Skip to main content

Advertisement

Log in

DNA Methylation and Histone Modification in Dental-derived Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Epigenetic regulation, mainly involving DNA methylation, histone modification, and noncoding RNAs (ncRNAs), is essential for the regulation of multiple cellular processes. Dental-derived mesenchymal stem cells (DMSCs), a kind of multipotent cells derived from dental tissues, are impactful in regenerative medicine. Recent studies have shown that epigenetic regulation plays a major role in DMSCs. Therefore, exploring how epigenetic regulation is involved in DMSCs may be of guiding significance for tissue repair and regeneration or for exploring more effective treatments. A number of research of ncRNAs in DMSCs have been reported. However, little is known about the roles of DNA methylation and histone modifications in DMSCs. In this review, we summarize the important roles of DNA methylation and histone modifications of the fate of DMSCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Yin, J. Y., Luo, X. H., Feng, W. Q., Miao, S. H., Ning, T. T., Lei, Q., & Ma, D. D. (2021). Multidifferentiation potential of dental-derived stem cells. World Journal of Stem Cells, 13(5), 342–365.

  2. Skvortsova, K., Stirzaker, C., & Taberlay, P. (2019). The DNA methylation landscape in cancer. Essays In Biochemistry, 63(6), 797–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parveen, N., & Dhawan, S. (2021). DNA methylation patterning and the regulation of beta cell homeostasis. Frontiers in Endocrinology (Lausanne), 12, 651258.

    Article  Google Scholar 

  4. Jambhekar, A., Dhall, A., & Shi, Y. (2019). Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology, 20(10), 625–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhat, K. P., Ümit Kaniskan, H., Jin, J., & Gozani, O. (2021). Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nature Reviews. Drug Discovery, 20(4), 265–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Verdone, L., Caserta, M., & Di Mauro, E. (2005). Role of histone acetylation in the control of gene expression. Biochemistry and Cell Biology, 83(3), 344–353.

    Article  CAS  PubMed  Google Scholar 

  7. Zeng, B., & Huang, J. (2022). Progress in the study of non-coding RNAs in multidifferentiation potential of dental-derived mesenchymal stem cells. Frontiers In Genetics, 13, 854285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ai, T., Zhang, J., Wang, X., Zheng, X., Qin, X., Zhang, Q., & Chen, F. (2018). DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells. Signal Transduction and Targeted Therapy, 3, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, J., Deng, Q., Fan, W., Zeng, Q., He, H., & Huang, F. (2020). Melatonin-induced suppression of DNA methylation promotes odontogenic differentiation in human dental pulp cells. Bioengineered, 11(1), 829–840.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shen, W. C., Lai, Y. C., Li, L. H., Liao, K., Lai, H. C., Kao, S. Y., & Hung, S. C. (2019). Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nature Communications, 10(1), 2226.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Argaez-Sosa, A. A., Rodas-Junco, B. A., Carrillo-Cocom, L. M., Rojas-Herrera, R. A., Coral-Sosa, A., Aguilar-Ayala, F. J., & Nic-Can, G. I. (2022). Higher expression of DNA (de)methylation-related genes reduces adipogenicity in dental pulp stem cells. Frontiers in Cell and Developmental Biology, 10, 791667.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, Z., Chen, T., Sun, W., Yuan, Z., Yu, M., Chen, G., & Tian, W. (2016). DNA demethylation rescues the impaired osteogenic differentiation ability of human periodontal ligament stem cells in high glucose. Scientific Reports, 6, 27447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, D., Li, Q., Rao, L., Yi, B., & Xu, Q. (2015). Effect of 5-Aza-2’-deoxycytidine on odontogenic differentiation of human dental pulp cells. Journal of Endodontics, 41(5), 640–645.

    Article  PubMed  Google Scholar 

  14. Nakatsuka, R., Nozaki, T., Uemura, Y., Matsuoka, Y., Sasaki, Y., Shinohara, M., & Sonoda, Y. (2010). 5-Aza-2’-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Archives of Oral Biology, 55(5), 350–357.

    Article  CAS  PubMed  Google Scholar 

  15. Jung, J. E., Song, M. J., Shin, S., Choi, Y. J., Kim, K. H., & Chung, C. J. (2017). Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo. Orthodontics and Craniofacial Research, 20(1), 35–43.

    Article  CAS  PubMed  Google Scholar 

  16. Sun, Z., Yu, S., Chen, S., Liu, H., & Chen, Z. (2019). SP1 regulates KLF4 via SP1 binding motif governed by DNA methylation during odontoblastic differentiation of human dental pulp cells. Journal of Cellular Biochemistry, 120(9), 14688–14699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Q., Rao, L., Zhang, D., & Xu, Q. (2014). Expression features of DNA methylcytosine dioxygenase ten-eleven translocation 1 in human dental pulp cells. Journal of Endodontics, 40(11), 1791–1795.

    Article  PubMed  Google Scholar 

  18. Rao, L. J., Yi, B. C., Li, Q. M., & Xu, Q. (2016). TET1 knockdown inhibits the odontogenic differentiation potential of human dental pulp cells. International Journal of Oral Science, 8(2), 110–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Q., Yi, B., Feng, Z., Meng, R., Tian, C., & Xu, Q. (2018). FAM20C could be targeted by TET1 to promote odontoblastic differentiation potential of human dental pulp cells. Cell Proliferation, 51(2), e12426.

    Article  PubMed  Google Scholar 

  20. Yu, T., Liu, D., Zhang, T., Zhou, Y., Shi, S., & Yang, R. (2019). Inhibition of Tet1- and Tet2-mediated DNA demethylation promotes immunomodulation of periodontal ligament stem cells. Cell Death and Disease, 10(10), 780.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meng, R., Li, D., Feng, Z., & Xu, Q. (2019). MyD88 hypermethylation mediated by DNMT1 is associated with LTA-induced inflammatory response in human odontoblast-like cells. Cell and Tissue Research, 376(3), 413–423.

    Article  CAS  PubMed  Google Scholar 

  22. Mo, Z., Li, Q., Cai, L., Zhan, M., & Xu, Q. (2019). The effect of DNA methylation on the miRNA expression pattern in lipopolysaccharide-induced inflammatory responses in human dental pulp cells. Molecular Immunology, 111, 11–18.

    Article  CAS  PubMed  Google Scholar 

  23. Cai, L., Zhan, M., Li, Q., Li, D., & Xu, Q. (2020). DNA methyltransferase DNMT1 inhibits lipopolysaccharide–induced inflammatory response in human dental pulp cells involving the methylation changes of IL–6 and TRAF6. Molecular Medicine Reports, 21(2), 959–968.

    CAS  PubMed  Google Scholar 

  24. Luo, H., Zhu, W., Mo, W., & Liang, M. (2020). High-glucose concentration aggravates TNF-alpha-induced cell viability reduction in human CD146-positive periodontal ligament cells via TNFR-1 gene demethylation. Cell Biology International, 44(12), 2383–2394.

    Article  CAS  PubMed  Google Scholar 

  25. Feng, Z., Zhan, M., Meng, R., Wang, X., & Xu, Q. (2019). 5-Aza-2’-deoxycytidine enhances lipopolysaccharide-induced inflammatory cytokine expression in human dental pulp cells by regulating TRAF6 methylation. Bioengineered, 10(1), 197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X., Feng, Z., Li, Q., Yi, B., & Xu, Q. (2018). DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation. Cell and Tissue Research, 373(2), 477–485.

