Skip to main content
Log in

JAM-A Overexpression in Human Umbilical Cord-Derived Mesenchymal Stem Cells Accelerated the Angiogenesis of Diabetic Wound By Enhancing Both Paracrine Function and Survival of Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) is promising in promoting wound healing mainly due to their paracrine function. Nonetheless, the transplanted MSCs presented poor survival with cell dysfunction and paracrine problem in diabetic environment, thus limiting their therapeutic efficacy and clinical application. JAM-A, an adhesion molecule, has been reported to play multi-functional roles in diverse cells. We therefore investigated the potential effect of JAM-A on MSCs under diabetic environment and explored the underlying mechanism. Indeed, high-glucose condition inhibited MSCs viability and JAM-A expression. However, JAM-A abnormality was rescued by lentivirus transfection and JAM-A overexpression promoted MSCs proliferation, migration and adhesion under hyperglycemia. Moreover, JAM-A overexpression attenuated high-glucose-induced ROS production and MSCs apoptosis. The bio-effects of JAM-A on MSCs under hyperglycemia were confirmed by RNA-seq with enrichment analyses. Moreover, Luminex chip results showed JAM-A overexpression dramatically upregulated PDGF-BB and VEGF in the supernatant of MSCs, which was verified by RT-qPCR and western blotting. The supernatant was further found to facilitate HUVECs proliferation, migration and angiogenesis under hyperglycemia. In vivo experiments revealed JAM-A overexpression significantly enhanced MSCs survival, promoted wound angiogenesis, and thus accelerated diabetic wound closure, partially by enhancing PDGF-BB and VEGF expression. This study firstly demonstrated that JAM-A expression of MSCs was inhibited upon high-glucose stimulation. JAM-A overexpression alleviated high-glucose-induced MSCs dysfunction, enhanced their anti-oxidative capability, protected MSCs from hyperglycemia-induced apoptosis and improved their survival, thus strengthening MSCs paracrine function to promote angiogenesis and significantly accelerating diabetic wound healing, which offers a promising strategy to maximize MSCs-based therapy in diabetic wound.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data and materials used to support the findings of this study are available from the corresponding author upon request.

Code Availability

Not applicable.

Abbreviations

DM :

Diabetes mellitus

MSCs :

mesenchymal stem cells, multipotent stromal cells, or mesenchymal stromal cells

ROS :

reactive oxygen species

JAM-A :

junction adhesion molecule A

HUVECs :

human umbilical vein endothelial cells

GFP :

green fluorescent protein

JAM-A MSCs :

JAM-A overexpressing MSCs

VEC MSCs :

the vector control MSCs

DCFH-DA :

2,7-dichlorodihydrofluorescein diacetate

CCK8 :

cell counting kit-8

RNA-Seq :

RNA Sequencing

GO :

Gene Ontology

KEGG :

Kyoto Encyclopedia of Genes and Genomes

GSEA :

gene set enrichment analysis

DEGs :

differentially expressed genes

MSCs-CM :

MSCs-Conditioned Medium

VEGF :

vascular endothelial growth factor

PDGF-BB :

platelet-derived growth factor-BB

MSCs :

mesenchymal stem cells, multipotent stromal cells, or mesenchymal stromal cells

ROS :

reactive oxygen species

JAM-A :

junction adhesion molecule A

HUVECs :

human umbilical vein endothelial cells

GFP :

green fluorescent protein

JAM-A MSCs :

JAM-A overexpressing MSCs

VEC MSCs :

the vector control MSCs

DCFH-DA :

2,7-dichlorodihydrofluorescein diacetate

CCK8 :

cell counting kit-8

RNA-Seq :

RNA Sequencing

GO :

Gene Ontology

KEGG :

Kyoto Encyclopedia of Genes and Genomes

GSEA :

gene set enrichment analysis

DEGs :

differentially expressed genes

MSCs-CM :

