Skip to main content

Advertisement

Log in

Tracking Neural Stem Cells in vivo: Achievements and Limitations

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Neural stem cell (NSC) therapies are developing rapidly and have been proposed as a treatment option for various neurological diseases, such as stroke, Parkinson's disease and multiple sclerosis. However, monitoring transplanted NSCs, exploring their location and migration, and evaluating their efficacy and safety have all become serious and important issues. Two main problems in tracking NSCs have been noted: labeling them for visibility and imaging them. Direct labeling and reporter gene labeling are the two main methods for labeling stem cells. Magnetic resonance imaging and nuclear imaging, including positron emission tomography, single-photon emission computed tomography, and optical imaging, are the most commonly used imaging techniques. Each has its strengths and weaknesses. Thus, multimodal imaging, which combines two or more imaging methods to complement the advantages and disadvantages of each, has garnered increased attention. Advances in image fusion and nanotechnology, as well as the exploration of new tracers and new imaging modalities have substantially facilitated the development of NSC tracking technology. However, the safety issues related to tracking and long-term tracking of cell viability are still challenges. In this review, we discuss the merits and defects of different labeling and imaging methods, as well as recent advances, challenges and prospects in NSC tracking.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Available

Not applicable.

References

  1. Engler, A., Zhang, R., & Taylor, V. (2018). Notch and Neurogenesis. Advances in Experimental Medicine and Biology, 1066, 223–234.

    Article  CAS  PubMed  Google Scholar 

  2. Tuazon, J. P., Castelli, V., Lee, J. Y., Desideri, G. B., Stuppia, L., Cimini, A. M., & Borlongan, C. V. (2019). Neural Stem Cells. Advances in Experimental Medicine and Biology, 1201, 79–91.

    Article  CAS  PubMed  Google Scholar 

  3. De Gioia, R., Biella, F., Citterio, G., Rizzo, F., Abati, E., Nizzardo, M., Bresolin, N., Comi, G. P., Corti, S. (2020). Neural Stem Cell Transplantation for Neurodegenerative Diseases. Int. J. Mol. Sci. 21 (9).

  4. Trounson, A., & McDonald, C. (2015). Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 17(1), 11–22.

    Article  CAS  PubMed  Google Scholar 

  5. Genc, B., Bozan, H. R., Genc, S., & Genc, K. (2019). Stem Cell Therapy for Multiple Sclerosis. Advances in Experimental Medicine and Biology, 1084, 145–174.

    Article  CAS  PubMed  Google Scholar 

  6. Kondori, B. J., Asadi, M. H., Bahadoran, H., Yari, A., & Sarshoori, J. R. (2020). Intra-arterial transplantation of neural stem cells improve functional recovery after transient ischemic stroke in adult rats. Bratislavske Lekarske Listy, 121(1), 8–13.

    PubMed  Google Scholar 

  7. Umashankar, A., Corenblum, M. J., Ray, S., Valdez, M., Yoshimaru, E. S., Trouard, T. P., & Madhavan, L. (2016). Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: Relevance to clinical translation. International Journal of Nanomedicine, 11, 1731–1748.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pongrac, I. M., Pavičić, I., Milić, M., Brkić Ahmed, L., Babič, M., Horák, D., Vinković Vrček, I., & Gajović, S. (2016). Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 11, 1701–1715.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ashmore-Harris, C., Iafrate, M., Saleem, A., & Fruhwirth, G. O. (2020). Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Molecular Therapy, 28(6), 1392–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGinley, L. M., Willsey, M. S., Kashlan, O. N., Chen, K. S., Hayes, J. M., Bergin, I. L., Mason, S. N., Stebbins, A. W., Kwentus, J. F., Pacut, C., Kollmer, J., Sakowski, S. A., Bell, 3rd C. B., Chestek, C. A., Murphy, G. G., Patil, P. G., & Feldman, E. L. (2021). Magnetic resonance imaging of human neural stem cells in rodent and primate brain. Stem Cells Translational Medicine, 10(1), 83–97.

    Article  PubMed  Google Scholar 

  11. Lin, B., Lu, L., Wang, Y., Zhang, Q., Wang, Z., Cheng, G., Duan, X., Zhang, F., Xie, M., Le, H., Shuai, X., & Shen, J. (2021). Nanomedicine Directs Neuronal Differentiation of Neural Stem Cells via Silencing Long Noncoding RNA for Stroke Therapy. Nano Letters, 21(1), 806–815.

    Article  CAS  PubMed  Google Scholar 

  12. Bomba, H. N., Sheets, K. T., Valdivia, A., Khagi, S., Ruterbories, L., Mariani, C. L., Borst, L. B., Tokarz, D. A., Hingtgen, S. D. (2021). Personalized-induced neural stem cell therapy: Generation, transplant, and safety in a large animal model. Bioeng Transl Med 6 (1), e10171.

  13. Jiang, L., Li, R., Tang, H., Zhong, J., Sun, H., Tang, W., Wang, H., & Zhu, J. (2019). MRI Tracking of iPS Cells-Induced Neural Stem Cells in Traumatic Brain Injury Rats. Cell Transplantation, 28(6), 747–755.

    Article  PubMed  Google Scholar 

  14. Park, H. H., Lee, K. Y., Park, D. W., Choi, N. Y., Lee, Y. J., Son, J. W., Kim, S., Moon, C., Kim, H. W., Rhyu, I. J., & Koh, S. H. (2018). Tracking and protection of transplanted stem cells using a ferrocenecarboxylic acid-conjugated peptide that mimics hTERT. Biomaterials, 155, 80–91.

    Article  CAS  PubMed  Google Scholar 

  15. Ramos-Gómez, M., Seiz, E. G., & Martínez-Serrano, A. (2015). Optimization of the magnetic labeling of human neural stem cells and MRI visualization in the hemiparkinsonian rat brain. J Nanobiotechnology, 13, 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shen, Y., Shao, Y., He, H., Tan, Y., Tian, X., Xie, F., & Li, L. (2013). Gadolinium(3+)-doped mesoporous silica nanoparticles as a potential magnetic resonance tracer for monitoring the migration of stem cells in vivo. International Journal of Nanomedicine, 8, 119–127.

    PubMed  PubMed Central  Google Scholar 

  17. Cheng, S. H., Yu, D., Tsai, H. M., Morshed, R. A., Kanojia, D., Lo, L. W., Leoni, L., Govind, Y., Zhang, L., Aboody, K. S., Lesniak, M. S., Chen, C. T., & Balyasnikova, I. V. (2016). Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. Journal of Nuclear Medicine, 57(2), 279–284.

    Article  CAS  PubMed  Google Scholar 

  18. Micci, M. A., Boone, D. R., Parsley, M. A., Wei, J., Patrikeev, I., Motamedi, M., & Hellmich, H. L. (2015). Development of a novel imaging system for cell therapy in the brain. Stem Cell Research & Therapy, 6(1), 131.

    Article  CAS  Google Scholar 

  19. Li, D., Yan, X., Hu, Y., Liu, Y., Guo, R., Liao, M., Shao, B., Tang, Q., Guo, X., Chai, R., Zhang, Q., & Tang, M. (2019). Two-Photon Image Tracking of Neural Stem Cells via Iridium Complexes Encapsulated in Polymeric Nanospheres. ACS Biomaterials Science & Engineering, 5(3), 1561–1568.

    Article  CAS  Google Scholar 

  20. Zhang, F., Duan, X., Lu, L., Zhang, X., Chen, M., Mao, J., Cao, M., & Shen, J. (2017). In Vivo Long-Term Tracking of Neural Stem Cells Transplanted into an Acute Ischemic Stroke model with Reporter Gene-Based Bimodal MR and Optical Imaging. Cell Transplantation, 26(10), 1648–1662.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wen, X., Wang, Y., Zhang, F., Zhang, X., Lu, L., Shuai, X., & Shen, J. (2014). In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials, 35(16), 4627–4635.

    Article  CAS  PubMed  Google Scholar 

  22. Daadi, M. M., Hu, S., Klausner, J., Li, Z., Sofilos, M., Sun, G., Wu, J. C., & Steinberg, G. K. (2013). Imaging neural stem cell graft-induced structural repair in stroke. Cell Transplantation, 22(5), 881–892.

    Article  PubMed  Google Scholar 

  23. Cheng, L. N., Duan, X. H., Zhong, X. M., Guo, R. M., Zhang, F., Zhou, C. P., & Shen, J. (2011). Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury: Assessment using MRI. AJR. American Journal of Roentgenology, 196(6), 1381–1387.

    Article  PubMed  Google Scholar 

  24. Nicholls, F. J., Rotz, M. W., Ghuman, H., MacRenaris, K. W., Meade, T. J., & Modo, M. (2016). DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials, 77, 291–306.

    Article  CAS  PubMed  Google Scholar 

  25. Modo, M., Beech, J. S., Meade, T. J., Williams, S. C., Price, J. (2009). A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage 47 Suppl 2 (0 2), T133–42.