    Article  CAS  PubMed  Google Scholar 

  27. Nayak, A., Viale-Bouroncle, S., Morsczeck, C., & Muller, S. (2014). The SUMO-specific isopeptidase SENP3 regulates MLL1/MLL2 methyltransferase complexes and controls osteogenic differentiation. Molecular Cell, 55(1), 47–58.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng, L. W., Zhang, B. P., Xu, R. S., Xu, X., Ye, L., & Zhou, X. D. (2014). Bivalent histone modifications during tooth development. International Journal of Oral Science, 6(4), 205–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Q. M., Li, J. L., Feng, Z. H., Lin, H. C., & Xu, Q. (2020). Effect of histone demethylase KDM5A on the odontogenic differentiation of human dental pulp cells. Bioengineered, 11(1), 449–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y., & Zhou, Y. (2022). Circ_0087960 stabilizes KDM5B by reducing SKP2 mediated ubiquitination degradation and promotes osteogenic differentiation in periodontal ligament stem cells. Regenerative Therapy, 19, 122–130.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jia, X., Miron, R. J., Yin, C., Xu, H., Luo, T., Wang, J., & Li, Y. (2019). HnRNPL inhibits the osteogenic differentiation of PDLCs stimulated by SrCl(2) through repressing Setd2. Journal of Cellular and Molecular Medicine, 23(4), 2667–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, G., Wang, J., Lin, X., Diao, S., Cao, Y., Dong, R., & Fan, Z. (2016). Demethylation of SFRP2 by histone demethylase KDM2A regulated osteo-/dentinogenic differentiation of stem cells of the apical papilla. Cell Proliferation, 49(3), 330–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, H., Li, G., Han, N., Zhang, X., Cao, Y., Cao, Y., & Fan, Z. (2020). Secreted frizzled-related protein 2 promotes the osteo/odontogenic differentiation and paracrine potentials of stem cells from apical papilla under inflammation and hypoxia conditions. Cell Proliferation, 53(1), e12694.

    Article  PubMed  Google Scholar 

  34. Su, X., Yang, H., Shi, R., Zhang, C., Liu, H., Fan, Z., & Zhang, J. (2020). Depletion of SNRNP200 inhibits the osteo-/dentinogenic differentiation and cell proliferation potential of stem cells from the apical papilla. Bmc Developmental Biology, 20(1), 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong, R., Yao, R., Du, J., Wang, S., & Fan, Z. (2013). Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla. Experimental Cell Research, 319(18), 2874–2882.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, J. J., Dong, R., Wang, L. P., Wang, J. S., Du, J., Wang, S. L., & Fan, Z. P. (2015). Histone demethylase KDM2B inhibits the chondrogenic differentiation potentials of stem cells from apical papilla. International Journal of Clinical and Experimental Medicine, 8(2), 2165–2173.

    PubMed  PubMed Central  Google Scholar 

  37. Zhou, C., Chen, D., Ren, J., Huang, D., Li, R., Luo, H., & Wang, W. (2021). FGF8 and BMP2 mediated dynamic regulation of dental mesenchyme proliferation and differentiation via Lhx8/Suv39h1 complex. Journal of Cellular and Molecular Medicine, 25(6), 3051–3062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, H., Dou, L., Song, J., & Luo, J. (2018). CBFA2T2 is required for BMP-2-induced osteogenic differentiation of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 496(4), 1095–1101.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, C., Han, X., Liang, Y., Liu, H., Fan, Z., & Zhang, J. (2020). The histone demethylase KDM3B promotes Osteo-/Odontogenic differentiation, cell proliferation, and migration potential of stem cells from the apical papilla. Stem Cells International, 2020, 8881021.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang, H., Fan, J., Cao, Y., Gao, R., & Fan, Z. (2019). Distal-less homeobox 5 promotes the osteo-/dentinogenic differentiation potential of stem cells from apical papilla by activating histone demethylase KDM4B through a positive feedback mechanism. Experimental Cell Research, 374(1), 221–230.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, L., Yang, H., Lin, X., Cao, Y., Gao, P., Zheng, Y., & Fan, Z. (2018). KDM1A regulated the osteo/dentinogenic differentiation process of the stem cells of the apical papilla via binding with PLOD2. Cell Proliferation, 51(4), e12459.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang, H., Liang, Y., Cao, Y., Cao, Y., & Fan, Z. (2020). Homeobox C8 inhibited the osteo-/dentinogenic differentiation and migration ability of stem cells of the apical papilla via activating KDM1A. Journal of Cellular Physiology, 235(11), 8432–8445.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, P., Tian, H., Zhang, Z., & Wang, Z. (2021). EZH2 regulates lipopolysaccharide-induced periodontal ligament stem cell proliferation and osteogenesis through TLR4/MyD88/NF-κB pathway. Stem Cells International, 2021, 7625134.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cheng, M., & Zhou, Q. (2020). Targeting EZH2 ameliorates the LPS-inhibited PDLSC osteogenesis via Wnt/β-catenin pathway. Cells, Tissues, Organs, 209(4–6), 227–235.

    Article  CAS  PubMed  Google Scholar 

  45. Li, B., Yu, F., Wu, F., Hui, T., Liao, A. P., Yin, X., & Ye, C. (2018). EZH2 impairs human dental pulp cell mineralization via the Wnt/β-catenin pathway. Journal of Dental Research, 97(5), 571–579.

    Article  CAS  PubMed  Google Scholar 

  46. Ma, H., Duan, S., Yan, F., Yang, H., Cao, Y., Ge, L., & Gao, R. (2020). Enhancer of zeste homolog 2 enhances the migration and chemotaxis of dental mesenchymal stem cells. Journal of International Medical Research, 48(1), 300060519882149.

    Article  CAS  PubMed  Google Scholar 

  47. Hui, T., Zhao, A. P., Wang, Y., Gao, C., Zhang, B., Wang, P., & Ye, X. (2014). EZH2, a potential regulator of dental pulp inflammation and regeneration. Journal of Endodontics, 40(8), 1132–1138.

    Article  PubMed  Google Scholar 

  48. Wang, P., Li, Y., Meng, T., Zhang, J., Wei, Y., Meng, Z., & Sui, L. (2018). KDM6A promotes chondrogenic differentiation of periodontal ligament stem cells by demethylation of SOX9. Cell Proliferation, 51(3), e12413.

    Article  PubMed  Google Scholar 

  49. Jiang, H., & Jia, P. (2021). MiR-153-3p inhibits osteogenic differentiation of periodontal ligament stem cells through KDM6A-induced demethylation of H3K27me3. Journal of Periodontal Research, 56(2), 379–387.

    Article  CAS  PubMed  Google Scholar 

  50. Xu, J., Yu, B., Hong, C., & Wang, C. Y. (2013). KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells. International Journal of Oral Science, 5(4), 200–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoang, M., Kim, J. J., Kim, Y., Tong, E., Trammell, B., Liu, Y., Shi, S., Lee, C. R., Hong, C., Wang, C. Y. (2016). Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells. Stem Cell Research, 17(1), 111–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Z., Lee, H. L., Suh, J. S., Deng, P., Lee, C. R., Bezouglaia, O., Mirnia, M., Chen, V., Zhou, M., Cui, Z. K. (2022). The ERα/KDM6B regulatory axis modulates osteogenic differentiation in human mesenchymal stem cells. Bone Research, 10(1), 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, D., Wang, Y., Jia, Z., Wang, L., Wang, J., Yang, D., & Fan, Z. (2015). Demethylation of IGFBP5 by histone demethylase KDM6B promotes mesenchymal stem cell-mediated periodontal tissue regeneration by enhancing osteogenic differentiation and anti-inflammation potentials. Stem Cells, 33(8), 2523–2536.

    Article  CAS  PubMed  Google Scholar 

  54. Han, N., Zhang, F., Li, G., Zhang, X., Lin, X., Yang, H., & Fan, Z. (2017). Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche. Stem Cell Research & Therapy, 8(1), 210.

    Article  Google Scholar 

  55. Zheng, H., Wang, N., Li, L., Ge, L., Jia, H., & Fan, Z. (2021). miR-140-3p enhanced the osteo/odontogenic differentiation of DPSCs via inhibiting KMT5B under hypoxia condition. International Journal of Oral Science, 13(1), 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Skucha, A., Ebner, J., & Grebien, F. (2019). Roles of SETD2 in leukemia-transcription, DNA-damage, and beyond. International Journal of Molecular Sciences 20(5), 1029.

  57. Bais, M. V. (2019). Impact of epigenetic regulation on head and neck squamous cell carcinoma. Journal of Dental Research, 98(3), 268–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, B., Sun, J., Dong, Z., Xue, P., He, X., Liao, L., & Jin, Y. (2016). GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Scientific Reports, 6, 26542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wucheng, G., Jieli, C., Zhengyi, Y., Yi, Z., Enliang, H., Jun, Q., & Lin, Y. (2018). [K (lysine) acetyltransferase 2A affects the osteogenic differentiation of periodontal ligament stem cells through the canonical Wnt pathway]. Hua Xi Kou Qiang Yi Xue Za Zhi, 36(1), 39–45.

    PubMed  Google Scholar 

  60. Xiao, J., Zheng, Y., Zhang, W., Zhang, Y., Cao, P., Liang, Y. … Feng, X. (2022). General control nonrepressed protein 5 modulates odontogenic differentiation through NF-κB pathway in tumor necrosis Factor-α-mediated impaired human dental pulp stem cells. Cell Reprogram, 24(2), 95–104.

  61. Wang, T., Liu, H., Ning, Y., & Xu, Q. (2014). The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells. PLoS One1, 9(7), e102117.

    Article  Google Scholar 

  62. Liu, H. J., Wang, T., Li, Q. M., Guan, X. Y., & Xu, Q. (2015). Knock-down of p300 decreases the proliferation and odontogenic differentiation potentiality of HDPCs. International Endodontic Journal, 48(10), 976–985.

    Article  CAS  PubMed  Google Scholar 

  63. Xue, P., Li, B., An, Y., Sun, J., He, X., Hou, R., Dong, G., Fei, D., Jin, F., Wang, Q., et al. (2016). Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation. Cell Death And Differentiation, 23(11), 1862–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun, J., Dong, Z., Zhang, Y., He, X., Fei, D., Jin, F., & Jin, Y. (2017). Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering. Scientific Reports, 7(1), 5254.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tao, H., Li, Q., Lin, Y., Zuo, H., Cui, Y., Chen, S., & Liu, H. (2020). Coordinated expression of p300 and HDAC3 upregulates histone acetylation during dentinogenesis. Journal of Cellular Biochemistry, 121(3), 2478–2488.

    Article  CAS  PubMed  Google Scholar 

  66. Evans, P. M., Zhang, W., Chen, X., Yang, J., Bhakat, K. K., & Liu, C. (2007). Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. Journal of Biological Chemistry, 282(47), 33994–34002.

    Article  CAS  PubMed  Google Scholar 

  67. Tao, H., Lin, H., Sun, Z., Pei, F., Zhang, J., Chen, S., & Chen, Z. (2019). Klf4 promotes dentinogenesis and odontoblastic differentiation via modulation of TGF-β signaling pathway and interaction with histone acetylation. Journal of Bone and Mineral Research, 34(8), 1502–1516.

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Y., Shi, Z. Y., Feng, J., & Cao, J. K. (2018). HDAC6 regulates dental mesenchymal stem cells and osteoclast differentiation. BMC Oral Health, 18(1), 190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan, G. Q., Wang, X., Yang, F., Yang, M. L., Zhang, G. R., Wang, G. K., & Zhou, Q. (2017). MicroRNA-22 promoted osteogenic differentiation of human periodontal ligament stem cells by targeting HDAC6. Journal of Cellular Biochemistry, 118(7), 1653–1658.

