Skip to main content

Advertisement

Log in

Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Quinn, P. M. J., & Wijnholds, J. (2019). Retinogenesis of the human fetal retina: An apical polarity perspective. Genes, 10(12), 987. https://doi.org/10.3390/genes10120987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Hara-Wright, M., & Gonzalez-Cordero, A. (2020). Retinal organoids: a window into human retinal development. Development, 147(24). https://doi.org/10.1242/dev.189746

  3. Wagstaff, P. E., Berzal, A. H., Boon, C. J. F., Quinn, P. M. J., ten Asbroek, A. L. M. A., & Bergen, A. A. (2021). The role of small molecules and their effect on the molecular mechanisms of early retinal organoid development. International Journal of Molecular Sciences, 22(13), 7081. https://doi.org/10.3390/ijms22137081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chirco, K. R., Chew, S., Moore, A. T., Duncan, J. L., & Lamba, D. A. (2021). Allele-specific gene editing to rescue dominant CRX-associated LCA7 phenotypes in a retinal organoid model. Stem Cell Reports, 16(11), 2690–2702. https://doi.org/10.1016/j.stemcr.2021.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roger, J. E., & Goureau, O. (2022). Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. Npj Regenerative Medicine, 7(1). https://doi.org/10.1038/s41536-022-00235-6

  6. Li, M., Gong, J., Ge, L., Gao, H., Yang, J., Yang, C., Kang, J., Fang, Y., & Xu, H. (2022). Development of human retinal organoid models for bisphenol toxicity assessment. Ecotoxicology and Environmental Safety, 245, 114094. https://doi.org/10.1016/j.ecoenv.2022.114094

    Article  CAS  PubMed  Google Scholar 

  7. Zeng, Y., Li, M., Zou, T., Chen, X., Li, Q., Li, Y., Ge, L., Chen, S., & Xu, H. (2021). The Impact of Particulate Matter (PM2.5) on Human Retinal Development in hESC-Derived Retinal Organoids. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.607341

  8. Rowan, S., Chen, C.-M.A., Young, T. L., Fisher, D. E., & Cepko, C. L. (2004). Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development, 131(20), 5139–5152. https://doi.org/10.1242/dev.01300

    Article  CAS  PubMed  Google Scholar 

  9. Heisenberg, C.-P., Houart, C., Take-uchi, M., Rauch, G.-J., Young, N., Coutinho, P., Masai, I., Caneparo, L., Concha, M. L., Geisler, R., Dale, T. C., Wilson, S. W., & Stemple, D. L. (2001). A mutation in the Gsk3–binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes & Development, 15(11), 1427–1434. https://doi.org/10.1101/gad.194301

    Article  CAS  Google Scholar 

  10. Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G., & Harris, W. A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development, 130(21), 5155–5167. https://doi.org/10.1242/dev.00723

    Article  CAS  PubMed  Google Scholar 

  11. Gao, Z., & Godbout, R. (2011). Serine phosphorylation regulates disabled-1 early isoform turnover independently of Reelin. Cellular Signalling, 23(3), 555–565. https://doi.org/10.1016/j.cellsig.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  12. Hendrickson, A. (2016). Development of retinal layers in prenatal human retina. American Journal of Ophthalmology, 161, 29-35.e1. https://doi.org/10.1016/j.ajo.2015.09.023

    Article  PubMed  Google Scholar 

  13. Duan, X., et al. (2020). Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Developmental Cell, 53(4), 473-491.e9. https://doi.org/10.1016/j.devcel.2020.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeon, S., & Oh, I.-H. (2015). Regeneration of the retina: Toward stem cell therapy for degenerative retinal diseases. BMB Reports, 48(4), 193–199. https://doi.org/10.5483/bmbrep.2015.48.4.276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trapani, I., & Auricchio, A. (2018). Seeing the light after 25 years of retinal gene therapy. Trends in Molecular Medicine, 24(8), 669–681. https://doi.org/10.1016/j.molmed.2018.06.006

    Article  PubMed  Google Scholar 

  16. Sluch, V. M., Davis, C. O., Ranganathan, V., Kerr, J. M., Krick, K., Martin, R., Berlinicke, C. A., Marsh-Armstrong, N., Diamond, J. S., Mao, H.-Q., & Zack, D. J. (2015). Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Scientific Reports, 5(1). https://doi.org/10.1038/srep16595

  17. Sluch, V. M., Chamling, X., Liu, M. M., Berlinicke, C. A., Cheng, J., Mitchell, K. L., Welsbie, D. S., & Zack, D. J. (2017). Enhanced stem cell differentiation and immunopurification of genome engineered human retinal ganglion cells. Stem Cells Translational Medicine, 6(11), 1972–1986. https://doi.org/10.1002/sctm.17-0059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hirami, Y., Osakada, F., Takahashi, K., Okita, K., Yamanaka, S., Ikeda, H., Yoshimura, N., & Takahashi, M. (2009). Generation of retinal cells from mouse and human induced pluripotent stem cells. Neuroscience Letters, 458(3), 126–131. https://doi.org/10.1016/j.neulet.2009.04.035

    Article  CAS  PubMed  Google Scholar 

  19. Osakada, F., Ikeda, H., Mandai, M., Wataya, T., Watanabe, K., Yoshimura, N., Akaike, A., Sasai, Y., & Takahashi, M. (2008). Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nature Biotechnology, 26(2), 215–224. https://doi.org/10.1038/nbt1384

    Article  CAS  PubMed  Google Scholar 

  20. Xiao, D., Deng, Q., Guo, Y., Huang, X., Zou, M., Zhong, J., Rao, P., Xu, Z., Liu, Y., Hu, Y., Shen, Y., Jin, K., & Xiang, M. (2020). Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts. Science Advances, 6(22). https://doi.org/10.1126/sciadv.aaz5858

  21. Hayashi, R., Ishikawa, Y., Sasamoto, Y., Katori, R., Nomura, N., Ichikawa, T., Araki, S., Soma, T., Kawasaki, S., Sekiguchi, K., Quantock, A. J., Tsujikawa, M., & Nishida, K. (2016). Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature, 531(7594), 376–380. https://doi.org/10.1038/nature17000

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka, T., Yokoi, T., Tamalu, F., Watanabe, S.-I., Nishina, S., & Azuma, N. (2015). Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Scientific Reports, 5(1). https://doi.org/10.1038/srep08344