MSCs-Conditioned Medium

VEGF :

vascular endothelial growth factor

PDGF-BB :

platelet-derived growth factor-BB

References

  1. Ariyanti, A. D., Zhang, J., Marcelina, O., Nugrahaningrum, D. A., Wang, G., Kasim, V., & Wu, S. (2019). Salidroside-Pretreated Mesenchymal Stem Cells Enhance Diabetic Wound Healing by Promoting Paracrine Function and Survival of Mesenchymal Stem Cells Under Hyperglycemia. Stem Cells Translational Medicine, 8(4), 404–414. https://doi.org/10.1002/sctm.18-0143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boulton, A. J., Vileikyte, L., Ragnarson-Tennvall, G., & Apelqvist, J. (2005). The global burden of diabetic foot disease. Lancet, 366(9498), 1719–1724. https://doi.org/10.1016/S0140-6736(05)67698-2

    Article  PubMed  Google Scholar 

  3. Capilla-Gonzalez, V., Lopez-Beas, J., Escacena, N., Aguilera, Y., de la Cuesta, A., Ruiz-Salmeron, R., … Soria, B. (2018). PDGF Restores the Defective Phenotype of Adipose-Derived Mesenchymal Stromal Cells from Diabetic Patients. Molecular Therapy, 26(11), 2696–2709. https://doi.org/10.1016/j.ymthe.2018.08.011.

  4. Cui, J., Liu, X., Zhang, Z., Xuan, Y., Liu, X., & Zhang, F. (2019). EPO protects mesenchymal stem cells from hyperglycaemic injury via activation of the Akt/FoxO3a pathway. Life Sciences, 222, 158–167. https://doi.org/10.1016/j.lfs.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  5. Ebnet, K. (2017). Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiological Reviews, 97(4), 1529–1554. https://doi.org/10.1152/physrev.00004.2017

    Article  CAS  PubMed  Google Scholar 

  6. Fang, S., Xu, C., Zhang, Y., Xue, C., Yang, C., Bi, H., … Xing, X. (2016). Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-beta/SMAD2 Pathway During Wound Healing. Stem Cells Translational Medicine, 5(10), 1425–1439. https://doi.org/10.5966/sctm.2015-0367.

  7. Fronza, M., Heinzmann, B., Hamburger, M., Laufer, S., & Merfort, I. (2009). Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. Journal of Ethnopharmacology, 126(3), 463–467. https://doi.org/10.1016/j.jep.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  8. Goetsch, L., Haeuw, J. F., Beau-Larvor, C., Gonzalez, A., Zanna, L., Malissard, M., … Corvaia, N. (2013). A novel role for junctional adhesion molecule-A in tumor proliferation: modulation by an anti-JAM-A monoclonal antibody. International Journal of Cancer, 132(6), 1463–1474. https://doi.org/10.1002/ijc.27772.

  9. Greenberg, J. I., Shields, D. J., Barillas, S. G., Acevedo, L. M., Murphy, E., Huang, J., … Cheresh, D. A. (2008). A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature, 456(7223), 809–813. https://doi.org/10.1038/nature07424.

  10. Guillamat-Prats, R. (2021). The Role of MSC in Wound Healing, Scarring and Regeneration. Cells, 10(7). https://doi.org/10.3390/cells10071729.

  11. Himal, I., Goyal, U., & Ta, M. (2017). Evaluating Wharton’s Jelly-Derived Mesenchymal Stem Cell’s Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress. Stem Cells International, 2017, 5259849. https://doi.org/10.1155/2017/5259849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, Y. Z., Gou, M., Da, L. C., Zhang, W. Q., & Xie, H. Q. (2020). Mesenchymal Stem Cells for Chronic Wound Healing: Current Status of Preclinical and Clinical Studies. Tissue Engineering. Part B, Reviews, 26(6), 555–570. https://doi.org/10.1089/ten.TEB.2019.0351

    Article  CAS  PubMed  Google Scholar 

  13. Ikeo, K., Oshima, T., Shan, J., Matsui, H., Tomita, T., Fukui, H., … Miwa, H. (2015). Junctional adhesion molecule-A promotes proliferation and inhibits apoptosis of gastric cancer. Hepatogastroenterology, 62(138), 540–545. https://www.ncbi.nlm.nih.gov/pubmed/25916097.