    Article  CAS  PubMed  Google Scholar 

  70. Li, L., Liu, W., Wang, H., Yang, Q., Zhang, L., Jin, F., & Jin, Y. (2018). Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions. Cell Death and Disease, 9(5), 480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, J. J., Kim, S. J., Kim, Y. S., Kim, S. Y., Park, S. H., & Kim, E. C. (2012). The role of SIRT1 on angiogenic and odontogenic potential in human dental pulp cells. Journal of Endodontics, 38(7), 899–906.

    Article  PubMed  Google Scholar 

  72. Lee, Y. M., Shin, S. I., Shin, K. S., Lee, Y. R., Park, B. H., & Kim, E. C. (2011). The role of sirtuin 1 in osteoblastic differentiation in human periodontal ligament cells. Journal of Periodontal Research, 46(6), 712–721.

    Article  CAS  PubMed  Google Scholar 

  73. Xu, Y., Wang, X., Liu, W., & Lu, W. (2021). Thrombin-activated platelet-rich plasma enhances osteogenic differentiation of human periodontal ligament stem cells by activating SIRT1-mediated autophagy. European Journal of Medical Research, 26(1), 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Q. B., Cao, W., Liu, Y. R., Cui, S. M., & Yan, Y. Y. (2016). Effects of Sirtuin 1 on the proliferation and osteoblastic differentiation of periodontal ligament stem cells and stem cells from apical papilla. Genetics and Molecular Research 15(1). https://doi.org/10.4238/gmr.15015234

  75. Lee, S. I., Park, K. H., Kim, S. J., Kang, Y. G., Lee, Y. M., & Kim, E. C. (2012). Mechanical stress-activated immune response genes via Sirtuin 1 expression in human periodontal ligament cells. Clinical and Experimental Immunology, 168(1), 113–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Park, Y. D., Kim, Y. S., Jung, Y. M., Lee, S. I., Lee, Y. M., Bang, J. B., & Kim, E. C. (2012). Porphyromonas gingivalis lipopolysaccharide regulates interleukin (IL)-17 and IL-23 expression via SIRT1 modulation in human periodontal ligament cells. Cytokine, 60(1), 284–293.

    Article  CAS  PubMed  Google Scholar 

  77. Um, S., Lee, H., Zhang, Q., Kim, H. Y., Lee, J. H., & Seo, B. M. (2017). Valproic acid modulates the multipotency in periodontal ligament stem cells via p53-Mediated cell cycle. Tissue Engineering and Regenerative Medicine, 14(2), 153–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paino, F., La Noce, M., Tirino, V., Naddeo, P., Desiderio, V., Pirozzi, G., & Papaccio, G. (2014). Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells, 32(1), 279–289.

    Article  CAS  PubMed  Google Scholar 

  79. Jin, H., Park, J. Y., Choi, H., & Choung, P. H. (2013). HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells. Tissue Engineering Part A, 19(5–6), 613–624.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, H., Chen, Q., Liu, W. J., Yang, Z. H., Li, D., & Jin, F. (2016). [Effect of trichostatin A on the osteogenic differentiation potential of periodontal ligament stem cells in inflammatory microenvironment induced by tumor necrosis factor-α stimulation]. Zhonghua Kou Qiang Yi Xue Za Zhi, 51(4), 235–241.

    CAS  PubMed  Google Scholar 

  81. Huynh, N. C., Everts, V., Nifuji, A., Pavasant, P., & Ampornaramveth, R. S. (2017). Histone deacetylase inhibition enhances in-vivo bone regeneration induced by human periodontal ligament cells. Bone, 95, 76–84.

