Skip to main content

Advertisement

Log in

An Overview of Mesenchymal Stem Cell-based Therapy Mediated by Noncoding RNAs in the Treatment of Neurodegenerative Diseases

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

A Correction to this article was published on 01 October 2021

This article has been updated

Abstract

Mesenchymal stem cells (MSCs) have become a promising tool for neurorestorative therapy of neurodegenerative diseases (NDDs), which are mainly characterized by the progressive and irreversible loss of neuronal structure and function in the central or peripheral nervous system. Recently, studies have reported that genetic manipulation mediated by noncoding RNAs (ncRNAs) can increase survival and neural regeneration of transplanted MSCs, offering a new strategy for clinical translation. In this review, we summarize the potential role and regulatory mechanism of two major types of ncRNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), during the neurogenesis of MSCs with gene expression profile analyses. We also overview the realization of MSC-based therapy mediated by ncRNAs in the treatment of spinal cord injury, stroke, Alzheimer’s disease and peripheral nerve injury. It is expected that ncRNAs will become promising therapeutic targets for NDD on stem cells, while the underlying mechanisms require further exploration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Change history

Abbreviations

NDD:

neurodegenerative diseases

CNS:

central nervous system

PNS:

peripheral nervous system

SCI:

spinal cord injury

AD:

Alzheimer’s disease

PNI:

peripheral nerve injury

MSCs:

mesenchymal stem cells

ncRNAs:

noncoding RNAs

lncRNAs:

long non-coding RNAs

sncRNAs:

small non-coding RNAs

miRNAs:

microRNA

piRNAs:

PIWI-interacting RNAs

siRNAs:

small interfering RNAs

DPSCs:

dental pulp stem cells

ceRNA:

competing endogenous RNA

BMSCs:

bone marrow-derived stem cells

TGF-β:

transforming growth factor-β

Shh:

Sonic hedgehog

Ascl1/Mash1:

achaete-scute complex-like 1

Par6α:

partitioning defective 6 homologue-α

Par3/Par6/aPKC:

partition defective 3/partition defective 6/atypical protein kinase C

zfp521:

zinc finger protein 521

Sp1:

specificity protein 1

ADSCs:

adipose tissue-derived stromal cells

qRT-PCR:

quantitative reverse transcription polymerase chain reaction

mTOR:

mechanistic target of rapamycin kinase

IGF-1R:

insulin-like growth factor receptor type 1

DANCR:

differentiation antagonizing non-protein coding RNA

circRNAs:

circular RNAs

RIP:

RNA immunoprecipitation

ChIRP:

chromatin isolation by RNA purification

CLIP:

cross-linking immunoprecipitation

CHART:

capture hybridization analysis of RNA targets

PTBP1:

polypyrimidine tract-binding protein 1

PDXK:

pyridoxal kinase

PTBP2:

polypyrimidine tract-binding protein 2

NSE:

neuron-specific enolase; NF:neurofilament

MAP2:

microtubule-associated protein 2

BDNF:

brain-derived neurotrophic factor

as-miR-383:

antisense miR-383

GDNF:

glial cell line derived neurotrophic factor

VEGF-A:

vascular endothelial growth factor A

EVs:

extracellular vehicles

EXs:

exosomes

SPRED1:

Sprouty-related EVH1 domain-containing protein 1

PIK3R2:

phosphoinositide-3-kinase regulatory subunit 2

FasL:

fas ligand

RhoA:

ras homologue family member A

PTEN:

phosphatase and tensin homologue

PDCD4:

programmed cell death 4

PPARγ:

peroxisome proliferator activated receptor gamma

IS:

ischemic stroke

MCAO:

middle cerebral artery occlusion

MAT2B:

methionine adenosyltransferase 2

NF-κB:

nuclear factor-κ B

SNHG12:

small nucleolar RNA host gene 12

I/R:

ischaemia/reperfusion

BMECs:

brain microvascular endothelial cells

PI3K:

phosphatidylinositol 3-kinase

AKT:

protein kinase B

LDH:

lactate dehydrogenase

LCN2:

neutrophil gelatinase-associated lipocalin

AIS:

acute ischemic stroke

Atg5:

autophagy related 5

IRAK1:

interleukin-1 receptor-associated kinase1

NFAT5:

nuclear factor of activated T cells 5

IBZ:

ischemic boundary zone

CTGF:

connective tissue growth factor

Aβ:

amyloid-β

BIM:

BCL2 interacting mediator of cell death

BACE1:

β-site amyloid precursor protein cleaving enzyme 1

as-miR-937:

antisense miRNA-937

Brn-4:

POU class 3 homeobox 4

SNAP25:

synaptosome associated protein 25

SCLCs:

Schwann cell-like cells

c-Jun:

Jun proto-oncogene

hAMSCs:

:human amniotic mesenchymal stem cells

FGF2:

fibroblast growth factor 2

PEDOT:

poly (3,4-ethylenedioxythiophene)

References

  1. Guzik, A., & Bushnell, C. (2017). Stroke epidemiology and risk factor management. Continuum (Minneap Minn), 23(1, Cerebrovascular Disease), 15–39. https://doi.org/10.1212/CON.0000000000000416

  2. Ziegler, G., Grabher, P., Thompson, A., Altmann, D., Hupp, M., Ashburner, J., Friston, K., Weiskopf, N., Curt, A., & Freund, P. (2018) Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology, 90(14): e1257-e1266. https://doi.org/10.1212/WNL.0000000000005258.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Uryu, K., Haddix, T., Robinson, J., Nakashima-Yasuda, H., Lee, V. M., & Trojanowski, J. Q. (2010). Burden of neurodegenerative diseases in a cohort of medical examiner subjects. Journal of Forensic Sciences, 55(3):642–645. https://doi.org/10.1111/j.1556-4029.2010.01347.x

  4. Arsenijevic, Y., Villemure, J.G., Brunet, J.F., Bloch, J.J., Deglon, N., Kostic, C., Zurn, A., & Aebischer, P. (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Experimental Neurology, 170(1):48–62. https://doi.org/10.1006/exnr.2001.7691.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y., Tan, B., Wang, L., Long, Z., Li, Y., Liao, W., & Wu, Y. (2015). Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury. International Journal of Clinical and Experimental Pathology, 8(4), 3835–3842.

    PubMed  PubMed Central  Google Scholar 

  6. Gazdic, M., Volarevic, V., Arsenijevic, A., Erceg, S., Moreno-Manzano, V., Arsenijevic, N., & Stojkovic, M. (2016). Stem cells and labeling for spinal cord injury. International Journal of Molecular Sciences, 18(1). https://doi.org/10.3390/ijms18010006

  7. Asadi, H., Williams, D., & Thornton, J. (2016). Changing management of acute ischaemic stroke: the new treatments and emerging role of endovascular therapy. Current Treatment Options in Neurology, 18(5), 20. https://doi.org/10.1007/s11940-016-0403-8.

    Article  PubMed  Google Scholar 

  8. Amemori, T., Jendelova, P., Ruzicka, J., Urdzikova, L. M., & Sykova, E. (2015). Alzheimer’s disease: mechanism and approach to cell therapy. International Journal of Molecular Sciences, 16(11), 26417–26451. https://doi.org/10.3390/ijms161125961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Atashi, F., Modarressi, A., & Pepper, M.S. (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells and Development, 24(10):1150–1163. https://doi.org/10.1089/scd.2014.0484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krabbe, C., Zimmer, J., & Meyer, M. (2005). Neural transdifferentiation of mesenchymal stem cells–a critical review. Apmis, 113(11–12), 831–844. https://doi.org/10.1111/j.1600-0463.2005.apm_3061.x

  11. Tang, Y., & Wang, B. (2015) Gene- and stem cell-based therapeutics for cartilage regeneration and repair. Stem Cell Research & Therapy, 6:78. https://doi.org/10.1186/s13287-015-0058-5.