  23. Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., Saito, K., Yonemura, S., Eiraku, M., & Sasai, Y. (2012). Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 10(6), 771–785. https://doi.org/10.1016/j.stem.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  24. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T., & Sasai, Y. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472(7341), 51–56. https://doi.org/10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  25. Cuevas, E., Holder, D. L., Alshehri, A. H., Tréguier, J., Lakowski, J., & Sowden, J. C. (2021). NRL −/− gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells, 39(4), 414–428. https://doi.org/10.1002/stem.3325

    Article  CAS  PubMed  Google Scholar 

  26. Kallman, A., Capowski, E. E., Wang, J., Kaushik, A. M., Jansen, A. D., Edwards, K. L., Chen, L., Berlinicke, C. A., Phillips, M. J., Pierce, E. A., Qian, J., Wang, T.-H., Gamm, D. M., & Zack, D. J. (2020b). Investigating cone photoreceptor development using patient-derived NRL null retinal organoids. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-0808-5

  27. Zou, T., Gao, L., Zeng, Y., Li, Q., Li, Y., Chen, S., Hu, X., Chen, X., Fu, C., Xu, H., & Yin, Z. Q. (2019a). Organoid-derived C-Kit+/SSEA4− human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08961-0

  28. Bian, B., Zhao, C., He, X., Gong, Y., Ren, C., Ge, L., Zeng, Y., Li, Q., Chen, M., Weng, C., He, J., Fang, Y., Xu, H., & Yin, Z. Q. (2020). Exosomes derived from neural progenitor cells preserve photoreceptors during retinal degeneration by inactivating microglia. Journal of Extracellular Vesicles, 9(1), 1748931. https://doi.org/10.1080/20013078.2020.1748931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong, Y., He, X., Li, Q., He, J., Bian, B., Li, Y., Ge, L., Zeng, Y., Xu, H., & Yin, Z. Q. (2019). SCF/SCFR signaling plays an important role in the early morphogenesis and neurogenesis of human embryonic neural retina. Development. https://doi.org/10.1242/dev.174409

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kuwahara, A., Ozone, C., Nakano, T., Saito, K., Eiraku, M., & Sasai, Y. (2015a). Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nature Communications, 6(1). https://doi.org/10.1038/ncomms7286.

  31. Singh, R. K., Winkler, P. A., Binette, F., Petersen-Jones, S. M., & Nasonkin, I. O. (2021). Comparison of developmental dynamics in human fetal retina and human pluripotent stem cell-derived retinal tissue. Stem Cells and Development, 30(8), 399–417. https://doi.org/10.1089/scd.2020.0085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saha, A., Capowski, E., Zepeda, M. A. F., Nelson, E. C., Gamm, D. M., & Sinha, R. (2022). Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea. Cell Stem Cell, 29(3), 460-471.e3. https://doi.org/10.1016/j.stem.2022.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhong, X., Gutierrez, C., Xue, T., Hampton, C., Vergara, M. N., Cao, L.-H., Peters, A., Park, T. S., Zambidis, E. T., Meyer, J. S., Gamm, D. M., Yau, K.-W., & Canto-Soler, M. V. (2014). Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communications, 5(1). https://doi.org/10.1038/ncomms5047

  34. Norrie, J. L., Nityanandam, A., Lai, K., Chen, X., Wilson, M., Stewart, E., Griffiths, L., Jin, H., Wu, G., Orr, B., Tran, Q., Allen, S., Reilly, C., Zhou, X., Zhang, J., Newman, K., Johnson, D., Brennan, R., & Dyer, M. A. (2021a). Retinoblastoma from human stem cell-derived retinal organoids. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24781-7

  35. Gao, M.-L., Zhang, X., Han, F., Xu, J., Yu, S.-J., Jin, K., & Jin, Z.-B. (2022). Functional microglia derived from human pluripotent stem cells empower retinal organ. Science China Life Sciences. https://doi.org/10.1007/s11427-021-2086-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cakir, B., Xiang, Y., Tanaka, Y., Kural, M. H., Parent, M., Kang, Y.-J., Chapeton, K., Patterson, B., Yuan, Y., He, C.-S., Raredon, M. S. B., Dengelegi, J., Kim, K.-Y., Sun, P., Zhong, M., Lee, S., Patra, P., Hyder, F., Niklason, L. E., & Park, I.-H. (2019). Engineering of human brain organoids with a functional vascular-like system. Nature Methods, 16(11), 1169–1175. https://doi.org/10.1038/s41592-019-0586-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, Y., Sun, L., Wang, M., Liu, J., Zhong, S., Li, R., Li, P., Guo, L., Fang, A., Chen, R., Ge, W.-P., Wu, Q., & Wang, X. (2020). Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLOS Biology, 18(5), e3000705. https://doi.org/10.1371/journal.pbio.3000705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fligor, C. M., Lavekar, S. S., Harkin, J., Shields, P. K., VanderWall, K. B., Huang, K.-C., Gomes, C., & Meyer, J. S. (2021). Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Reports, 16(9), 2228–2241. https://doi.org/10.1016/j.stemcr.2021.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Achberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W., Shen, N., Schenke-Layland, K., Ueffing, M., Liebau, S., & Loskill, P. (2019a). Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. ELife, 8. https://doi.org/10.7554/elife.46188

  40. Kenyon, K. L., Zaghloul, N., & Moody, S. A. (2001). 1–s2.0-S0012160601904646-main. Developmental Biology. https://doi.org/10.1006/dbio.2001.0464

    Article  PubMed  Google Scholar 

  41. Horsford, D. J., Nguyen, M.-T.T., Sellar, G. C., Kothary, R., Arnheiter, H., & McInnes, R. R. (2005). Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development, 132(1), 177–187. https://doi.org/10.1242/dev.01571

    Article  CAS  PubMed  Google Scholar 

  42. Bumsted, K. M., & Barnstable, C. J. (2000). Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi_mi) mouse. Investigative Ophthalmology & Visual Science

  43. Nguyen-Ba-Charvet, K. T., & Rebsam, A. (2020). Neurogenesis and Specification of Retinal Ganglion Cells. International Journal of Molecular Sciences, 21(2), 451. https://doi.org/10.3390/ijms21020451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gueta, K., David, A., Cohen, T., Menuchin-Lasowski, Y., Nobel, H., Narkis, G., Li, L., Love, P., de Melo, J., Blackshaw, S., Westphal, H., & Ashery-Padan, R. (2016). The stage-dependent roles of Ldb1 and functional redundancy with Ldb2 in mammalian retinogenesis. Development. https://doi.org/10.1242/dev.129734

    Article  PubMed  PubMed Central  Google Scholar 

  45. Reichman, S., Terray, A., Slembrouck, A., Nanteau, C., Orieux, G., Habeler, W., Nandrot, E. F., Sahel, J.-A., Monville, C., & Goureau, O. (2014). From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proceedings of the National Academy of Sciences, 111(23), 8518–8523. https://doi.org/10.1073/pnas.1324212111

    Article  CAS  Google Scholar 

  46. Hill, J. C. G., Davidson, D. R., & Robert E. (1995). Development, 1433

  47. Smith, A. N., Miller, L.-A., Radice, G., Ashery-Padan, R., & Lang, R. A. (2009). Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis. Development, 136(19), 3377–3377. https://doi.org/10.1242/dev.043802

    Article  CAS  PubMed Central  Google Scholar 

  48. Mellough, C. B., Collin, J., Khazim, M., White, K., Sernagor, E., Steel, D. H. W., & Lako, M. (2015). IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells, 33(8), 2416–2430. https://doi.org/10.1002/stem.2023

    Article  CAS  PubMed  Google Scholar 

  49. Phillips, M. J., Perez, E. T., Martin, J. M., Reshel, S. T., Wallace, K. A., Capowski, E. E., Singh, R., Wright, L. S., Clark, E. M., Barney, P. M., Stewart, R., Dickerson, S. J., Miller, M. J., Percin, E. F., Thomson, J. A., & Gamm, D. M. (2014). Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells, 32(6), 1480–1492. https://doi.org/10.1002/stem.1667

    Article  CAS  PubMed  Google Scholar 

  50. Gamm, D. M., Clark, E., Capowski, E. E., & Singh, R. (2019). The role of FGF9 in the production of neural retina and RPE in a pluripotent stem cell model of early human retinal development. American Journal of Ophthalmology, 206, 113–131. https://doi.org/10.1016/j.ajo.2019.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Capowski, E. E., Simonett, J. M., Clark, E. M., Wright, L. S., Howden, S. E., Wallace, K. A., Petelinsek, A. M., Pinilla, I., Phillips, M. J., Meyer, J. S., Schneider, B. L., Thomson, J. A., & Gamm, D. M. (2014). Loss of MITF expression during human embryonic stem cell differentiation disrupts retinal pigment epithelium development and optic vesicle cell proliferation. Human Molecular Genetics, 23(23), 6332–6344. https://doi.org/10.1093/hmg/ddu351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguyen, M., & Arnheiter, H. (2000). Signaling and transcriptional regulation in early mammalian eye development: A link between FGF and MITF. Development, 127(16), 3581–3591. https://doi.org/10.1242/dev.127.16.3581

    Article  CAS  PubMed  Google Scholar 

  53. Meyer, J. S., Shearer, R. L., Capowski, E. E., Wright, L. S., Wallace, K. A., McMillan, E. L., Zhang, S.-C., & Gamm, D. M. (2009). Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Sciences, 106(39), 16698–16703. https://doi.org/10.1073/pnas.0905245106

    Article  Google Scholar 

  54. Kuwahara, A., Ozone, C., Nakano, T., Saito, K., Eiraku, M., & Sasai, Y. (2015a). Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nature Communications, 6(1). https://doi.org/10.1038/ncomms7286

  55. Buchholz, D. E., Hikita, S. T., Rowland, T. J., Friedrich, A. M., Hinman, C. R., Johnson, L. V., & Clegg, D. O. (2009). Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells, 27(10), 2427–2434. https://doi.org/10.1002/stem.189

    Article  CAS  PubMed  Google Scholar 

  56. Liu, S., Xie, B., Song, X., Zheng, D., He, L., Li, G., Gao, G., Peng, F., Yu, M., Ge, J., & Zhong, X. (2018). Self-Formation of RPE spheroids facilitates enrichment and expansion of hiPSC-derived RPE generated on retinal organoid induction platform. Investigative Opthalmology & Visual Science, 59(13), 5659. https://doi.org/10.1167/iovs.17-23613

    Article  CAS  Google Scholar 

  57. Isla-Magrané, H., Veiga, A., García-Arumí, J., & Duarri, A. (2021). Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages. Stem Cell Research & Therapy, 12(1). https://doi.org/10.1186/s13287-021-02651-9

  58. Livesey, F. J., & Cepko, C. L. (2001). Vertebrate neural cell-fate determination: Lessons from the retina. Nature Reviews Neuroscience, 2(2), 109–118. https://doi.org/10.1038/35053522

    Article  CAS  PubMed  Google Scholar 

  59. Young, R. W. (1985). Cell differentiation in the retina of the mouse. The Anatomical Record, 212(2), 199–205. https://doi.org/10.1002/ar.1092120215

    Article  CAS  PubMed  Google Scholar 

  60. Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M., & Ezzeddine, D. (1996). Cell fate determination in the vertebrate retina. Proceedings of the National Academy of Sciences, 93(2), 589–595. https://doi.org/10.1073/pnas.93.2.589

    Article  CAS  Google Scholar 

  61. Mao, X., An, Q., Xi, H., Yang, X.-J., Zhang, X., Yuan, S., Wang, J., Hu, Y., Liu, Q., & Fan, G. (2019). Single-cell RNA sequencing of hESC-derived 3D retinal organoids reveals novel genes regulating RPC commitment in early human retinogenesis. Stem Cell Reports, 13(4), 747–760. https://doi.org/10.1016/j.stemcr.2019.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, X., Mandric, I., Nguyen, K. H., Nguyen, T. T. T., Pellegrini, M., Grove, J. C. R., Barnes, S., & Yang, X.-J. (2021). Single cell transcriptomic analyses reveal the impact of bHLH factors on human retinal organoid development. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.653305

  63. Das, G., Choi, Y., Sicinski, P., & Levine, E. M. (2009). Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells. Neural Development, 4(1). https://doi.org/10.1186/1749-8104-4-15

  64. Fligor, C. M., Langer, K. B., Sridhar, A., Ren, Y., Shields, P. K., Edler, M. C., Ohlemacher, S. K., Sluch, V. M., Zack, D. J., Zhang, C., Suter, D. M., & Meyer, J. S. (2018). Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32871-8

  65. Singh, R. K., Mallela, R. K., Cornuet, P. K., Reifler, A. N., Chervenak, A. P., West, M. D., Wong, K. Y., & Nasonkin, I. O. (2015). Characterization of three-dimensional retinal tissue derived from human embryonic stem cells in adherent monolayer cultures. Stem Cells and Development, 24(23), 2778–2795. https://doi.org/10.1089/scd.2015.0144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ludwig, A. L., Mayerl, S. J., Gao, Y., Banghart, M., Bacig, C., Zepeda, M. A. F., Zhao, X., & Gamm, D. M. (2023). Re-formation of synaptic connectivity in dissociated human stem cell-derived retinal organoid cultures. Proceedings of the National Academy of Sciences, 120(2). https://doi.org/10.1073/pnas.2213418120

  67. Cora, V., Haderspeck, J., Antkowiak, L., Mattheus, U., Neckel, P., Mack, A., Bolz, S., Ueffing, M., Pashkovskaia, N., Achberger, K., & Liebau, S. (2019). A cleared view on retinal organoids. Cells, 8(5), 391. https://doi.org/10.3390/cells8050391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Knickmeyer, M. D., Mateo, J. L., & Heermann, S. (2021). BMP signaling interferes with optic chiasm formation and retinal ganglion cell pathfinding in zebrafish. International Journal of Molecular Sciences, 22(9), 4560. https://doi.org/10.3390/ijms22094560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peng, J., Fabre, P. J., Dolique, T., Swikert, S. M., Kermasson, L., Shimogori, T., & Charron, F. (2018). Sonic hedgehog is a remotely produced cue that controls axon guidance trans-axonally at a midline choice point. Neuron, 97(2), 326-340.e4. https://doi.org/10.1016/j.neuron.2017.12.028

    Article  CAS  PubMed  Google Scholar 

  70. Dorgau, B., Felemban, M., Sharpe, A., Bauer, R., Hallam, D., Steel, D. H., Lindsay, S., Mellough, C., & Lako, M. (2018). Laminin γ3 plays an important role in retinal lamination, photoreceptor organisation and ganglion cell differentiation. Cell Death & Disease, 9(6). https://doi.org/10.1038/s41419-018-0648-0

  71. Wagstaff, P. E., Asbroek, A. L. M. A. ten, Brink, J. B. ten, Jansonius, N. M., & Bergen, A. A. B. (2021). An alternative approach to produce versatile retinal organoids with accelerated ganglion cell development. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79651-x

  72. Kaewkhaw, R., Kaya, K. D., Brooks, M., Homma, K., Zou, J., Chaitankar, V., Rao, M., & Swaroop, A. (2015). Transcriptome dynamics of developing photoreceptors in three-dimensional retina cultures recapitulates temporal sequence of human cone and rod differentiation revealing cell surface markers and Gene N. Stem Cells, 33(12), 3504–3518. https://doi.org/10.1002/stem.2122

    Article  CAS  PubMed  Google Scholar 

  73. Kaufman, M. L., Park, K. U., Goodson, N. B., Chew, S., Bersie, S., Jones, K. L., Lamba, D. A., & Brzezinski, J. A. (2019). Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation. Developmental Biology, 453(2), 155–167. https://doi.org/10.1016/j.ydbio.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  74. Goodson, N. B., Kaufman, M. A., Park, K. U., & Brzezinski, J. A. (2020). Simultaneous deletion of Prdm1 and Vsx2 enhancers in the retina alters photoreceptor and bipolar cell fate specification, yet differs from deleting both genes. Development. https://doi.org/10.1242/dev.190272

    Article  PubMed  Google Scholar 

  75. Mears, A. J., Kondo, M., Swain, P. K., Takada, Y., Bush, R. A., Saunders, T. L., Sieving, P. A., & Swaroop, A. (2001). Nrl is required for rod photoreceptor development. Nature Genetics, 29(4), 447–452. https://doi.org/10.1038/ng774

    Article  CAS  PubMed  Google Scholar 

  76. Kim, J.-W., Yang, H.-J., Oel, A. P., Brooks, M. J., Jia, L., Plachetzki, D. C., Li, W., Allison, W. T., & Swaroop, A. (2016). Recruitment of rod photoreceptors from short-wavelength-sensitive cones during the evolution of nocturnal vision in mammals. Developmental Cell, 37(6), 520–532. https://doi.org/10.1016/j.devcel.2016.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kallman, A., Capowski, E. E., Wang, J., Kaushik, A. M., Jansen, A. D., Edwards, K. L., Chen, L., Berlinicke, C. A., Phillips, M. J., Pierce, E. A., Qian, J., Wang, T.-H., Gamm, D. M., & Zack, D. J. (2020a). Investigating cone photoreceptor development using patient-derived NRL null retinal organoids. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-0808-5

  78. Xiao, M., & Hendrickson, A. (2000). Spatial and temporal expression of short long medium or both opsins in human. Journal of Comparative Neurology, 5, 545–559. ©2000 WILEY-LISS, INC

  79. Eldred, K. C., Hadyniak, S. E., Hussey, K. A., Brenerman, B., Zhang, P.-W., Chamling, X., Sluch, V. M., Welsbie, D. S., Hattar, S., Taylor, J., Wahlin, K., Zack, D. J., & Johnston, R. J. (2018). Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science, 362(6411). https://doi.org/10.1126/science.aau6348

  80. Rizzolo, L. J., Nasonkin, I. O., & Adelman, R. A. (2022). Retinal Cell Transplantation, Biomaterials, and In Vitro Models for Developing Next-generation Therapies of Age-related Macular Degeneration. Stem Cells Translational Medicine, 11(3), 269–281. https://doi.org/10.1093/stcltm/szac001

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li, J., Chen, Y., Ouyang, S., Ma, J., Sun, H., Luo, L., Chen, S., & Liu, Y. (2021). Generation and staging of human retinal organoids based on self-formed ectodermal autonomous multi-zone system. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.732382

  82. Akhtar, T., et al. (2019). Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Research, 39, 101491. https://doi.org/10.1016/j.scr.2019.101491

    Article  CAS  PubMed  Google Scholar 

  83. Achberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W., Shen, N., Schenke-Layland, K., Ueffing, M., Liebau, S., & Loskill, P. (2019b). Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. ELife, 8. https://doi.org/10.7554/elife.46188

  84. Zhang, Z., Xu, Z., Yuan, F., Jin, K., & Xiang, M. (2021). Retinal organoid technology: Where are we now? International Journal of Molecular Sciences, 22(19), 10244. https://doi.org/10.3390/ijms221910244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Agathon, A., Thisse, C., & Thisse, B. (2003). The molecular nature of the zebrafish tail organizer. Nature, 424(6947), 448–452. https://doi.org/10.1038/nature01822

    Article  CAS  PubMed  Google Scholar 

  86. McNerney, C., & Johnston, R. J. (2021). Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids. In Elsevier (pp. 51–90). https://doi.org/10.1016/bs.vh.2021.03.001

  87. Browne, A. W., Arnesano, C., Harutyunyan, N., Khuu, T., Martinez, J. C., Pollack, H. A., Koos, D. S., Lee, T. C., Fraser, S. E., Moats, R. A., Aparicio, J. G., & Cobrinik, D. (2017). Structural and functional characterization of human stem-cell-derived retinal organoids by live imaging. Retinal Cell Biology. https://doi.org/10.1167/iovs.16-20796

    Article  Google Scholar 

  88. Döpper, H., Menges, J., Bozet, M., Brenzel, A., Lohmann, D., Steenpass, L., & Kanber, D. (2020). Differentiation Protocol for 3D Retinal Organoids, Immunostaining and Signal Quantitation. Current Protocols in Stem Cell Biology, 55(1). https://doi.org/10.1002/cpsc.120

  89. Du, Y., Xiao, Q., & Yip, H. K. (2010). z7g00710003764. Retinal Cell Biology. https://doi.org/10.1167/iovs.09-4906

    Article  Google Scholar 

  90. VanderWall, K. B., Huang, K.-C., Pan, Y., Lavekar, S. S., Fligor, C. M., Allsop, A. R., Lentsch, K. A., Dang, P., Zhang, C., Tseng, H. C., Cummins, T. R., & Meyer, J. S. (2020). Retinal ganglion cells with a glaucoma OPTN(E50K) mutation exhibit neurodegenerative phenotypes when derived from three-dimensional retinal organoids. Stem Cell Reports, 15(1), 52–66. https://doi.org/10.1016/j.stemcr.2020.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chavarría, T., Valenciano, A. I., Mayordomo, R., Egea, J., Comella, J. X., Hallböök, F., de Pablo, F., & de la Rosa, E. J. (2007). Differential, age-dependent MEK-ERK and PI3K-Akt activation by insulin acting as a survival factor during embryonic retinal development. Developmental Neurobiology, 67(13), 1777–1788. https://doi.org/10.1002/dneu.20554

    Article  CAS  PubMed  Google Scholar 

  92. Braunger, B. M., Pielmeier, S., Demmer, C., Landstorfer, V., Kawall, D., Abramov, N., Leibinger, M., Kleiter, I., Fischer, D., Jagle, H., & Tamm, E. R. (2013). TGF- signaling protects retinal neurons from programmed cell death during the development of the Mammalian eye. Journal of Neuroscience, 33(35), 14246–14258. https://doi.org/10.1523/jneurosci.0991-13.2013

    Article  CAS  PubMed  Google Scholar 

  93. Chavali, V. R. M., Haider, N., Rathi, S., Vrathasha, V., Alapati, T., He, J., Gill, K., Nikonov, R., Duong, T. T., McDougald, D. S., Nikonov, S., O’Brien, J., & Mills, J. A. (2020). Dual SMAD inhibition and Wnt inhibition enable efficient and reproducible differentiations of induced pluripotent stem cells into retinal ganglion cells. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68811-8

  94. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280. https://doi.org/10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Belloni, E., Muenke, M., Roessler, E., Traverse, G., Siegel-Bartelt, J., Frumkin, A., Mitchell, H. F., Donis-Keller, H., Helms, C., Hing, A. V., Heng, H. H. Q., Koop, B., Martindale, D., Rommens, J. M., Tsui, L.-C., & Scherer, S. W. (1996). Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genetics, 14(3), 353–356. https://doi.org/10.1038/ng1196-353

    Article  CAS  PubMed  Google Scholar 

  96. Stenkamp, D. L. (2015). Development of the Vertebrate Eye and Retina. In Elsevier (pp. 397–414). https://doi.org/10.1016/bs.pmbts.2015.06.006

  97. Neumann, C. J., & Nuesslein-Volhard, C. (2000). Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science, 289(5487), 2137–2139. https://doi.org/10.1126/science.289.5487.2137

    Article  CAS  PubMed  Google Scholar 

  98. Wiley, L. A., Burnight, E. R., DeLuca, A. P., Anfinson, K. R., Cranston, C. M., Kaalberg, E. E., Penticoff, J. A., Affatigato, L. M., Mullins, R. F., Stone, E. M., & Tucker, B. A. (2016). cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Scientific Reports, 6(1). https://doi.org/10.1038/srep30742

  99. Toonen, J. A., Ronchetti, A., & Sidjanin, D. J. (2016). A disintegrin and metalloproteinase10 (ADAM10) regulates NOTCH signaling during early retinal development. PLOS ONE, 11(5), e0156184. https://doi.org/10.1371/journal.pone.0156184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jadhav, A. P., Cho, S.-H., & Cepko, C. L. (2006). Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proceedings of the National Academy of Sciences, 103(50), 18998–19003. https://doi.org/10.1073/pnas.0608155103

    Article  CAS  Google Scholar 

  101. Mochizuki, Y., Iida, A., Lyons, E., Kageyama, R., Nakauchi, H., Murakami, A., & Watanabe, S. (2013). Use of cell type-specific transcriptome to identify genes specifically involved in Müller glia differentiation during retinal development. Developmental Neurobiology, 74(4), 426–437. https://doi.org/10.1002/dneu.22131

    Article  CAS  PubMed  Google Scholar 

  102. Mizeracka, K., Trimarchi, J. M., Stadler, M. B., & Cepko, C. L. (2013). Analysis of gene expression in wild-type and Notch1 mutant retinal cells by single cell profiling. Developmental Dynamics, 242(10), 1147–1159. https://doi.org/10.1002/dvdy.24006

    Article  CAS  PubMed  Google Scholar 

  103. Shrestha, R., Wen, Y.-T., Ding, D.-C., & Tsai, R.-K. (2019). Aberrant hiPSCs-derived from human keratinocytes differentiates into 3D retinal organoids that acquire mature photoreceptors. Cells, 8(1), 36. https://doi.org/10.3390/cells8010036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wahlin, K. J., Maruotti, J. A., Sripathi, S. R., Ball, J., Angueyra, J. M., Kim, C., Grebe, R., Li, W., Jones, B. W., & Zack, D. J. (2017). Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-00774-9

  105. Zerti, D., Dorgau, B., Felemban, M., Ghareeb, A. E., Yu, M., Ding, Y., Krasnogor, N., & Lako, M. (2019). Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell-derived retinal organoids. Stem Cells, 38(1), 45–51. https://doi.org/10.1002/stem.3082

    Article  CAS  PubMed  Google Scholar 

  106. Achberger, K. (2019). Abstract.https://doi.org/10.7554/elife.46188.001

  107. Yeste, J., García-Ramírez, M., Illa, X., Guimerà, A., Hernández, C., Simó, R., & Villa, R. (2018). A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood–retinal barrier. Lab on a Chip, 18(1), 95–105. https://doi.org/10.1039/c7lc00795g

    Article  CAS  Google Scholar 

  108. Xue, Y., Seiler, M. J., Tang, W. C., Wang, J. Y., Delgado, J., McLelland, B. T., Nistor, G., Keirstead, H. S., & Browne, A. W. (2021). Retinal organoids on-a-chip: A micro-millifluidic bioreactor for long-term organoid maintenance. Lab on a Chip, 21(17), 3361–3377. https://doi.org/10.1039/d1lc00011j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lipecz, A., Miller, L., Kovacs, I., Czakó, C., Csipo, T., Baffi, J., Csiszar, A., Tarantini, S., Ungvari, Z., Yabluchanskiy, A., & Conley, S. (2019). Microvascular contributions to age-related macular degeneration (AMD): From mechanisms of choriocapillaris aging to novel interventions. GeroScience, 41(6), 813–845. https://doi.org/10.1007/s11357-019-00138-3

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chung, M., Lee, S., Lee, B. J., Son, K., Jeon, N. L., & Kim, J. H. (2017). Wet-AMD on a chip: modeling outer blood-retinal barrier in vitro. Advanced Healthcare Materials, 7(2), 1700028. https://doi.org/10.1002/adhm.201700028

    Article  CAS  Google Scholar 

  111. Chen, L.-J., Ito, S., Kai, H., Nagamine, K., Nagai, N., Nishizawa, M., Abe, T., & Kaji, H. (2017). Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-03788-5

  112. Pașca, S. P., Arlotta, P., Bateup, H. S., Camp, J. G., Cappello, S., Gage, F. H., Knoblich, J. A., Kriegstein, A. R., Lancaster, M. A., Ming, G.-L., Muotri, A. R., Park, I.-H., Reiner, O., Song, H., Studer, L., Temple, S., Testa, G., Treutlein, B., & Vaccarino, F. M. (2022). A nomenclature consensus for nervous system organoids and assembloids. Nature, 609(7929), 907–910. https://doi.org/10.1038/s41586-022-05219-6

    Article  CAS  PubMed  Google Scholar 

  113. Fernando, M., Lee, S., Wark, J. R., Xiao, D., Lim, B. Y., O’Hara-Wright, M., Kim, H. J., Smith, G. C., Wong, T., Teber, E. T., Ali, R. R., Yang, P., Graham, M. E., & Gonzalez-Cordero, A. (2022). Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin. Stem Cell Reports, 17(6), 1476–1492. https://doi.org/10.1016/j.stemcr.2022.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mansour, A. A., Gonçalves, J. T., Bloyd, C. W., Li, H., Fernandes, S., Quang, D., Johnston, S., Parylak, S. L., Jin, X., & Gage, F. H. (2018). An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology, 36(5), 432–441. https://doi.org/10.1038/nbt.4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brooks, M. J., Chen, H. Y., Kelley, R. A., Mondal, A. K., Nagashima, K., Val, N. D., Li, T., Chaitankar, V., & Swaroop, A. (2019). Improved retinal organoid differentiation by modulating signaling pathways revealed by comparative transcriptome analyses with development in vivo. Stem Cell Reports, 13(5), 891–905. https://doi.org/10.1016/j.stemcr.2019.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sridhar, A., Hoshino, A., Finkbeiner, C. R., Chitsazan, A., Dai, L., Haugan, A. K., Eschenbacher, K. M., Jackson, D. L., Trapnell, C., Bermingham-McDonogh, O., Glass, I., & Reh, T. A. (2020). Single-cell transcriptomic comparison of human fetal retina, hPSC-derived retinal organoids, and long-term retinal cultures. Cell Reports, 30(5), 1644-1659.e4. https://doi.org/10.1016/j.celrep.2020.01.007

    Article  CAS  PubMed  Google Scholar 

  117. Finkbeiner, C., Ortuño-Lizarán, I., Sridhar, A., Hooper, M., Petter, S., & Reh, T. A. (2022). Single-cell ATAC-seq of fetal human retina and stem-cell-derived retinal organoids shows changing chromatin landscapes during cell fate acquisition. Cell Reports, 38(4), 110294. https://doi.org/10.1016/j.celrep.2021.110294

  118. Xie, H., Zhang, W., Zhang, M., Akhtar, T., Li, Y., Yi, W., Sun, X., Zuo, Z., Wei, M., Fang, X., Yao, Z., Dong, K., Zhong, S., Liu, Q., Shen, Y., Wu, Q., Wang, X., Zhao, H., Bao, J., Xue, T. (2020). Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids. Science Advances, 6(6). https://doi.org/10.1126/sciadv.aay5247

  119. Thomas, E. D., Timms, A. E., Giles, S., Harkins-Perry, S., Lyu, P., Hoang, T., Qian, J., Jackson, V. E., Bahlo, M., Blackshaw, S., Friedlander, M., Eade, K., & Cherry, T. J. (2022). Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Developmental Cell, 57(6), 820-836.e6. https://doi.org/10.1016/j.devcel.2022.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S., Wang, X., Lu, H., Chen, X., Liu, X., Huang, X., Li, Z., Hong, Y., Jiang, Y., Peng, J., Wang, J. (2022). Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell, 185(10), 1777–1792.e21. https://doi.org/10.1016/j.cell.2022.04.003

  121. Dias, M. F., Joo, K., Kemp, J. A., Fialho, S. L., Cunha, A., da S., Woo, S. J., & Kwon, Y. J. (2018). Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Progress in Retinal and Eye Research, 63, 107–131https://doi.org/10.1016/j.preteyeres.2017.10.004

  122. Deng, W.-L., Gao, M.-L., Lei, X.-L., Lv, J.-N., Zhao, H., He, K.-W., Xia, X.-X., Li, L.-Y., Chen, Y.-C., Li, Y.-P., Pan, D., Xue, T., & Jin, Z.-B. (2018). Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Reports, 10(4), 1267–1281. https://doi.org/10.1016/j.stemcr.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Karam, F. C., Loi, T. H., Ma, A., Nash, B. M., Grigg, J. R., Parekh, D., Riley, L. G., Farnsworth, E., Bennetts, B., Gonzalez-Cordero, A., & Jamieson, R. V. (2022). Human iPSC-derived retinal organoids and retinal pigment epithelium for novel intronic RPGR variant assessment for therapy suitability. Journal of Personalized Medicine, 12(3), 502. https://doi.org/10.3390/jpm12030502

    Article  Google Scholar 

  124. Buskin, A., Zhu, L., Chichagova, V., Basu, B., Mozaffari-Jovin, S., Dolan, D., Droop, A., Collin, J., Bronstein, R., Mehrotra, S., Farkas, M., Hilgen, G., White, K., Pan, K.-T., Treumann, A., Hallam, D., Bialas, K., Chung, G., Mellough, C., Lako, M. (2018). Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-06448-y

  125. Georgiou, M., Yang, C., Atkinson, R., Pan, K., Buskin, A., Molina, M. M., Collin, J., Al‐Aama, J., Goertler, F., Ludwig, S. E. J., Davey, T., Lührmann, R., Nagaraja‐Grellscheid, S., Johnson, C. A., Ali, R., Armstrong, L., Korolchuk, V., Urlaub, H., Mozaffari‐Jovin, S., & Lako, M. (2022). Activation of autophagy reverses progressive and deleterious protein aggregation in PRPF31 patient‐induced pluripotent stem cell‐derived retinal pigment epithelium cells. Clinical and Translational Medicine, 12(3). https://doi.org/10.1002/ctm2.759

  126. Guo, Y., Wang, P., Ma, J. H., Cui, Z., Yu, Q., Liu, S., Xue, Y., Zhu, D., Cao, J., Li, Z., Tang, S., & Chen, J. (2019). Modeling retinitis pigmentosa: Retinal organoids generated from the iPSCs of a patient with the USH2A mutation show early developmental abnormalities. Frontiers in Cellular Neuroscience, 13. https://doi.org/10.3389/fncel.2019.00361

  127. Martínez-Sánchez, M., Hernandez-Monge, J., Rangel, M., & Olivares-Illana, V. (2021). Retinoblastoma: From discovery to clinical management. The FEBS Journal, 289(15), 4371–4382. https://doi.org/10.1111/febs.16035

    Article  CAS  PubMed  Google Scholar 

  128. Liu, H., Zhang, Y., Zhang, Y.-Y., Li, Y.-P., Hua, Z.-Q., Zhang, C.-J., Wu, K.-C., Yu, F., Zhang, Y., Su, J., & Jin, Z.-B. (2020). Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proceedings of the National Academy of Sciences, 117(52), 33628–33638. https://doi.org/10.1073/pnas.2011780117

    Article  CAS  Google Scholar 

  129. Kanber, D., Woestefeld, J., Döpper, H., Bozet, M., Brenzel, A., Altmüller, J., Kilpert, F., Lohmann, D., Pommerenke, C., & Steenpass, L. (2022). RB1-negative retinal organoids display proliferation of cone photoreceptors and loss of retinal differentiation. Cancers, 14(9), 2166. https://doi.org/10.3390/cancers14092166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Blixt, M. K. E., Hellsand, M., Konjusha, D., Zhang, H., Stenfelt, S., Åkesson, M., Rafati, N., Tararuk, T., Stålhammar, G., All-Eriksson, C., Ring, H., & Hallböök, F. (2022). MYCN induces cell-specific tumorigenic growth in RB1-proficient human retinal organoid and chicken retina models of retinoblastoma. Oncogenesis, 11(1). https://doi.org/10.1038/s41389-022-00409-3

  131. Lukovic, D., Castro, A. A., Kaya, K. D., Munezero, D., Gieser, L., Davó-Martínez, C., Corton, M., Cuenca, N., Swaroop, A., Ramamurthy, V., Ayuso, C., & Erceg, S. (2020). Retinal Organoids derived from hiPSCs of an AIPL1-LCA Patient Maintain Cytoarchitecture despite Reduced levels of Mutant AIPL1. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62047-2

  132. Li, G., Gao, G., Wang, P., Song, X., Xu, P., Xie, B., Zhou, T., Pan, G., Peng, F., Zhang, Q., Ge, J., & Zhong, X. (2019). Generation and Characterization of Induced Pluripotent Stem Cells and Retinal Organoids From a Leber’s Congenital Amaurosis Patient With Novel RPE65 Mutations. Frontiers in Molecular Neuroscience, 12. https://doi.org/10.3389/fnmol.2019.00212

  133. Kruczek, K., Qu, Z., Gentry, J., Fadl, B. R., Gieser, L., Hiriyanna, S., Batz, Z., Samant, M., Samanta, A., Chu, C. J., Campello, L., Brooks, B. P., Wu, Z., & Swaroop, A. (2021). Gene therapy of dominant CRX-Leber congenital amaurosis using patient stem cell-derived retinal organoids. Stem Cell Reports, 16(2), 252–263. https://doi.org/10.1016/j.stemcr.2020.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gonzalez-Cordero, A., Kruczek, K., Naeem, A., Fernando, M., Kloc, M., Ribeiro, J., Goh, D., Duran, Y., Blackford, S. J. I., Abelleira-Hervas, L., Sampson, R. D., Shum, I. O., Branch, M. J., Gardner, P. J., Sowden, J. C., Bainbridge, J. W. B., Smith, A. J., West, E. L., Pearson, R. A., & Ali, R. R. (2017). Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Reports, 9(3), 820–837. https://doi.org/10.1016/j.stemcr.2017.07.022

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pearson, R. A., Gonzalez-Cordero, A., West, E. L., Ribeiro, J. R., Aghaizu, N., Goh, D., Sampson, R. D., Georgiadis, A., Waldron, P. V., Duran, Y., Naeem, A., Kloc, M., Cristante, E., Kruczek, K., Warre-Cornish, K., Sowden, J. C., Smith, A. J., & Ali, R. R. (2016). Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nature Communications, 7(1). https://doi.org/10.1038/ncomms13029

  136. Pearson, R. A., Barber, A. C., Rizzi, M., Hippert, C., Xue, T., West, E. L., Duran, Y., Smith, A. J., Chuang, J. Z., Azam, S. A., Luhmann, U. F. O., Benucci, A., Sung, C. H., Bainbridge, J. W., Carandini, M., Yau, K.-W., Sowden, J. C., & Ali, R. R. (2012). Restoration of vision after transplantation of photoreceptors. Nature, 485(7396), 99–103. https://doi.org/10.1038/nature10997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gonzalez-Cordero, A., West, E. L., Pearson, R. A., Duran, Y., Carvalho, L. S., Chu, C. J., Naeem, A., Blackford, S. J. I., Georgiadis, A., Lakowski, J., Hubank, M., Smith, A. J., Bainbridge, J. W. B., Sowden, J. C., & Ali, R. R. (2013). Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nature Biotechnology, 31(8), 741–747. https://doi.org/10.1038/nbt.2643

    Article  CAS  PubMed  Google Scholar 

  138. Waldron, P. V., Marco, F. D., Kruczek, K., Ribeiro, J., Graca, A. B., Hippert, C., Aghaizu, N. D., Kalargyrou, A. A., Barber, A. C., Grimaldi, G., Duran, Y., Blackford, S. J. I., Kloc, M., Goh, D., Aldunate, E. Z., Sampson, R. D., Bainbridge, J. W. B., Smith, A. J., Gonzalez-Cordero, A., Pearson, R. A. (2018). Transplanted donor- or stem cell-derived cone photoreceptors can both integrate and undergo material transfer in an environment-dependent manner. Stem Cell Reports, 10(2), 406–421. https://doi.org/10.1016/j.stemcr.2017.12.008

  139. Lin, B., McLelland, B. T., Aramant, R. B., Thomas, B. B., Nistor, G., Keirstead, H. S., & Seiler, M. J. (2020). Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Investigative Opthalmology & Visual Science, 61(11), 34. https://doi.org/10.1167/iovs.61.11.34

    Article  CAS  Google Scholar 

  140. Zhu, D., Xie, M., Gademann, F., Cao, J., Wang, P., Guo, Y., Zhang, L., Su, T., Zhang, J., & Chen, J. (2020). Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Research & Therapy, 11(1). https://doi.org/10.1186/s13287-020-01608-8

  141. Mandai, M., Fujii, M., Hashiguchi, T., Sunagawa, G. A., Ito, S., Sun, J., Kaneko, J., Sho, J., Yamada, C., & Takahashi, M. (2017). iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports, 8(1), 69–83. https://doi.org/10.1016/j.stemcr.2016.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  142. Oswald, J., Kegeles, E., Minelli, T., Volchkov, P., & Baranov, P. (2021). Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas. Molecular Therapy - Methods & Clinical Development, 21, 180–198. https://doi.org/10.1016/j.omtm.2021.03.004

    Article  CAS  Google Scholar 

  143. Wang, S.-T., Chen, L., Zhang, P., Wang, X.-B., Sun, Y., Ma, L.-X., Liu, Q., & Zhou, G.-M. (2019). Transplantation of retinal progenitor cells from optic cup-like structures differentiated from human embryonic stem cells in vitro and in vivo generation of retinal ganglion-like cells. Stem Cells and Development, 28(4), 258–267. https://doi.org/10.1089/scd.2018.0076

    Article  CAS  PubMed  Google Scholar 

  144. Zou, T., Gao, L., Zeng, Y., Li, Q., Li, Y., Chen, S., Hu, X., Chen, X., Fu, C., Xu, H., & Yin, Z. Q. (2019a). Organoid-derived C-Kit+/SSEA4− human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08961-0

  145. Singh, R. K., Occelli, L. M., Binette, F., Petersen-Jones, S. M., & Nasonkin, I. O. (2019). Transplantation of human embryonic stem cell-derived retinal tissue in the subretinal space of the cat eye. Stem Cells and Development, 28(17), 1151–1166. https://doi.org/10.1089/scd.2019.0090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Uhl, E. W., & Warner, N. J. (2015). Mouse models as predictors of human responses: Evolutionary medicine. Current Pathobiology Reports, 3(3), 219–223. https://doi.org/10.1007/s40139-015-0086-y

    Article  PubMed  PubMed Central  Google Scholar 

  147. Renner, H., Grabos, M., Becker, K. J., Kagermeier, T. E., Wu, J., Otto, M., Peischard, S., Zeuschner, D., TsyTsyura, Y., Disse, P., Klingauf, J., Leidel, S. A., Seebohm, G., Schöler, H. R., & Bruder, J. M. (2020). A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. ELife, 9. https://doi.org/10.7554/elife.52904

  148. Parihar, A., Pandita, V., & Khan, R. (2022). 3D printed human organoids: High throughput system for drug screening and testing in current COVID-19 pandemic. Biotechnology and Bioengineering, 119(10), 2669–2688. https://doi.org/10.1002/bit.28166

    Article  CAS  PubMed  Google Scholar 

  149. Schuster, B., Junkin, M., Kashaf, S. S., Romero-Calvo, I., Kirby, K., Matthews, J., Weber, C. R., Rzhetsky, A., White, K. P., & Tay, S. (2020). Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19058-4

  150. Hou, S., Tiriac, H., Sridharan, B. P., Scampavia, L., Madoux, F., Seldin, J., Souza, G. R., Watson, D., Tuveson, D., & Spicer, T. P. (2018). Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discovery, 23(6), 574–584. https://doi.org/10.1177/2472555218766842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, X., Fu, G., Zhang, L., Guan, R., Tang, P., Zhang, J., Rao, X., Chen, S., Xu, X., Zhou, Y., Deng, Y., Lv, T., He, X., Mo, S., Mu, P., Gao, J., & Hua, G. (2022). Assay establishment and validation of a high-throughput organoid-based drug screening platform. Stem Cell Research & Therapy, 13(1). https://doi.org/10.1186/s13287-022-02902-3

  152. Saito, Y., Muramatsu, T., Kanai, Y., Ojima, H., Sukeda, A., Hiraoka, N., Arai, E., Sugiyama, Y., Matsuzaki, J., Uchida, R., Yoshikawa, N., Furukawa, R., & Saito, H. (2019). Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Reports, 27(4), 1265-1276.e4. https://doi.org/10.1016/j.celrep.2019.03.088

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China grants 31930068; the National Key Research and Development Program of China grants 2021YFA1101203.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Professor Haiwei Xu; Funding acquisition: Professor Haiwei Xu; Writing—original draft preparation: Jiahui Kang; Writing—review and editing:Yu Gong, Jing Gong, Cao Yang, Xi Lin, Lijuan Yan. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yu Gong or Haiwei Xu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Gong, J., Yang, C. et al. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev and Rep 19, 1755–1772 (2023). https://doi.org/10.1007/s12015-023-10553-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10553-x

Keywords

Navigation