    Article  CAS  PubMed  Google Scholar 

  82. Lee, E. C., Kim, Y. M., Lim, H. M., Ki, G. E., & Seo, Y. K. (2020). The histone deacetylase inhibitor (MS-275) promotes differentiation of human dental pulp stem cells into odontoblast-like cells independent of the MAPK signaling system. International Journal of Molecular Sciences, 21(16), 5771.

  83. Man, K., Lawlor, L., Jiang, L. H., & Yang, X. B. (2021). The selective histone deacetylase inhibitor MI192 enhances the osteogenic differentiation efficacy of human dental pulp stromal cells. International Journal of Molecular Sciences, 22(10), 5224.

  84. Liu, Z., Chen, T., Han, Q., Chen, M., You, J., Fang, F., & Wu, B. (2018). HDAC inhibitor LMK–235 promotes the odontoblast differentiation of dental pulp cells. Molecular Medicine Reports, 17(1), 1445–1452.

    CAS  PubMed  Google Scholar 

  85. Kwon, A., Park, H. J., Baek, K., Lee, H. L., Park, J. C., Woo, K. M., & Baek, J. H. (2012). Suberoylanilide hydroxamic acid enhances odontoblast differentiation. Journal of Dental Research, 91(5), 506–512.

    Article  CAS  PubMed  Google Scholar 

  86. Duncan, H. F., Smith, A. J., Fleming, G. J., Partridge, N. C., Shimizu, E., Moran, G. P., & Cooper, P. R. (2016). The histone-deacetylase-inhibitor Suberoylanilide hydroxamic acid promotes dental pulp repair mechanisms through modulation of matrix metalloproteinase-13 activity. Journal of Cellular Physiology, 231(4), 798–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zaccara, I. M., Mestieri, L. B., Pilar, E. F. S., Moreira, M. S., Grecca, F. S., Martins, M. D., & Kopper, P. M. P. (2020). Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers In Medical Science, 35(3), 741–749.

    Article  PubMed  Google Scholar 

  88. Khan, N., Jeffers, M., Kumar, S., Hackett, C., Boldog, F., Khramtsov, N., Qian, X., Mills, E., Berghs, S. C., Carey, N., et al. (2008). Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. The Biochemical Journal, 409(2), 581–589.

    Article  CAS  PubMed  Google Scholar 

  89. Huynh, N. C., Everts, V., Pavasant, P., & Ampornaramveth, R. S. (2016). Inhibition of histone deacetylases enhances the osteogenic differentiation of human periodontal ligament cells. Journal of Cellular Biochemistry, 117(6), 1384–1395.

    Article  CAS  PubMed  Google Scholar 

  90. Duncan, H. F., Smith, A. J., Fleming, G. J., & Cooper, P. R. (2011). HDACi: cellular effects, opportunities for restorative dentistry. Journal of Dental Research, 90(12), 1377–1388.

    Article  CAS  PubMed  Google Scholar 

  91. Yang, R. L., Huang, H. M., Han, C. S., Cui, S. J., Zhou, Y. K., & Zhou, Y. H. (2021). Serine metabolism controls dental pulp stem cell aging by regulating the DNA methylation of p16. Journal of Dental Research, 100(1), 90–97.

    Article  CAS  PubMed  Google Scholar 

  92. Li, Q., Ma, Y., Zhu, Y., Zhang, T., & Zhou, Y. (2017). Declined expression of histone deacetylase 6 contributes to periodontal ligament stem cell aging. Journal of Periodontology, 88(1), e12–e23.

    Article  CAS  PubMed  Google Scholar 

  93. Gao, R., Dong, R., Du, J., Ma, P., Wang, S., & Fan, Z. (2013). Depletion of histone demethylase KDM2A inhibited cell proliferation of stem cells from apical papilla by de-repression of p15INK4B and p27Kip1. Molecular and Cellular Biochemistry, 379(1–2), 115–122.