    Article  CAS  Google Scholar 

  12. Zheng, H., Zhang, B., Chhatbar, P. Y., Dong, Y., Alawieh, A., Lowe, F., et al. (2018). Mesenchymal stem cell therapy in stroke: a systematic review of literature in pre-clinical and clinical research. Cell Transplantation, 27(12), 1723–1730.

    Article  Google Scholar 

  13. Hass, R., Kasper, C., Bohm, S., & Jacobs, R. (2011) Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling, 9:12. https://doi.org/10.1186/1478-811X-9-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nandoe, T.R., Hurtado, A., Levi, A.D., Grotenhuis, J.A., & Oudega, M. (2006) Bone marrow stromal cells for repair of the spinal cord: towards clinical application. Cell Transplantation, 15(7):563–577. https://doi.org/10.3727/000000006783981602.

    Article  PubMed  Google Scholar 

  15. Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., & Nolta, J.A. (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative Medicine, 5(6):933–946. https://doi.org/10.2217/rme.10.72.

    Article  PubMed  Google Scholar 

  16. Wakabayashi, K., Nagai, A., Sheikh, A.M., Shiota, Y., Narantuya, D., Watanabe, T., Masuda, J., Kobayashi, S., Kim, S.U., & Yamaguchi, S. (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. Journal of Neuroscience Research, 88(5):1017–1025. https://doi.org/10.1002/jnr.22279.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, M.J., Sun, J.J., Qian, L., Liu, Z., Zhang, Z., Cao, W., Li, W., & Xu, Y. (2011) Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Research, 1402:122–131. https://doi.org/10.1016/j.brainres.2011.05.055.

    Article  CAS  PubMed  Google Scholar 

  18. Lu, J., Moochhala, S., Moore, X.L., Ng, K.C., Tan, M.H., Lee, L.K., He, B., Wong, M.C., & Ling, E.A. (2006) Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury. Neuroscience Letters, 398(1–2):12–17. https://doi.org/10.1016/j.neulet.2005.12.053.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, D. H., Lim, H., Lee, D., Choi, S. J., Oh, W., Yang, Y. S., et al. (2018). Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer’s disease model. Scientific Reports, 8(1), 354. https://doi.org/10.1038/s41598-017-18542-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glavaski-Joksimovic, A., Virag, T., Mangatu, T.A., McGrogan, M., Wang, X.S., & Bohn, M.C. (2010) Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease. Journal of Neuroscience Research, 88(12):2669–2681. https://doi.org/10.1002/jnr.22435.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, D.H., Lee, D., Chang, E.H., Kim, J.H., Hwang, J.W., Kim, J.Y., Kyung, J.W., Kim, S.H., Oh, J.S., Shim, S.M., Na, D.L., Oh, W., & Chang, J.W. (2015) GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer’s disease model. Stem Cells and Development, 24(20):2378–2390. https://doi.org/10.1089/scd.2014.0487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su, Y., Wu, H., Pavlosky, A., Zou, L.L., Deng, X., Zhang, Z.X., & Jevnikar, A.M. (2016) Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death & Disease, 7(8): e2333. https://doi.org/10.1038/cddis.2016.210.

    Article  CAS  Google Scholar 

  23. Wang, D.R., Wang, Y.H., Pan, J., & Tian, W.D. (2020) Neurotrophic effects of dental pulp stem cells in repair of peripheral nerve after crush injury. World Journal of Stem Cells, 12(10):1196–1213. https://doi.org/10.4252/wjsc.v12.i10.1196.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cimadamore, F., Amador-Arjona, A., Chen, C., Huang, C. T., & Terskikh, A. V. (2013). SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proceedings of the National Academy of Sciences of the United States of America, 110(32), E3017–E3026. https://doi.org/10.1073/pnas.1220176110.

    Article  PubMed Central  Google Scholar 

  25. Li, Y., Guo, S., Liu, W., Jin, T., Li, X., He, X., et al. (2019). Silencing of SNHG12 enhanced the effectiveness of MSCs in alleviating ischemia/reperfusion injuries via the PI3K/AKT/mTOR signaling pathway. Frontiers in Neuroscience, 13, 645. https://doi.org/10.3389/fnins.2019.00645.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu, R., Tang, Y., Zang, W., Wang, Y., Li, M., Du Y, Zhao, G., & Xu, Y. (2014) MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Molecular and Cellular Biochemistry, 387(1–2):151–158. https://doi.org/10.1007/s11010-013-1880-7.

    Article  CAS  PubMed  Google Scholar 

  27. Han, L., Wang, Y., Wang, L., Guo, B., Pei, S., & Jia, Y. (2018). MicroRNA let-7f-5p regulates neuronal differentiation of rat bone marrow mesenchymal stem cells by targeting Par6alpha. Biochemical and Biophysical Research Communications, 495(1), 1476–1481. https://doi.org/10.1016/j.bbrc.2017.11.024.

    Article  CAS  PubMed  Google Scholar 

  28. Jing, L., Jia, Y., Lu, J., Han, R., Li, J., Wang, S., Peng, T., & Jia, Y. (2011) MicroRNA-9 promotes differentiation of mouse bone mesenchymal stem cells into neurons by Notch signaling. Neuroreport, 22(5):206–211. https://doi.org/10.1097/WNR.0b013e328344a666.

    Article  CAS  PubMed  Google Scholar 

  29. Jia, Q., Chen, X., Jiang, W., Wang, W., Guo, B., & Ni, L. (2016). The regulatory effects of long noncoding RNA-ANCR on dental tissue-derived stem cells. Stem Cells International, 2016, 3146805. https://doi.org/10.1155/2016/3146805

  30. Farzi-Molan, A., Babashah, S., Bakhshinejad, B., Atashi, A., & Fakhr, T.M. (2018) Down-regulation of the non-coding RNA H19 and its derived miR-675 is concomitant with up-regulation of insulin-like growth factor receptor type 1 during neural-like differentiation of human bone marrow mesenchymal stem cells. Cell Biology International, 42(8):940–948. https://doi.org/10.1002/cbin.10960.

    Article  CAS  PubMed  Google Scholar 

  31. Wei, Z.J., Fan, B.Y., Liu, Y., Ding, H., Tang, H.S., Pan, D.Y., Shi, J.X., Zheng, P.Y., Shi, H.Y., Wu, H., Li, A., & Feng, S.Q. (2019) MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium. Neural Regeneration Research, 14(8):1462–1469. https://doi.org/10.4103/1673-5374.253532.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huat, T.J., Khan, A.A., Abdullah, J.M., Idris, F.M., & Jaafar, H. (2015) MicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF. International Journal of Molecular Sciences, 16(5):9693–9718. https://doi.org/10.3390/ijms16059693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Godlewski, J., Nowicki, M.O., Bronisz, A., Williams, S., Otsuki, A., Nuovo, G., Raychaudhury, A., Newton, H.B., Chiocca, E.A., & Lawler, S. (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Research, 68(22):9125–9130. https://doi.org/10.1158/0008-5472.CAN-08-2629.

    Article  CAS  PubMed  Google Scholar 

  34. Clements, W. K., Ong, K. G., & Traver, D. (2009). Zebrafish wnt3 is expressed in developing neural tissue. Developmental Dynamics, 238(7), 1788–1795. https://doi.org/10.1002/dvdy.21977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han, R., Kan, Q., Sun, Y., Wang, S., Zhang, G., Peng, T., & Jia, Y. (2012) MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neuroscience Letters, 515(2):147–152. https://doi.org/10.1016/j.neulet.2012.03.032.

    Article  CAS  PubMed  Google Scholar 

  36. Kamiya, D., Banno, S., Sasai, N., Ohgushi, M., Inomata, H., Watanabe, K., Kawada, M., Yakura, R., Kiyonari, H., Nakao, K., Jakt, L.M., Nishikawa, S., & Sasai, Y. (2011) Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature, 470(7335):503–509. https://doi.org/10.1038/nature09726.

    Article  CAS  PubMed  Google Scholar 

  37. Zou, D., Chen, Y., Han, Y., Lv, C., & Tu, G. (2014) Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells. Neural Regeneration Research, 9(12):1241–1248. https://doi.org/10.4103/1673-5374.135333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mondanizadeh, M., Arefian, E., Mosayebi, G., Saidijam, M., Khansarinejad, B., & Hashemi, S.M. (2015) MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. Journal of Cellular Biochemistry, 116(6):943–953. https://doi.org/10.1002/jcb.25045.

    Article  CAS  PubMed  Google Scholar 

  39. Kopp, F., & Mendell, J. T. (2018). Functional classification and experimental dissection of long noncoding RNAs. Cell, 172(3), 393–407. https://doi.org/10.1016/j.cell.2018.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, A.M., Ni, W.F., Huang, Z.Y., Li, Q.L., Wu, J.B., Xu, H.Z., & Yin, L.H. (2015) Analysis of differentially expressed lncRNAs in differentiation of bone marrow stem cells into neural cells. Journal of the Neurological Sciences, 351(1–2):160–167. https://doi.org/10.1016/j.jns.2015.03.011.

    Article  CAS  PubMed  Google Scholar 

  41. Han, J., Xiao, Z., Chen, L., Chen, B., Li, X., Han, S., Zhao, Y., & Dai, J. (2013) Maintenance of the self-renewal properties of neural progenitor cells cultured in three-dimensional collagen scaffolds by the REDD1-mTOR signal pathway. Biomaterials, 34(8):1921–1928. https://doi.org/10.1016/j.biomaterials.2012.11.063.

    Article  CAS  PubMed  Google Scholar 

  42. Dutta, D.J., Zameer, A., Mariani, J.N., Zhang, J., Asp, L., Huynh, J., Mahase, S., Laitman, B.M., Argaw, A.T., Mitiku, N., Urbanski, M., Melendez-Vasquez, C.V., Casaccia, P., Hayot, F., Bottinger, E.P., Brown, C.W., & John, G.R. (2014) Combinatorial actions of Tgfbeta and Activin ligands promote oligodendrocyte development and CNS myelination. Development, 141(12):2414–2428. https://doi.org/10.1242/dev.106492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nordin, M., Bergman, D., Halje, M., Engstrom, W., & Ward, A. (2014). Epigenetic regulation of the Igf2/H19 gene cluster. Cell Proliferation, 47(3), 189–199. https://doi.org/10.1111/cpr.12106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Keniry, A., Oxley, D., Monnier, P., Kyba, M., Dandolo, L., Smits, G., & Reik, W. (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nature Cell Biology, 14(7):659–665. https://doi.org/10.1038/ncb2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Annenkov, A. (2009) The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Molecular Neurobiology, 40(3):195–215. https://doi.org/10.1007/s12035-009-8081-0.

    Article  CAS  PubMed  Google Scholar 

  46. Kretz, M., Webster, D. E., Flockhart, R. J., Lee, C. S., Zehnder, A., Lopez-Pajares, V., et al. (2012). Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes & Development, 26(4), 338–343. https://doi.org/10.1101/gad.182121.111.

    Article  CAS  Google Scholar 

  47. Dragomir, M. P., Knutsen, E., & Calin, G. A. (2018). SnapShot: unconventional miRNA functions. Cell, 174(4), 1038. https://doi.org/10.1016/j.cell.2018.07.040.

    Article  CAS  PubMed  Google Scholar 

  48. Matsui, M., Chu, Y., Zhang, H., Gagnon, K.T., Shaikh, S., Kuchimanchi, S., Manoharan, M., Corey, D.R., & Janowski, B.A. (2013) Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Research, 41(22):10086–10109. https://doi.org/10.1093/nar/gkt777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lauressergues, D., Couzigou, J.M., Clemente, H.S., Martinez, Y., Dunand, C., Becard, G., & Combier, J.P. (2015) Primary transcripts of microRNAs encode regulatory peptides. Nature, 520(7545):90–93. https://doi.org/10.1038/nature14346.

    Article  CAS  PubMed  Google Scholar 

  50. Yan, M., Sun, M., Zhou, Y., Wang, W., He, Z., Tang, D., Lu, S., Wang, X., Li, S., Wang, W., & Li, H. (2013) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson’s disease in a rhesus monkey model. PLoS One, 8(5): e64000. https://doi.org/10.1371/journal.pone.0064000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Romanelli, P., Bieler, L., Scharler, C., Pachler, K., Kreutzer, C., Zaunmair, P., et al. (2019). Extracellular vesicles can deliver anti-inflammatory and anti-scarring activities of mesenchymal stromal cells after spinal cord injury. Frontiers in Neurology, 10, 1225. https://doi.org/10.3389/fneur.2019.01225.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Z., Sheng, H., Liao, L., Xu, C., Zhang, A., Yang, Y., et al. (2020). Mesenchymal stem cell-conditioned medium improves mitochondrial dysfunction and suppresses apoptosis in okadaic acid-treated SH-SY5Y cells by extracellular vesicle mitochondrial transfer. Journal of Alzheimers Disease, 78(3), 1161–1176. https://doi.org/10.3233/JAD-200686.

    Article  CAS  Google Scholar 

  53. Asgari, T.A., Dargahi, L., Nasoohi, S., Hassanzadeh, G., Kadivar, M., & Farahmandfar, M. (2021) The conditioned medium of human embryonic stem cell-derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. Journal of Cellular Physiology, 236(3):1967–1979. https://doi.org/10.1002/jcp.29981.

    Article  CAS  Google Scholar 

  54. Huang, J. H., Yin, X. M., Xu, Y., Xu, C. C., Lin, X., Ye, F. B., et al. (2017). Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. Journal of Neurotrauma, 34(24), 3388–3396. https://doi.org/10.1089/neu.2017.5063.

    Article  PubMed  Google Scholar 

  55. Segal-Gavish, H., Karvat, G., Barak, N., Barzilay, R., Ganz, J., Edry, L., et al. (2016). Mesenchymal stem cell transplantation promotes neurogenesis and ameliorates autism related behaviors in BTBR mice. Autism Research, 9(1), 17–32. https://doi.org/10.1002/aur.1530.

    Article  PubMed  Google Scholar 

  56. Saito, F., Nakatani, T., Iwase, M., Maeda, Y., Murao, Y., Suzuki, Y., Fukushima, M., & Ide, C. (2012) Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci, 30(2):127–136. https://doi.org/10.3233/RNN-2011-0629.

    Article  PubMed  Google Scholar 

  57. Han, L., Zhou, Y., Zhang, R., Wu, K., Lu, Y., Li, Y., et al. (2018). MicroRNA Let-7f-5p promotes bone marrow mesenchymal stem cells survival by targeting caspase-3 in Alzheimer disease model. Frontiers in Neuroscience, 12, 333. https://doi.org/10.3389/fnins.2018.00333.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hilton, B.J., Moulson, A.J., & Tetzlaff, W. (2017) Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neuroscience Letters, 652:3–10. https://doi.org/10.1016/j.neulet.2016.12.004.

    Article  CAS  PubMed  Google Scholar 

  59. Mendonca, M.V., Larocca, T.F., de Freitas, S.B., Villarreal, C.F., