Skip to main content

Advertisement

Log in

Siloxane Nanoprobes for Labeling and Dual Modality Functional Imaging of Neural Stem Cells

  • Nondestructive Characterization of Biomaterials for Tissue Engineering and Drug Delivery
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality (1H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 μL/104 cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by 1H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast 1H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure. 7

Similar content being viewed by others

References

  1. Addington, C. P., C. M. Pauken, M. R. Caplan, and S. E. Stabenfeldt. The role of SDF-1α-ECM crosstalk in determining neural stem cell fate. Biomaterials 35:3263–3272, 2014.

    Article  CAS  PubMed  Google Scholar 

  2. Ahrens, E. T., R. Flores, H. Xu, and P. A. Morel. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23:983–987, 2005.

    Article  CAS  PubMed  Google Scholar 

  3. Ahrens, E. T., and J. Zhong. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed. 26:860–871, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhirde, A., J. Xie, M. Swierczewska, and X. Chen. Nanoparticles for cell labeling. Nanoscale 3:142–153, 2011.

    Article  CAS  PubMed  Google Scholar 

  5. Bible, E., F. Dell’Acqua, B. Solanky, A. Balducci, P. M. Crapo, S. F. Badylak, E. T. Ahrens, and M. Modo. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI. Biomaterials 33:2858–2871, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boehm-Sturm, P., L. Mengler, S. Wecker, M. Hoehn, and T. Kallur. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS ONE 6:e29040–e29049, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonetto, F., M. Srinivas, A. Heerschap, R. Mailliard, E. T. Ahrens, C. G. Figdor, and I. J. M. de Vries. A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int. J. Cancer 129:365–373, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bulte, J., J. W. Bulte, T. Douglas, T. Douglas, B. Witwer, B. Witwer, S. C. Zhang, E. Strable, E. Strable, B. K. Lewis, B. K. Lewis, H. Zywicke, H. Zywicke, B. Miller, B. Miller, P. van Gelderen, B. M. Moskowitz, B. M. Moskowitz, I. D. Duncan, and J. A. Frank. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19:1141–1147, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Bulte, J. W. M., S. C. Zhang, P. van Gelderen, V. Herynek, E. K. Jordan, I. D. Duncan, and J. A. Frank. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. 96:15256–15261, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cromer Berman, S. M., K. C. J. Wang, I. Orukari, A. Levchenko, J. W. M. Bulte, and P. Walczak. Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn. Reson. Med. 69:255–262, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Feo, D., A. Merlini, C. Laterza, and G. Martino. Neural stem cell transplantation in central nervous system disorders. Curr. Opin. Neurol. 25:322–333, 2012.

    Article  PubMed  Google Scholar 

  12. Gilad, A. A., P. Walczak, M. T. McMahon, H. B. Na, J. H. Lee, K. An, T. Hyeon, P. C. M. van Zijl, and J. W. M. Bulte. MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles. Magn. Reson. Med. 60:1–7, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Granot, D., M. K. Nkansah, M. F. Bennewitz, K. S. Tang, E. A. Markakis, and E. M. Shapiro. Clinically viable magnetic poly(lactide-co-glycolide) particles for MRI-based cell tracking. Magn. Reson. Med. 71:1238–1250, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Granot, D., D. Scheinost, E. A. Markakis, X. Papademetris, and E. M. Shapiro. Serial monitoring of endogenous neuroblast migration by cellular MRI. NeuroImage 57:817–824, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gulaka, P. K., U. Rastogi, M. A. McKay, X. Wang, R. P. Mason, and V. D. Kodibagkar. Hexamethyldisiloxane-based nanoprobes for 1H MRI oximetry. NMR Biomed. 24:1226–1234, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Guzman, R., N. Uchida, T. M. Bliss, D. He, K. K. Christopherson, D. Stellwagen, A. Capela, J. Greve, R. C. Malenka, M. E. Moseley, T. D. Palmer, and G. K. Steinberg. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. 104:10211–10216, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janjic, J. M., and E. T. Ahrens. Fluorine-containing nanoemulsions for MRI cell tracking. WIREs Nanomed. Nanobiotechnol. 1:492–501, 2009.

    Article  CAS  Google Scholar 

  18. Kodibagkar, V. D., W. Cui, M. E. Merritt, and R. P. Mason. Novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn. Reson. Med. 55:743–748, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Kodibagkar, V. D., X. Wang, and R. P. Mason. Physical principles of quantitative nuclear magnetic resonance oximetry. Front. Biosci. J. Virtual Library 13:1371–1384, 2008.

    Article  CAS  Google Scholar 

  20. Kodibagkar, V. D., X. Wang, J. Pacheco-Torres, P. Gulaka, and R. P. Mason. Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. NMR Biomed. 21:899–907, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kraitchman, D. L., and J. W. M. Bulte. In vivo imaging of stem cells and Beta cells using direct cell labeling and reporter gene methods. Arterioscler. Thromb. Vasc. Biol. 29:1025–1030, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laistler, E., M. Poirier-Quinot, S. A. Lambert, R.-M. Dubuisson, O. M. Girard, E. Moser, L. Darrasse, and J.-C. Ginefri. In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 tesla. J. Magn. Reson. Imaging 41:496–504, 2013.

    Article  PubMed  Google Scholar 

  23. Lustig, M., D. Donoho, and J. M. Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58:1182–1195, 2007.

    Article  PubMed  Google Scholar 

  24. Menon, J. U., P. K. Gulaka, M. A. McKay, S. Geethanath, L. Liu, and V. D. Kodibagkar. Dual-modality, dual-functional nanoprobes for cellular and molecular imaging. Theranostics 2:1199–1207, 2013.

    Article  Google Scholar 

  25. Nabuurs, R. J. A., I. Hegeman, R. Natté, S. G. van Duinen, M. A. van Buchem, L. van der Weerd, and A. G. Webb. High-field MRI of single histological slices using an inductively coupled, self-resonant microcoil: application to ex vivo samples of patients with Alzheimer’s disease. NMR Biomed. 24:351–357, 2011.

    PubMed  Google Scholar 

  26. Ramos-Gómez, M., E. G. Seiz, and A. Martínez-Serrano. Optimization of the magnetic labeling of human neural stem cells and MRI visualization in the hemiparkinsonian rat brain. J. Nanobiotechnol. 13:20, 2015.

    Article  Google Scholar 

  27. Riess, P., C. Zhang, K. E. Saatman, H. L. Laurer, L. G. Longhi, R. Raghupathi, P. M. Lenzlinger, J. Lifshitz, J. Boockvar, and E. Neugebauer. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1054, 2002.

    PubMed  Google Scholar 

  28. Ruiz-Cabello, J., P. Walczak, D. A. Kedziorek, V. P. Chacko, A. H. Schmieder, S. A. Wickline, G. M. Lanza, and J. W. M. Bulte. In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn. Reson. Med. 60:1506–1511, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Srinivas, M., E. H. J. G. Aarntzen, J. W. M. Bulte, W. J. Oyen, A. Heerschap, I. J. M. de Vries, and C. G. Figdor. Imaging of cellular therapies. Adv. Drug Deliv. Rev. 62:1080–1093, 2010.

    Article  CAS  PubMed  Google Scholar 

  30. Srivastava, A. K., D. K. Kadayakkara, A. Bar-Shir, A. A. Gilad, M. T. McMahon, and J. W. M. Bulte. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis. Models Mech. 8:323–336, 2015.

    Article  CAS  Google Scholar 

  31. Vidya Shankar, R. and V. D. Kodibagkar. A rapid Look-Locker imaging sequence for quantitative tissue oximetry. In: Proceedings of the SPIE 9417, Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging, 94170F. doi:10.1117/12.2084009, 2015.

  32. Wang, Z. J. Improving SNR of RF coils using composite coil elements. NMR Biomed. 22:952–959, 2009.

    Article  PubMed  Google Scholar 

  33. Zhong, J., P. H. Mills, T. K. Hitchens, and E. T. Ahrens. Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn. Reson. Med. 69:1683–1690, 2012.

    Article  PubMed  Google Scholar 

  34. Zhong, J., M. Sakaki, H. Okada, and E. T. Ahrens. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging. PLoS ONE 8:e59479-7, 2013.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge David Menn, Arizona State University, and Qingwei Liu, Barrow Neurological Institute, for technical assistance. These studies were supported by a Rising Stars in Engineering seed grant from College of Engineering, ASU (VDK and SES) and NIH 1DP2HD084067 (SES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah E. Stabenfeldt or Vikram D. Kodibagkar.

Additional information

Associate Editor Agata Exner oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10439_2015_1514_MOESM1_ESM.tif

Flow cytometry scatter and gating of labeled NSPCs stained with calcein AM. Based on gating, indicated by black outline, NPSCs labeled at 1 μL/104 cells (B) did not exhibit an increase in the dead (gated) population compared to unlabeled NPSCs (A). At 5, 10 and 50 μL/104 cells labeling concentration, the dead population increased to 11.7%, 19.9% and 35.4% respectively (C-E). (TIFF 20116 kb)

10439_2015_1514_MOESM2_ESM.tif

NPSC radial migration on poly-L-lysine (PLL) and laminin out to 6 days. Minimal radial migration is observed on PLL at days 0, 3 and 6 for both unlabeled (A-C) and labeled (D-F) NPSCs. However, increased radial migration is observed on laminin at days 3 and 6 compared to day 0 and to PLL controls for both unlabeled (G-I) and labeled (J-L) NPSCs. Positive rhodamine B staining is indicative of labeling (D-F, J-L). Scale bar is 150 μm. (TIFF 63681 kb)

10439_2015_1514_MOESM3_ESM.tif

R1 versus pO2 calibration curves for PDMS nanoemulsion. R1 values of tubes with nanoemulsions equilibrated at 0%, 10%, and 21% atm oxygen (0, 76 and 160 torr respectively) and sealed show the expected linear dependence on pO2. Fitting yielded following calibration constants: intercept A’ = 0.235 ± 0.006 s-1 and slope B’ = (1.30 ± 0.08)X10-3 (s torr)-1, (R2 >0.99) at 23 ºC and A’ = 0.207 ± 0.001 s-1 and B’ = 1.25 ± 0.01)X10-3 (s torr)-1, (R2 >0.99) at 33.5 ºC. (TIFF 30081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addington, C.P., Cusick, A., Shankar, R.V. et al. Siloxane Nanoprobes for Labeling and Dual Modality Functional Imaging of Neural Stem Cells. Ann Biomed Eng 44, 816–827 (2016). https://doi.org/10.1007/s10439-015-1514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1514-1

Keywords

Navigation