    Article  CAS  PubMed  Google Scholar 

  94. Luo, Z., Wang, Z., He, X., Liu, N., Liu, B., Sun, L., Wang, J., Ma, F., Duncan, H., He, W., et al. (2018). Effects of histone deacetylase inhibitors on regenerative cell responses in human dental pulp cells. International Endodontic Journal, 51(7), 767–778.

    Article  CAS  PubMed  Google Scholar 

  95. Duncan, H. F., Smith, A. J., Fleming, G. J., & Cooper, P. R. (2012). Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells. Journal of Endodontics, 38(3), 339–345.

    Article  PubMed  Google Scholar 

  96. Zhou, Y., Zheng, L., Li, F., Wan, M., Fan, Y., Zhou, X., Du, W., Pi, C., Cui, D., Zhang, B., et al. (2018). Bivalent histone codes on WNT5A during odontogenic differentiation. Journal of Dental Research, 97(1), 99–107.

    Article  CAS  PubMed  Google Scholar 

  97. Li, Q., Sun, X., Tang, Y., Qu, Y., Zhou, Y., & Zhang, Y. (2020). EZH2 reduction is an essential mechanoresponse for the maintenance of super-enhancer polarization against compressive stress in human periodontal ligament stem cells. Cell Death and Disease, 11(9), 757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xing, Z., Lin, A., Li, C., Liang, K., Wang, S., Liu, Y., Park, P. K., Qin, L., Wei, Y., Hawke, D. H., et al. (2014). lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell, 159(5), 1110–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, Z., Zheng, J., Hong, H., Chen, D., Deng, L., Zhang, X., & Wu, L. (2020). lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. Journal of Cellular Physiology, 235(11), 8507–8519.

    Article  CAS  PubMed  Google Scholar 

  100. Zeng, L., Sun, S., Han, D., Liu, Y., Liu, H., Feng, H., & Wang, Y. (2018). Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells. Cellular Signalling, 52, 65–73.

    Article  CAS  PubMed  Google Scholar 

  101. Li, Z., Guo, X., & Wu, S. (2020). Epigenetic silencing of KLF2 by long non-coding RNA SNHG1 inhibits periodontal ligament stem cell osteogenesis differentiation. Stem Cell Research & Therapy, 11(1), 435.

    Article  Google Scholar 

  102. Zhang, Z., He, Q., Yang, S., Zhao, X., Li, X., & Wei, F. (2022). Mechanical force-sensitive lncRNA SNHG8 inhibits osteogenic differentiation by regulating EZH2 in hPDLSCs. Cellular Signalling, 93, 110285.

    Article  CAS  PubMed  Google Scholar 

  103. Deng, L., Hong, H., Zhang, X., Chen, D., Chen, Z., Ling, J., & Wu, L. (2018). Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway. Biochemical and Biophysical Research Communications, 503(3), 2061–2067.

    Article  CAS  PubMed  Google Scholar 

  104. Du, Z., Shi, X., & Guan, A. (2021). lncRNA H19 facilitates the proliferation and differentiation of human dental pulp stem cells via EZH2-dependent LATS1 methylation. Molecular Therapy Nucleic Acids, 25, 116–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Graphical Abstract and Figs. 1, 2 and 3 created with BioRender.com.

Funding

This work was supported by Clinical Medical Technology Innovation Guidance Project of Hunan Province in China, 2020SK53501.

Author information

Authors and Affiliations

Authors

Contributions

BYZ: conceptualization, writing—original draft, visualization, writing—review and editing. GL: funding acquisition, and supervision. JHH: funding acquisition, and supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Junhui Huang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, B., Liu, G. & Huang, J. DNA Methylation and Histone Modification in Dental-derived Mesenchymal Stem Cells. Stem Cell Rev and Rep 18, 2797–2816 (2022). https://doi.org/10.1007/s12015-022-10413-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10413-0

Keywords

Navigation