  14. Ishizuka, T., Hinata, T., & Watanabe, Y. (2011). Superoxide induced by a high-glucose concentration attenuates production of angiogenic growth factors in hypoxic mouse mesenchymal stem cells. Journal of Endocrinology, 208(2), 147–159. https://doi.org/10.1677/JOE-10-0305

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, D., Qi, Y., Walker, N. G., Sindrilaru, A., Hainzl, A., Wlaschek, M., … Scharffetter-Kochanek, K. (2013). The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing. Biomaterials, 34(10), 2501–2515. https://doi.org/10.1016/j.biomaterials.2012.12.014.

  16. Karaman, S., Leppanen, V. M., & Alitalo, K. (2018). Vascular endothelial growth factor signaling in development and disease. Development, 145(14). https://doi.org/10.1242/dev.151019.

  17. Khan, M., Akhtar, S., Mohsin, S., S, N. K., & Riazuddin, S. (2011). Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells and Development, 20(1), 67-75.https://doi.org/10.1089/scd.2009.0397.

  18. Kornicka, K., Houston, J., & Marycz, K. (2018). Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy may Limit Their Potential Therapeutic Use. Stem Cell Reviews and Reports, 14(3), 337–345. https://doi.org/10.1007/s12015-018-9809-x

    Article  PubMed  Google Scholar 

  19. Lee, D. E., Ayoub, N., & Agrawal, D. K. (2016). Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Research & Therapy, 7, 37. https://doi.org/10.1186/s13287-016-0303-6

    Article  CAS  Google Scholar 

  20. Liang, X., Ding, Y., Zhang, Y., Chai, Y. H., He, J., Chiu, S. M., … Lian, Q. (2015). Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death & Disease, 6, e1765. https://doi.org/10.1038/cddis.2015.91.

  21. Liu, W., Yu, M., Xie, D., Wang, L., Ye, C., Zhu, Q., … Yang, L. (2020). Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Research & Therapy, 11(1), 259. https://doi.org/10.1186/s13287-020-01756-x.

  22. Liu, Y., Nusrat, A., Schnell, F. J., Reaves, T. A., Walsh, S., Pochet, M., & Parkos, C. A. (2000). Human junction adhesion molecule regulates tight junction resealing in epithelia. Journal of Cell Science, 113 (Pt 13), 2363–2374. https://www.ncbi.nlm.nih.gov/pubmed/10852816.

  23. Magara, K., Takasawa, A., Osanai, M., Ota, M., Tagami, Y., Ono, Y., … Sawada, N. (2017). Elevated expression of JAM-A promotes neoplastic properties of lung adenocarcinoma. Cancer Science, 108(11), 2306–2314. https://doi.org/10.1111/cas.13385.

  24. Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., … Dejana, E. (1998). Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. The Journal of Cell Biology, 142(1), 117–127. https://doi.org/10.1083/jcb.142.1.117.

  25. Millan-Rivero, J. E., Martinez, C. M., Romecin, P. A., Aznar-Cervantes, S. D., Carpes-Ruiz, M., Cenis, J. L., … Garcia-Bernal, D. (2019). Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Research & Therapy, 10(1), 126. https://doi.org/10.1186/s13287-019-1229-6.

  26. Naik, M. U., Mousa, S. A., Parkos, C. A., & Naik, U. P. (2003). Signaling through JAM-1 and alphavbeta3 is required for the angiogenic action of bFGF: Dissociation of the JAM-1 and alphavbeta3 complex. Blood, 102(6), 2108–2114. https://doi.org/10.1182/blood-2003-04-1114

    Article  CAS  PubMed  Google Scholar 

  27. Naik, M. U., Vuppalanchi, D., & Naik, U. P. (2003). Essential role of junctional adhesion molecule-1 in basic fibroblast growth factor-induced endothelial cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(12), 2165–2171. https://doi.org/10.1161/01.ATV.0000093982.84451.87

    Article  CAS  PubMed  Google Scholar 

  28. Nuschke, A. (2014). Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis, 10(1), 29–37. https://doi.org/10.4161/org.27405

    Article  PubMed  Google Scholar 

  29. Okonkwo, U. A., Chen, L., Ma, D., Haywood, V. A., Barakat, M., Urao, N., & DiPietro, L. A. (2020). Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing. PLoS ONE, 15(4), e0231962. https://doi.org/10.1371/journal.pone.0231962.

  30. Okonkwo, U. A., & DiPietro, L. A. (2017). Diabetes and Wound Angiogenesis. International Journal of Molecular Sciences, 18(7). https://doi.org/10.3390/ijms18071419.

  31. Ostermann, G., Weber, K. S., Zernecke, A., Schroder, A., & Weber, C. (2002). JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nature Immunology, 3(2), 151–158. https://doi.org/10.1038/ni755

    Article  CAS  PubMed  Google Scholar 

  32. Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2019). Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother, 112, 108615. https://doi.org/10.1016/j.biopha.2019.108615.

  33. Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., … Li, X. (2016). Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. International Journal of Biological Sciences, 12(7), 836–849. https://doi.org/10.7150/ijbs.14809.

  34. Royzman, D., Peckert-Maier, K., Stich, L., Konig, C., Wild, A. B., Tauchi, M., … Steinkasserer, A. (2022). Soluble CD83 improves and accelerates wound healing by the induction of pro-resolving macrophages. Frontiers in Immunology, 13, 1012647. https://doi.org/10.3389/fimmu.2022.1012647.

  35. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., … Committee, I. D. F. D. A. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843.

  36. Severson, E. A., Lee, W. Y., Capaldo, C. T., Nusrat, A., & Parkos, C. A. (2009). Junctional adhesion molecule A interacts with Afadin and PDZ-GEF2 to activate Rap1A, regulate beta1 integrin levels, and enhance cell migration. Molecular Biology of the Cell, 20(7), 1916–1925. https://doi.org/10.1091/mbc.E08-10-1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shao, M., Ghosh, A., Cooke, V. G., Naik, U. P., & Martin-DeLeon, P. A. (2008). JAM-A is present in mammalian spermatozoa where it is essential for normal motility. Developmental Biology, 313(1), 246–255. https://doi.org/10.1016/j.ydbio.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  38. Silachev, D. N., Goryunov, K. V., Shpilyuk, M. A., Beznoschenko, O. S., Morozova, N. Y., Kraevaya, E. E., … Sukhikh, G. T. (2019). Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells, 8(3). https://doi.org/10.3390/cells8030258.

  39. Solimando, A. G., Brandl, A., Mattenheimer, K., Graf, C., Ritz, M., Ruckdeschel, A., … Beilhack, A. (2018). JAM-A as a prognostic factor and new therapeutic target in multiple myeloma. Leukemia, 32(3), 736–743. https://doi.org/10.1038/leu.2017.287.

  40. Song, S. Y., Hong, J., Go, S., Lim, S., Sohn, H. S., Kang, M., … Kim, B. S. (2020). Interleukin-4 Gene Transfection and Spheroid Formation Potentiate Therapeutic Efficacy of Mesenchymal Stem Cells for Osteoarthritis. Advanced Healthcare Materials, 9(5), e1901612. https://doi.org/10.1002/adhm.201901612.

  41. Spees, J. L., Lee, R. H., & Gregory, C. A. (2016). Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research & Therapy, 7(1), 125. https://doi.org/10.1186/s13287-016-0363-7

    Article  CAS  Google Scholar 

  42. Stellos, K., Langer, H., Gnerlich, S., Panagiota, V., Paul, A., Schonberger, T., … Gawaz, M. (2010). Junctional adhesion molecule A expressed on human CD34+ cells promotes adhesion on vascular wall and differentiation into endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(6), 1127–1136. https://doi.org/10.1161/ATVBAHA.110.204370.

  43. Tokunaga, A., Oya, T., Ishii, Y., Motomura, H., Nakamura, C., Ishizawa, S., … Sasahara, M. (2008). PDGF receptor beta is a potent regulator of mesenchymal stromal cell function. Journal of Bone and Mineral Research, 23(9), 1519–1528. https://doi.org/10.1359/jbmr.080409.

  44. Veriter, S., Aouassar, N., Adnet, P. Y., Paridaens, M. S., Stuckman, C., Jordan, B., … Dufrane, D. (2011). The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. Biomaterials, 32(26), 5945–5956. https://doi.org/10.1016/j.biomaterials.2011.02.061.

  45. Wang, S., Mo, M., Wang, J., Sadia, S., Shi, B., Fu, X., … Wu, Y. (2018). Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property. Cellular and Molecular Life Sciences, 75(3), 547–561. https://doi.org/10.1007/s00018-017-2641-7.

  46. Wang, Y., Zheng, J., Han, Y., Zhang, Y., Su, L., Hu, D., & Fu, X. (2018). JAM-A knockdown accelerates the proliferation and migration of human keratinocytes, and improves wound healing in rats via FAK/Erk signaling. Cell Death & Disease, 9(9), 848. https://doi.org/10.1038/s41419-018-0941-y

    Article  CAS  Google Scholar 

  47. Wu, M., Ji, S., Xiao, S., Kong, Z., Fang, H., Zhang, Y., … Xia, Z. (2015). JAM-A promotes wound healing by enhancing both homing and secretory activities of mesenchymal stem cells. Clinical Science (London), 129(7), 575–588. https://doi.org/10.1042/CS20140735.

  48. Xia, Y., Ling, X., Hu, G., Zhu, Q., Zhang, J., Li, Q., … Deng, Z. (2020). Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem Cell Research & Therapy, 11(1), 313. https://doi.org/10.1186/s13287-020-01834-0.

  49. Xie, D. M., Chen, Y., Liao, Y., Lin, W., Dai, G., Lu, D. H., … Jiang, M. H. (2021). Cardiac Derived CD51-Positive Mesenchymal Stem Cells Enhance the Cardiac Repair Through SCF-Mediated Angiogenesis in Mice With Myocardial Infarction. Frontiers in Cell and Development Biology, 9, 642533. https://doi.org/10.3389/fcell.2021.642533.

  50. Xu, J., Liu, X., Zhao, F., Zhang, Y., & Wang, Z. (2020). HIF1alpha overexpression enhances diabetic wound closure in high glucose and low oxygen conditions by promoting adipose-derived stem cell paracrine function and survival. Stem Cell Research & Therapy, 11(1), 148. https://doi.org/10.1186/s13287-020-01654-2

    Article  CAS  Google Scholar 

  51. Yanai, R., Nishida, T., Hatano, M., Uchi, S. H., Yamada, N., & Kimura, K. (2020). Role of the Neurokinin-1 Receptor in the Promotion of Corneal Epithelial Wound Healing by the Peptides FGLM-NH2 and SSSR in Neurotrophic Keratopathy. Investigative Ophthalmology & Visual Science, 61(8), 29. https://doi.org/10.1167/iovs.61.8.29

    Article  CAS  Google Scholar 

  52. Yang, H., Song, L., Sun, B., Chu, D., Yang, L., Li, M., … Guo, J. (2021). Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Materials Today Bio, 12, 100139. https://doi.org/10.1016/j.mtbio.2021.100139.

  53. Yates, C. C., Rodrigues, M., Nuschke, A., Johnson, Z. I., Whaley, D., Stolz, D., … Wells, A. (2017). Multipotent stromal cells/mesenchymal stem cells and fibroblasts combine to minimize skin hypertrophic scarring. Stem Cell Res Ther, 8(1), 193. https://doi.org/10.1186/s13287-017-0644-9.