  26. Chang, D. J., Moon, H., Lee, Y. H., Lee, N., Lee, H. J., Jeon, I., Lee, H., Hwang, T. S., Oh, S. H., Shin, D. A., Kim, S. U., Hong, K. S., & Song, J. (2012). In vivo Tracking of Human Neural Stem Cells Following Transplantation into a Rodent Model of Ischemic Stroke. Int J Stem Cells, 5(1), 79–83.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thu, M. S., Bryant, L. H., Coppola, T., Jordan, E. K., Budde, M. D., Lewis, B. K., Chaudhry, A., Ren, J., Varma, N. R., Arbab, A. S., & Frank, J. A. (2012). Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nature Medicine, 18(3), 463–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cromer Berman, S. M., Walczak, P., & Bulte, J. W. (2011). Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 3(4), 343–355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mishra, S. K., Khushu, S., & Gangenahalli, G. (2017). Biological effects of iron oxide-protamine sulfate complex on mesenchymal stem cells and its relaxometry based labeling optimization for cellular MRI. Experimental Cell Research, 351(1), 59–67.

    Article  CAS  PubMed  Google Scholar 

  30. Munro, N., Srinageshwar, B., Shalabi, F., Florendo, M., Otero, P., Thompson, C., Kippe, J., Malkowski, C., Climie, S., Stewart, A. N., Kim, R., Zhou, J., Swanson, D., Dunbar, G. L., Sharma, A., & Rossignol, J. (2019). A novel approach to label bone marrow-derived mesenchymal stem cells with mixed-surface PAMAM dendrimers. Stem Cell Research & Therapy, 10(1), 71.

    Article  CAS  Google Scholar 

  31. Arbab, A. S., Bashaw, L. A., Miller, B. R., Jordan, E. K., Lewis, B. K., Kalish, H., & Frank, J. A. (2003). Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology, 229(3), 838–846.

    Article  PubMed  Google Scholar 

  32. von der Haar, K., Jonczyk, R., Lavrentieva, A., Weyand, B., Vogt, P., Jochums, A., Stahl, F., Scheper, T., & Blume, C. A. (2019). Electroporation: A Sustainable and Cell Biology Preserving Cell Labeling Method for Adipogenous Mesenchymal Stem Cells. Biores Open Access, 8(1), 32–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lei, H., Nan, X., Wang, Z., Gao, L., Xie, L., Zou, C., Wan, Q., Pan, D., Beauchamp, N., Yang, X., Matula, T., & Qiu, B. (2015). Stem Cell Labeling with Superparamagnetic Iron Oxide Nanoparticles Using Focused Ultrasound and Magnetic Resonance Imaging Tracking. Journal of Nanoscience and Nanotechnology, 15(4), 2605–2612.

    Article  CAS  PubMed  Google Scholar 

  34. Egawa, E. Y., Kitamura, N., Nakai, R., Arima, Y., & Iwata, H. (2015). A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation. Biomaterials, 54, 158–167.

    Article  CAS  PubMed  Google Scholar 

  35. Azevedo-Pereira, R. L., Rangel, B., Tovar-Moll, F., Gasparetto, E. L., Attias, M., Zaverucha-do-Valle, C., & Jasmin; Mendez-Otero, R. (2019). Superparamagnetic iron oxide nanoparticles as a tool to track mouse neural stem cells in vivo. Molecular Biology Reports, 46(1), 191–198.

    Article  CAS  PubMed  Google Scholar 

  36. Pongrac, I. M., Radmilović, M. D., Ahmed, L. B., Mlinarić, H., Regul, J., Škokić, S., Babič, M., Horák, D., Hoehn, M., & Gajović, S. (2019). D-mannose-Coating of Maghemite Nanoparticles Improved Labeling of Neural Stem Cells and Allowed Their Visualization by ex vivo MRI after Transplantation in the Mouse Brain. Cell Transplantation, 28(5), 553–567.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pongrac, I. M., Dobrivojević, M., Ahmed, L. B., Babič, M., Šlouf, M., Horák, D., & Gajović, S. (2016). Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles. Beilstein Journal of Nanotechnology, 7, 926–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naumova, A. V., Reinecke, H., Yarnykh, V., Deem, J., Yuan, C., & Murry, C. E. (2010). Ferritin overexpression for noninvasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Molecular Imaging, 9(4), 201–210.

    Article  CAS  PubMed  Google Scholar 

  39. Bartelle, B. B., Szulc, K. U., Suero-Abreu, G. A., Rodriguez, J. J., & Turnbull, D. H. (2013). Divalent metal transporter, DMT1: A novel MRI reporter protein. Magnetic Resonance in Medicine, 70(3), 842–850.

    Article  PubMed  CAS  Google Scholar 

  40. Bose, R. J. C., & Mattrey, R. F. (2019). Accomplishments and challenges in stem cell imaging in vivo. Drug Discovery Today, 24(2), 492–504.

    Article  PubMed  Google Scholar 

  41. Tanimoto, Y., Yamasaki, T., Nagoshi, N., Nishiyama, Y., Nori, S., Nishimura, S., Iida, T., Ozaki, M., Tsuji, O., Ji, B., Aoki, I., Jinzaki, M., Matsumoto, M., Fujibayashi, Y., Zhang, M. R., Nakamura, M., & Okano, H. (2020). In vivo monitoring of remnant undifferentiated neural cells following human induced pluripotent stem cell-derived neural stem/progenitor cells transplantation. Stem Cells Translational Medicine, 9(4), 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2(12), 932–940.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, G., Zhang, Y., Li, C., Huang, D., Wang, Q., Wang, Q. (2018). Recent Advances in Tracking the Transplanted Stem Cells Using Near-Infrared Fluorescent Nanoprobes: Turning from the First to the Second Near-Infrared Window. Adv Healthc Mater 7 (20), e1800497.

  44. Quek, C. H., & Leong, K. W. (2012). Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging. Nanomaterials (Basel), 2(2), 92–112.

    Article  CAS  Google Scholar 

  45. Shang, W., Zhang, X., Zhang, M., Fan, Z., Sun, Y., Han, M., & Fan, L. (2014). The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale, 6(11), 5799–5806.

    Article  CAS  PubMed  Google Scholar 

  46. Hardman, R. (2006). A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives, 114(2), 165–172.

    Article  PubMed  Google Scholar 

  47. Addington, C. P., Cusick, A., Shankar, R. V., Agarwal, S., Stabenfeldt, S. E., & Kodibagkar, V. D. (2016). Siloxane Nanoprobes for Labeling and Dual Modality Functional Imaging of Neural Stem Cells. Annals of Biomedical Engineering, 44(3), 816–827.

    Article  PubMed  Google Scholar 

  48. Zhu, J., Zhou, L., & XingWu, F. (2006). Tracking neural stem cells in patients with brain trauma. New England Journal of Medicine, 355(22), 2376–2378.

    Article  CAS  PubMed  Google Scholar 

  49. Gleich, B., & Weizenecker, J. (2005). Tomographic imaging using the nonlinear response of magnetic particles. Nature, 435(7046), 1214–1217.

    Article  CAS  PubMed  Google Scholar 

  50. Wu, L. C., Zhang, Y., Steinberg, G., Qu, H., Huang, S., Cheng, M., Bliss, T., Du, F., Rao, J., Song, G., Pisani, L., Doyle, T., Conolly, S., Krishnan, K., Grant, G., & Wintermark, M. (2019). A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging. AJNR. American Journal of Neuroradiology, 40(2), 206–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng, B., von See, M. P., Yu, E., Gunel, B., Lu, K., Vazin, T., Schaffer, D. V., Goodwill, P. W., & Conolly, S. M. (2016). Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo. Theranostics, 6(3), 291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng, B., Vazin, T., Goodwill, P. W., Conway, A., Verma, A., Saritas, E. U., Schaffer, D., & Conolly, S. M. (2015). Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Science and Reports, 5, 14055.

    Article  Google Scholar 

  53. Kester, L., & van Oudenaarden, A. (2018). Single-Cell Transcriptomics Meets Lineage Tracing. Cell Stem Cell, 23(2), 166–179.

    Article  CAS  PubMed  Google Scholar 

  54. Loughran, S. J., Haas, S., Wilkinson, A. C., Klein, A. M., & Brand, M. (2020). Lineage commitment of hematopoietic stem cells and progenitors: Insights from recent single cell and lineage tracing technologies. Experimental Hematology, 88, 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Clinical Research Plan of SHDC (No. SHDC2020CR2024B), Science and Technology Commission of Shanghai Municipality (20JC1412000) and National Natural Science Foundation of China (82071341, 81771295, 81801195).

Author information

Authors and Affiliations

Authors

Contributions

Chun-Ran Xue and Kan Wang contributed equally to this work and should be considered co-first authors. Meng-Ze Zhang, Ze Wang, Ya-Ying Song, Hao-Jun Yu, Yong Hao and Yang-Tai Guan reviewed and modified the manuscript. All authors agreed on the final version.

Corresponding authors

Correspondence to Yong Hao or Yang-Tai Guan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, CR., Wang, K., Zhang, MZ. et al. Tracking Neural Stem Cells in vivo: Achievements and Limitations. Stem Cell Rev and Rep 18, 1774–1788 (2022). https://doi.org/10.1007/s12015-022-10333-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10333-z

Keywords

Navigation