Skip to main content
Log in

Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Aim

Stroke results in long term serious disability that affect millions across the globe. Several clinical and preclinical studies have reinforced the therapeutic use of stem cells in stroke patients to enhance their quality of life. Previous studies from our lab have demonstrated that 1*105 allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) when given intraarterially (IA) render neuroprotection by modulating the expression of inflammasomes. Sirtuins are a class of important deacylases having a significant role in cellular functioning. Sirtuin-1 (SIRT-1) is an important enzyme essential for regulating cellular metabolism, which is reduced following an ischemic episode. The present study aims to unviel the role of MSCs in regulating the brain SIRT-1 levels following stroke and the involvement of SIRT-1 in regulating inflammasome signaling to reduce cellular apoptosis towards rendering neuroprotection.

Materials and Methods

6 h post-reversible middle cerebral artery occlusion (MCAo), ovariectomized Sprague Dawley (SD) rats were infused intraarterially with 1*105 MSCs. 24 h after MCAo animals were examined for functional and behavioral outcomes. Brains were collected for assessing size of infarct and neuronal morphology. Molecular and immunofluroscence studies were also performed for assessing changes in gene and protein expressions. Extent of apoptosis was also determined in different groups. Inhibition study with SIRT-1 specific inhibitor EX-527 was also performed.

Results

A reduction in infarct size and improvement in motor functional and behavioral outcomes following infusion of MSCs IA at 6 h post-stroke was observed. Increase in average neuronal density and neuronal length was also seen. Increased expression of SIRT-1, BDNF and concomitant reduction in the expression of different inflammatory and apoptotic markers in the brain cortical regions were observed following MSCs treatment.

Conclusion

Our study provides a preliminary evidence that post-stroke IA MSCs therapy regulates SIRT-1 to modulate NF-κB pathway to mitigate inflammasome signaling and cellular apoptosis. This study using IA approach for administering MSCs is highly relevant clinically. Our study is the first to report that neuroprotective effects of IA MSCs in rodent focal ischemia is mediated by SIRT-1 regulation of inflammasome signaling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Available upon reasonable request from the corresponding author.

Code Availability

NA.

References

  1. Bélanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metabolism, 14(6), 724–738.

    Article  PubMed  Google Scholar 

  2. Campbell, B. C., De Silva, D. A., Macleod, M. R., Coutts, S. B., Schwamm, L. H., Davis, S. M., et al. (2019). Ischaemic stroke. Nature Reviews Disease Primers, 5(1), 1–22.

    Article  Google Scholar 

  3. Baidya, F., Bohra, M., Datta, A., Sarmah, D., Shah, B., Jagtap, P., et al. (2021). Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology, 162(2), 160–178.

    Article  CAS  PubMed  Google Scholar 

  4. Malone, K., Amu, S., Moore, A. C., & Waeber, C. (2019). The immune system and stroke: From current targets to future therapy. Immunology and Cell Biology, 97(1), 5–16.

    Article  PubMed  Google Scholar 

  5. Sarmah, D., Agrawal, V., Rane, P., Bhute, S., Watanabe, M., Kalia, K., et al. (2018). Mesenchymal Stem Cell therapy in Ischemic stroke: A meta-analysis of preclinical studies. Clinical Pharmacology & Therapeutics, 103(6), 990–998.

    Article  Google Scholar 

  6. Sarmah, D., Kaur, H., Saraf, J., Pravalika, K., Goswami, A., Kalia, K., et al. (2018). Getting closer to an effective intervention of ischemic stroke: The big promise of stem cell. Translational Stroke Research, 9(4), 356–374.

    Article  PubMed  Google Scholar 

  7. Datta, A., Sarmah, D., Mounica, L., Kaur, H., Kesharwani, R., Verma, G., et al. (2020) Cell death pathways in ischemic stroke and targeted pharmacotherapy. Translational Stroke Research, 1–18

  8. Paul, S., Candelario-Jalil, E. (2020). Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Experimental Neurology, 113518

  9. Chen, X., & Wang, K. (2016). The fate of medications evaluated for ischemic stroke pharmacotherapy over the period 1995–2015. Acta Pharmaceutica Sinica B., 6(6), 522–530.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kaur, H., Prakash, A., & Medhi, B. (2013). Drug therapy in stroke: From preclinical to clinical studies. Pharmacology, 92(5–6), 324–334.

    Article  CAS  PubMed  Google Scholar 

  11. Yeh, C.-Y., Schulien, A. J., Molyneaux, B. J., & Aizenman, E. (2020). Lessons from recent advances in ischemic stroke management and targeting Kv2. 1 for Neuroprotection. International Journal of Molecular Sciences, 21(17), 6107.

    Article  CAS  PubMed Central  Google Scholar 

  12. Furuya, K., Takeda, H., Azhar, S., McCarron, R. M., Chen, Y., Ruetzler, C. A., et al. (2001). Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: A bedside-to-bench study. Stroke, 32(11), 2665–2674.

    Article  CAS  PubMed  Google Scholar 

  13. Committee TIS. (2001). Tirilazad for acute ischaemic stroke. Cochrane Database of Systematic Reviews, (4)

  14. Malhotra, K., Chang, J. J., Khunger, A., Blacker, D., Switzer, J. A., Goyal, N., et al. (2018). Minocycline for acute stroke treatment: A systematic review and meta-analysis of randomized clinical trials. Journal of Neurology., 265(8), 1871–1879.

    Article  CAS  PubMed  Google Scholar 

  15. Enomoto, M., Endo, A., Yatsushige, H., Fushimi, K., & Otomo, Y. (2019). Clinical effects of early edaravone use in acute ischemic stroke patients treated by endovascular reperfusion therapy. Stroke, 50(3), 652–658.

    Article  PubMed  Google Scholar 

  16. Chrostek, M. R., Fellows, E. G., Crane, A. T., Grande, A. W., & Low, W. C. (2019). Efficacy of stem cell-based therapies for stroke. Brain Research, 1722, 146362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regenerative Medicine, 4(1), 1–15.

    Article  CAS  Google Scholar 

  18. Stonesifer, C., Corey, S., Ghanekar, S., Diamandis, Z., Acosta, S. A., & Borlongan, C. V. (2017). Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Progress in Neurobiology., 158, 94–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guzman, R., Janowski, M., & Walczak, P. (2018). Intra-arterial delivery of cell therapies for stroke. Stroke, 49(5), 1075–1082.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Walczak, P., Zhang, J., Gilad, A. A., Kedziorek, D. A., Ruiz-Cabello, J., Young, R. G., et al. (2008). Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 39(5), 1569–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sarmah, D., Kaur, H., Saraf, J., Vats, K., Pravalika, K., Wanve, M., et al. (2019). Mitochondrial dysfunction in stroke: Implications of stem cell therapy. Translational Stroke Research, 10(2), 121–136.

    Article  CAS  Google Scholar 

  22. Yavagal, D. R., Lin, B., Raval, A. P., Garza, P. S., Dong, C., Zhao, W., et al. (2014). Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PloS one, 9(5), e93735.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, W., Shi, L., Hu, B., Hong, Y., Zhang, H., Li, X., et al. (2021). Mesenchymal stem cell-based therapy for stroke: current understanding and challenges. Frontiers in Cellular Neuroscience, 15, 10.

    Article  Google Scholar 

  24. Kaur, H., Sarmah, D., Veeresh, P., Datta, A., Kalia, K., Borah, A., et al. (2021). Endovascular stem cell therapy post stroke rescues neurons from endoplasmic reticulum stress-induced apoptosis by modulating brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling. ACS Chemical Neuroscience

  25. Kane, A. E., & Sinclair, D. A. (2018). Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circulation Research, 123(7), 868–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujita, Y., & Yamashita, T. (2018). Sirtuins in neuroendocrine regulation and neurological diseases. Frontiers in Neuroscience, 12, 778.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liang, X., Liu, Y., Jia, S., Xu, X., Dong, M., & Wei, Y. (2019). SIRT1: The value of functional outcome, stroke-related dementia, anxiety, and depression in patients with acute ischemic stroke. Journal of Stroke and Cerebrovascular Diseases, 28(1), 205–212.

    Article  PubMed  Google Scholar 

  28. Vats, K., Sarmah, D., Datta, A., Saraf, J., Kaur, H., Pravalika, K., et al. (2019). Intra-arterial stem cell therapy diminishes inflammasome activation after ischemic stroke: A possible role of acid sensing ion channel 1a. Journal of Molecular Neuroscience, 1–8

  29. Saraf, J., Sarmah, D., Vats, K., Kaur, H., Pravalika, K., Wanve, M., et al. (2019). Intra-arterial stem cell therapy modulates neuronal calcineurin and confers neuroprotection after ischemic stroke. International Journal of Neuroscience, 129(10), 1039–1044.

    Article  CAS  Google Scholar 

  30. Longa, E. Z., Weinstein, P. R., Carlson, S., & Cummins, R. (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 20(1), 84–91.

    Article  CAS  PubMed  Google Scholar 

  31. Available from: https://www.merckmillipore.com/IN/en/product/Rat-Mesenchymal-Stem-Cells-Bone-Marrow,MM_NF-SCR027

  32. Pravalika, K., Sarmah, D., Kaur, H., Vats, K., Saraf, J., Wanve, M., et al. (2019). Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life sciences., 216, 49–58.

    Article  CAS  PubMed  Google Scholar 

  33. Goldim, MPd. S., Della Giustina, A., & Petronilho, F. (2019). Using evans blue dye to determine blood-brain barrier integrity in rodents. Current Protocols in Immunology, 126(1), e83.

    Article  PubMed  Google Scholar 

  34. Zhang, J., Xiong, H. (2014). Brain tissue preparation, sectioning, and staining. Current Laboratory Methods in Neuroscience Research: Springer. p. 3–30.

  35. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  36. Ismael, S., Zhao, L., Nasoohi, S., & Ishrat, T. (2018). Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Scientific Reports., 8(1), 1–9.

    Article  CAS  Google Scholar 

  37. Bieber, M., Schuhmann, M. K., Volz, J., Kumar, G. J., Vaidya, J. R., Nieswandt, B., et al. (2019). Description of a novel phosphodiesterase (PDE)-3 inhibitor protecting mice from ischemic stroke independent from platelet function. Stroke, 50(2), 478–486.

    Article  CAS  PubMed  Google Scholar 

  38. Lenth RV. Java applets for power and sample size. http://www.stat.uiowa.edu/~rlenth/Power. 2006.

  39. Bhatia, V., Gupta, V., Khurana, D., Sharma, R. R., & Khandelwal, N. (2018). Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous stem cells in subacute ischemic stroke. AJNR American Journal of Neuroradiology, 39(5), 899–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Banerjee, S., Bentley, P., Hamady, M., Marley, S., Davis, J., Shlebak, A., et al. (2014). Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke. Stem Cells Translational Medicine, 3(11), 1322–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Friedrich, M. A., Martins, M. P., Araújo, M. D., Klamt, C., Vedolin, L., Garicochea, B., et al. (2012). Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplantation, 21(Suppl 1), S13-21.

    Article  PubMed  Google Scholar 

  42. Saraf, J., Sarmah, D., Vats, K., Kaur, H., Pravalika, K., Wanve, M., et al. (2019). Intra-arterial stem cell therapy modulates neuronal calcineurin and confers neuroprotection after ischemic stroke. The International Journal of Neuroscience., 129(10), 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  43. She, D. T., Jo, D.-G., & Arumugam, T. V. (2017). Emerging roles of sirtuins in ischemic stroke. Translational Stroke Research, 8(5), 405–423.

    Article  CAS  Google Scholar 

  44. Koronowski, K. B., Khoury, N., Saul, I., Loris, Z. B., Cohan, C. H., Stradecki-Cohan, H. M., et al. (2017). Neuronal SIRT1 (silent information regulator 2 homologue 1) regulates glycolysis and mediates resveratrol-induced ischemic tolerance. Stroke, 48(11), 3117–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raval, A. P., Lin, H. W., Dave, K. R., DeFazio, R. A., Morte, D. D., Kim, E. J., et al. (2008). Resveratrol and ischemic preconditioning in the brain. Current Medicinal Chemistry, 15(15), 1545–1551.

    Article  CAS  PubMed  Google Scholar 

  46. Lu, H., & Wang, B. (2017). SIRT1 exerts neuroprotective effects by attenuating cerebral ischemia/reperfusion-induced injury via targeting p53/microRNA-22. International Journal of Molecular Medicine, 39(1), 208–216.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, S., Jiang, L., Che, F., Lu, Y., Xie, Z., & Wang, H. (2017). Arctigenin attenuates ischemic stroke via SIRT1-dependent inhibition of NLRP3 inflammasome. Biochemical and Biophysical Research Communications, 493(1), 821–826.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, T., Dai, S.-H., Li, X., Luo, P., Zhu, J., Wang, Y.-H., et al. (2018). Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox Biology, 14, 229–236.

    Article  CAS  PubMed  Google Scholar 

  49. Dai, S.-H., Chen, T., Li, X., Yue, K.-Y., Luo, P., Yang, L.-K., et al. (2017). Sirt3 confers protection against neuronal ischemia by inducing autophagy: Involvement of the AMPK-mTOR pathway. Free Radical Biology and Medicine, 108, 345–353.

    Article  CAS  PubMed  Google Scholar 

  50. Verma, R., Ritzel, R. M., Crapser, J., Friedler, B. D., & McCullough, L. D. (2018). Evaluation of the neuroprotective effect of Sirt3 in experimental stroke. Translational Stroke Research, 10(1), 57–66.

    Article  PubMed  Google Scholar 

  51. Marcus, J. M., & Andrabi, S. A. (2018). SIRT3 regulation under cellular stress: Making sense of the ups and downs. Frontiers in Neuroscience, 12, 799.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kowiański, P., Lietzau, G., Czuba, E., Waśkow, M., Steliga, A., & Moryś, J. (2018). BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology, 38(3), 579–593.

    Article  PubMed  Google Scholar 

  53. Karantali, E., Kazis, D., Papavasileiou, V., Prevezianou, A., Chatzikonstantinou, S., Petridis, F., et al. (2021). Serum BDNF levels in acute stroke: A systematic review and meta-analysis. Medicina, 57(3), 297.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lang, X., Zhao, N., He, Q., Li, X., Li, X., Sun, C., et al. (2020). Treadmill exercise mitigates neuroinflammation and increases BDNF via activation of SIRT1 signaling in a mouse model of T2DM. Brain Research Bulletin, 165, 30–39.

    Article  CAS  PubMed  Google Scholar 

  55. El Hayek, L., Khalifeh, M., Zibara, V., Abi Assaad, R., Emmanuel, N., Karnib, N., et al. (2019). Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). Journal of Neuroscience, 39(13), 2369–2382.

    PubMed  Google Scholar 

  56. Zocchi, L., & Sassone-Corsi, P. (2012). SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics, 7(7), 695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang, X., Zhao, Y., Zhou, Z., Yan, J., Zhou, B., Chi, X., et al. (2020). Resveratrol mitigates sevoflurane-induced neurotoxicity by the SIRT1-dependent regulation of BDNF expression in developing mice. Oxidative Medicine and Cellular Longevity, 2020

  58. Duris, K., Splichal, Z., & Jurajda, M. (2018). The role of inflammatory response in stroke associated programmed cell death. Current Neuropharmacology, 16(9), 1365–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vidale, S., Consoli, A., Arnaboldi, M., & Consoli, D. (2017). Postischemic inflammation in acute stroke. Journal of Clinical Neurology, 13(1), 1–9.

    Article  PubMed  Google Scholar 

  60. Harari, O. A., & Liao, J. K. (2010). NF-κB and innate immunity in ischemic stroke. Annals of the New York Academy of Sciences, 1207, 32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sumbria, R. K., Boado, R. J., & Pardridge, W. M. (2012). Brain protection from stroke with intravenous TNF α decoy receptor-Trojan horse fusion protein. Journal of Cerebral Blood Flow & Metabolism, 32(10), 1933–1938.

    Article  CAS  Google Scholar 

  62. Howell, J. A., & Bidwell, G. L., III. (2020). Targeting the NF-κB pathway for therapy of ischemic stroke. Therapeutic Delivery, 11(2), 113–123.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(1), 1–9.

    Article  CAS  Google Scholar 

  64. Fann, D.Y.-W., Lim, Y.-A., Cheng, Y.-L., Lok, K.-Z., Chunduri, P., Baik, S.-H., et al. (2018). Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Molecular Neurobiology, 55(2), 1082–1096.

    Article  CAS  PubMed  Google Scholar 

  65. Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., et al. (2004). Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal, 23(12), 2369–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L.-F., Kwon, H., Yi, S., et al. (2005). SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. Journal of Biological Chemistry, 280(48), 40364–40374.

    Article  CAS  Google Scholar 

  67. Knobloch, J., Sibbing, B., Jungck, D., Lin, Y., Urban, K., Stoelben, E., et al. (2010). Resveratrol impairs the release of steroid-resistant inflammatory cytokines from human airway smooth muscle cells in chronic obstructive pulmonary disease. Journal of Pharmacology and Experimental Therapeutics, 335(3), 788–798.

    Article  CAS  Google Scholar 

  68. Zhu, X., Liu, Q., Wang, M., Liang, M., Yang, X., Xu, X., et al. (2011). Activation of Sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts. PloS one, 6(11), e27081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Giacobbo, B. L., Doorduin, J., Klein, H. C., Dierckx, R. A., Bromberg, E., & de Vries, E. F. (2019). Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Molecular Neurobiology, 56(5), 3295–3312.