  54. Yu, M., Liu, W., Li, J., Lu, J., Lu, H., Jia, W., & Liu, F. (2020). Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Research & Therapy, 11(1), 350. https://doi.org/10.1186/s13287-020-01824-2

    Article  CAS  Google Scholar 

  55. Yue, C., Guo, Z., Luo, Y., Yuan, J., Wan, X., & Mo, Z. (2020). c-Jun Overexpression Accelerates Wound Healing in Diabetic Rats by Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Int, 2020, 7430968. https://doi.org/10.1155/2020/7430968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, B., Liu, N., Shi, H., Wu, H., Gao, Y., He, H., … Liu, H. (2016). High glucose microenvironments inhibit the proliferation and migration of bone mesenchymal stem cells by activating GSK3beta. Journal of Bone and Mineral Metabolism, 34(2), 140–150. https://doi.org/10.1007/s00774-015-0662-6.

  57. Zhang, N., Lo, C. W., Utsunomiya, T., Maruyama, M., Huang, E., Rhee, C., … Goodman, S. B. (2021). PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem Cell Research & Therapy, 12(1), 40. https://doi.org/10.1186/s13287-020-02086-8.

  58. Zhang, X., Qin, J., Wang, X., Guo, X., Liu, J., Wang, X., … Liu, X. (2018). Netrin-1 improves adipose-derived stem cell proliferation, migration, and treatment effect in type 2 diabetic mice with sciatic denervation. Stem Cell Research & Therapy, 9(1), 285. https://doi.org/10.1186/s13287-018-1020-0.

  59. Zheng, Y., Zheng, S., Fan, X., Li, L., Xiao, Y., Luo, P., … Xia, Z. (2018). Amniotic Epithelial Cells Accelerate Diabetic Wound Healing by Modulating Inflammation and Promoting Neovascularization. Stem Cells International, 2018, 1082076. https://doi.org/10.1155/2018/1082076

Download references

Funding

This work was supported by the National Key R&D Program of China (2019YFA0110503); the National Nature Science Foundation of China (81772076, 81930057, 82072170, 81871559, and 82172201); CAMS Innovation Fund for Medical Sciences (2019-I2M-5–076), Achievements Supportive Fund (2018-CGPZ-B03); Shanghai Rising Star Program (22QA1411700); the Youth Incubation Plan of the Military Medical Science and Technology Project (20QNPY035).

Author information

Authors and Affiliations

Authors

Contributions

XZF, ZYJ and XSC contributed to the conception and design. SFT LJY and ZW contributed to the data, analysis and interpretation. SFT contributed to the manuscript writing. SFT, LJY, ZW and HHC contributed to the animal experiments. XZF and ZYJ contributed to the manuscript revision. LJZ, JLF, LWZ and LTY provided the study materials. XZF, ZYJ and XSC contributed to the conception and design, financial support, and final approval of the manuscript. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shichu Xiao, Yongjun Zheng or Zhaofan Xia.

Ethics declarations

Competing Interests

The authors declare no conflict of interest.

Ethics Approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of Changhai Hospital, Shanghai, China. All experimental procedures were approved by the animal use and care committee of Changhai Hospital, Shanghai, China.

Consent to Participate

Informed consent was obtained from all subjects involved in the study.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Cluster heatmaps of all genes in the gene sets. The heatmaps showed the clustered genes in the gene sets of the KEGG terms CELL CYCLE (A), ADHERENS JUNCTION (B), APOPTOSIS (C), and NF-κB SIGNALING PATHWAY (D). Red represented highly expressed genes, and blue represented genes with low expression. JAM-A MSCs+HG vs. VEC MSCs+HG. JAM-A MSCs, JAM-A overexpressing MSCs; VEC MSCs, the vector control MSCs. HG, high glucose. n = 3 biological replicates. (PNG 16700 kb)

High resolution image (TIF 20108 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, F., Lu, J., Zhang, W. et al. JAM-A Overexpression in Human Umbilical Cord-Derived Mesenchymal Stem Cells Accelerated the Angiogenesis of Diabetic Wound By Enhancing Both Paracrine Function and Survival of Mesenchymal Stem Cells. Stem Cell Rev and Rep 19, 1554–1575 (2023). https://doi.org/10.1007/s12015-023-10518-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10518-0

Keywords

Navigation