomes from human umbilical cord blood accelerate cutaneous wound healing through mir-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics, 8(1), 169–184. https://doi.org/10.7150/thno.21234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dekoninck, S., & Blanpain, C. (2019). Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology, 21(1), 18–24. https://doi.org/10.1038/s41556-018-0237-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ikeda, S., Saijo, S., Murayama, M. A., Shimizu, K., Akitsu, A., & Iwakura, Y. (2014). Excess IL-1 signaling enhances the development of Th17 cells by downregulating TGF-β-induced Foxp3 expression. Journal of Immunology (Baltimore Md : 1950), 192(4), 1449–1458. https://doi.org/10.4049/jimmunol.1300387.

    Article  CAS  PubMed  Google Scholar 

  85. Baranovskii, D. S., Klabukov, I. D., Arguchinskaya, N. V., Yakimova, A. O., Kisel, A. A., Yatsenko, E. M., Ivanov, S. A., & Shegay, P. (2022). V.&Kaprin A. D. Adverse events, side effects and complications in mesenchymal stromal cell-based therapies. Stem Cell Investigation, 9(7. https://doi.org/10.21037/sci-2022-025

  86. Zhou, X., Brown, B. A., Siegel, A. P., El Masry, M. S., Zeng, X., Song, W., Das, A., Khandelwal, P., Clark, A., Singh, K., Guda, P. R., Gorain, M., Timsina, L., Xuan, Y., Jacobson, S. C., Novotny, M. V., Roy, S., Agarwal, M., Lee, R. J., Sen, C. K., Clemmer, D. E., & Ghatak, S. (2020). Exosome-mediated crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing. Acs Nano, 14(10), 12732–12748. https://doi.org/10.1021/acsnano.0c03064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Long, M., Rojo de la Vega, M., Wen, Q., Bharara, M., Jiang, T., Zhang, R., Zhou, S., Wong, P. K., Wondrak, G. T., Zheng, H., & Zhang, D. D. (2016). An essential role of NRF2 in Diabetic Wound Healing. Diabetes, 65(3), 780–793. https://doi.org/10.2337/db15-0564.

    Article  CAS  PubMed  Google Scholar 

  88. Liang, X., Zhang, L., Wang, S., Han, Q., & Zhao, R. C. (2016). Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. Journal of Cell Science, 129(11), 2182–2189. https://doi.org/10.1242/jcs.170373.

    Article  CAS  PubMed  Google Scholar 

  89. Kang, T., Jones, T. M., Naddell, C., Bacanamwo, M., Calvert, J. W., Thompson, W. E., Bond, V. C., Chen, Y. E., & Liu, D. (2016). Adipose-derived stem cells induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Translational Medicine, 5(4), 440–450. https://doi.org/10.5966/sctm.2015-0177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krasilnikova, O. A., Baranovskii, D. S., Lyundup, A. V., Shegay, P. V., Kaprin, A. D., & Klabukov, I. D. (2022). Stem and somatic cell monotherapy for the treatment of Diabetic Foot Ulcers: Review of Clinical Studies and Mechanisms of Action. Stem Cell Reviews and Reports, 18(6), 1974–1985. https://doi.org/10.1007/s12015-022-10379-z.

    Article  CAS  PubMed  Google Scholar 

  91. Qi, Y., Jiang, D., Sindrilaru, A., Stegemann, A., Schatz, S., Treiber, N., Rojewski, M., Schrezenmeier, H., Vander Beken, S., Wlaschek, M., Böhm, M., Seitz, A., Scholz, N., Dürselen, L., Brinckmann, J., Ignatius A.&, & Scharffetter-Kochanek, K. (2014). TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. The Journal of Investigative Dermatology, 134(2), 526–537. https://doi.org/10.1038/jid.2013.328.

    Article  CAS  PubMed  Google Scholar 

  92. Liu, C., Lu, Y., Du, P., Yang, F., Guo, P., Tang, X., Diao, L., & Lu, G. (2022). Mesenchymal stem cells pretreated with proinflammatory cytokines accelerate skin wound healing by promoting macrophages migration and M2 polarization. Regenerative Therapy, 21, 192–200. https://doi.org/10.1016/j.reth.2022.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Whelan, D. S., Caplice, N. M., & Clover, A. J. P. (2020). Mesenchymal stromal cell derived CCL2 is required for accelerated wound healing. Scientific Reports, 10(1), 2642. https://doi.org/10.1038/s41598-020-59174-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sharifzadeh, G., & Hosseinkhani, H. (2017). Biomolecule-Responsive Hydrogels in Medicine. Advanced Healthcare Materials, 6(24), https://doi.org/10.1002/adhm.201700801.

  95. Stan, D., Tanase, C., Avram, M., Apetrei, R., Mincu, N. B., & Mateescu, A. L. (2021). Wound healing applications of creams and “smart” hydrogels. Experimental Dermatology, 30(9), 1218–1232. https://doi.org/10.1111/exd.14396.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Elkhoury, K., Koçak, P., Kang, A., Arab-Tehrany, E., Ellis Ward, J., & Shin, S. R. (2020). Engineering Smart Targeting Nanovesicles and their combination with hydrogels for controlled drug delivery. Pharmaceutics, 12(9), https://doi.org/10.3390/pharmaceutics12090849.

  97. Ma, C., Liu, K., Li, Q., Xiong, Y., Xu, C., Zhang, W., Ruan, C., Li, X., & Lei, X. (2022). Synthetic extracellular matrices for 3D culture of Schwann cells, hepatocytes, and HUVECs. Bioengineering (Basel Switzerland), 9(9), https://doi.org/10.3390/bioengineering9090453.

  98. Rustad, K. C., Wong, V. W., Sorkin, M., Glotzbach, J. P., Major, M. R., Rajadas, J., Longaker, M., & T.&Gurtner, G. C. (2012). Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 33(1), 80–90. https://doi.org/10.1016/j.biomaterials.2011.09.041.

    Article  CAS  PubMed  Google Scholar 

  99. Shou, K., Huang, Y., Qi, B., Hu, X., Ma, Z., Lu, A., Jian, C., Zhang, L., & Yu, A. (2018). Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber-based hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 12(2), e867–e880. https://doi.org/10.1002/term.2400.

    Article  CAS  PubMed  Google Scholar 

  100. Xiong, Y., Chen, L., Liu, P., Yu, T., Lin, C., Yan, C., Hu, Y., Zhou, W., Sun, Y., Panayi, A. C., Cao, F., Xue, H., Hu, L., Lin, Z., Xie, X., Xiao, X., Feng, Q., Mi, B., & Liu, G. (2022). All-in-One: Multifunctional hydrogel accelerates oxidative Diabetic Wound Healing through timed-release of exosome and fibroblast growth factor. Small (Weinheim an Der Bergstrasse Germany), 18(1), e2104229. https://doi.org/10.1002/smll.202104229.

    Article  CAS  PubMed  Google Scholar 

  101. Tang, Q., Lu, B., He, J., Chen, X., Fu, Q., Han, H., Luo, C., Yin, H., Qin, Z., Lyu, D., Zhang, L., Zhou, M., & Yao, K. (2022). Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials, 280, 121320. https://doi.org/10.1016/j.biomaterials.2021.121320.

    Article  CAS  PubMed  Google Scholar 

  102. Wang, Y., Cao, Z., Wei, Q., Ma, K., Hu, W., Huang, Q., Su, J., Li, H., Zhang, C., & Fu, X. (2022). VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomaterialia, 147, 342–355. https://doi.org/10.1016/j.actbio.2022.05.018.

    Article  CAS  PubMed  Google Scholar 

  103. Kwak, G., Cheng, J., Kim, H., Song, S., Lee, S. J., Yang, Y., Jeong, J. H., Lee, J. E., Messersmith, P. B., & Kim, S. H. (2022). Sustained exosome-guided macrophage polarization using hydrolytically degradable PEG hydrogels for Cutaneous Wound Healing: Identification of Key Proteins and MiRNAs, and sustained release formulation. Small (Weinheim an Der Bergstrasse Germany), 18(15), e2200060. https://doi.org/10.1002/smll.202200060.

    Article  CAS  PubMed  Google Scholar 

  104. Wang, C., Wang, M., Xu, T., Zhang, X., Lin, C., Gao, W., Xu, H., Lei, B., & Mao, C. (2019). Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for promoting Chronic Diabetic Wound Healing and Complete skin regeneration. Theranostics, 9(1), 65–76. https://doi.org/10.7150/thno.29766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, K., Zhao, X., Chen, X., Wei, Y., Du, W., Wang, Y., Liu, L., Zhao, W., Han, Z., Kong, D., Zhao, Q., Guo, Z., Han, Z., Liu, N., Ma, F., & Li, Z. (2018). Enhanced therapeutic Effects of mesenchymal stem cell-derived exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Applied Materials & Interfaces, 10(36), 30081–30091. https://doi.org/10.1021/acsami.8b08449.

    Article  CAS  Google Scholar 

  106. Shafei, S., Khanmohammadi, M., Heidari, R., Ghanbari, H., Taghdiri Nooshabadi, V., Farzamfar, S., Akbariqomi, M., Sanikhani, N. S., Absalan, M., & Tavoosidana, G. (2020). Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. Journal of Biomedical Materials Research Part A, 108(3), 545–556. https://doi.org/10.1002/jbm.a.36835.

    Article  CAS  PubMed  Google Scholar 

  107. Tao, S. C., Guo, S. C., Li, M., Ke, Q. F., Guo, Y. P., & Zhang, C. Q. (2017). Chitosan Wound Dressings incorporating exosomes derived from MicroRNA-126-Overexpressing synovium mesenchymal stem cells provide sustained release of Exosomes and heal full-thickness skin defects in a Diabetic Rat Model. Stem Cells Translational Medicine, 6(3), 736–747. https://doi.org/10.5966/sctm.2016-0275.

    Article  CAS  PubMed  Google Scholar 

  108. Yang, J., Chen, Z., Pan, D., Li, H., & Shen, J. (2020). Umbilical cord-derived mesenchymal stem cell-derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete skin regeneration. International Journal of Nanomedicine, 15, 5911–5926. https://doi.org/10.2147/IJN.S249129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shi, Q., Qian, Z., Liu, D., Sun, J., Wang, X., Liu, H., Xu, J., & Guo, X. (2017). GMSC-Derived Exosomes combined with a Chitosan/Silk Hydrogel Sponge accelerates Wound Healing in a Diabetic Rat skin defect model. Frontiers In Physiology, 8, 904. https://doi.org/10.3389/fphys.2017.00904.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank to all the members from Center for Energy Metabolism and Reproduction of the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences for their discussion. The graphical abstracts were created with BioRender software (BioRen-der.com).

Funding

This work was funded by the National Key Research and Development Program of China (2021YFA0719303), the Open Project Fund of the Logistics Research Program (ZZBWS21J2001), Guangxi Key Research and Development Project (No. AB20117001), the National Natural Science Foundation of China (32271284), and Guangxi science and technology bases and talent special project (No. AD17129062).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, drafting of the manuscript, critical revision of the manuscript, and validation, W.Z., J.Z., X.L.; visualization, editing, and supervision, W.Z., J.Z., Y.C., Y.Z., X.L.; funding acquisition, J.Z.,Y.C.,Y.Z., X.L. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yongxiang Zhao or Xiaohua Lei.

Ethics declarations

Institutional Review Board Statement

Not applicable.

Informed Consent

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, J., Cui, Y. et al. Stem Cells and Exosome Applications for Cutaneous Wound Healing: From Ground to Microgravity Environment. Stem Cell Rev and Rep 19, 2094–2108 (2023). https://doi.org/10.1007/s12015-023-10571-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10571-9

Keywords

Navigation