    Article  Google Scholar 

  70. Caruso, G. I., Spampinato, S. F., Costantino, G., Merlo, S., & Sortino, M. A. (2021). SIRT1-dependent upregulation of BDNF in human microglia challenged with Aβ: An early but transient response rescued by melatonin. Biomedicines, 9(5), 466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Han, Y., Sun, W., Ren, D., Zhang, J., He, Z., Fedorova, J., et al. (2020). SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biology, 34, 101538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, Y., Yang, X., He, Y., Wang, W., Zhang, J., Zhang, W., et al. (2017). Negative regulation of NLRP3 inflammasome by SIRT1 in vascular endothelial cells. Immunobiology, 222(3), 552–561.

    Article  CAS  PubMed  Google Scholar 

  73. Jin, H., Zhu, Y., Wang, X.-D., Luo, E.-F., Li, Y.-P., Wang, B.-l, et al. (2021). BDNF corrects NLRP3 inflammasome-induced pyroptosis and glucose metabolism reprogramming through KLF2/HK1 pathway in vascular endothelial cells. Cellular Signalling, 78, 109843.

    Article  CAS  PubMed  Google Scholar 

  74. Song, A.-Q., Gao, B., Fan, J.-J., Zhu, Y.-J., Zhou, J., Wang, Y.-L., et al. (2020). NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice. Journal of Neuroinflammation, 17, 1–13.

    Article  Google Scholar 

  75. Aachoui, Y., Sagulenko, V., Miao, E. A., & Stacey, K. J. (2013). Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Current Opinion in Microbiology, 16(3), 319–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, H., Dang, Y., Liu, X., Ren, J., & Wang, H. (2019). Exogenous brain-derived neurotrophic factor attenuates neuronal apoptosis and neurological deficits after subarachnoid hemorrhage in rats. Experimental and Therapeutic Medicine, 18(5), 3837–3844.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hasegawa, Y., Cheng, C., Hayashi, K., Takemoto, Y., & Kim-Mitsuyama, S. (2020). Anti-apoptotic effects of BDNF-TrkB signaling in the treatment of hemorrhagic stroke. Brain Hemorrhages, 1(2), 124–132.

    Article  Google Scholar 

  78. Takayama, K., Ishida, K., Matsushita, T., Fujita, N., Hayashi, S., Sasaki, K., et al. (2009). SIRT1 regulation of apoptosis of human chondrocytes. Arthritis and Rheumatism, 60(9), 2731–2740.

    Article  CAS  PubMed  Google Scholar 

  79. Liu, S., Yang, H., Hu, B., & Zhang, M. (2017). Sirt1 regulates apoptosis and extracellular matrix degradation in resveratrol-treated osteoarthritis chondrocytes via the Wnt/β-catenin signaling pathways. Experimental and Therapeutic Medicine, 14(5), 5057–5062.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Ms. Monika Seervi for her help in performing confocal microscopy, Mr. Vishal Gupta and Mr. Pramod Suthar for their assistance during surgery and post-operative animal care and Dr. Shirish Bhatiya, NIPER-A veterinarian, for taking care of animal housing and animal health.

Funding

Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India; National Institute of Pharmaceutical Education and Research (NIPER) -Ahmedabad; Indo French Centre for Promotion of Advanced Research (IFCPAR/CEFIPRA) for Raman Charpak Fellowship 2018 (IFC/4122/RCF 2018/1356) to Ms. Deepaneeta Sarmah; Indian Council of Medical Research, India for Senior research fellowships to Ms. Aishika Datta (45/13/2020-PHA/BMS) and Ms. Harpreet Kaur (5/3/8/16/ITR-F/2019-ITR) and Nanobio project grant to Dr. Pallab Bhattacharya (34/5/2019-TF/Nano/BMS).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: PB. Acquisition of data: DS, AD and HK. Analysis and interpretation of data: DS, AD, KK, AB, AMR, DY and PB. Drafting and revision of the manuscript: DS, KK, AB, AMR, DY and PB. All authors have approved the final manuscript.

Corresponding author

Correspondence to Pallab Bhattacharya.

Ethics declarations

Ethics Approval

No clinical study was conducted.

Consent to Participate

NA

Consent for Publication

All authors have given their consent for the publication of the manuscript.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

This article belongs to the Topical Collection: Special issue on Neurogenesis and Neurodegeneration: Basic Research and Clinic Applications

Guest Editor: Henning Ulrich

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 719 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmah, D., Datta, A., Kaur, H. et al. Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Rev and Rep 18, 821–838 (2022). https://doi.org/10.1007/s12015-021-10315-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10315-7

Keywords

Navigation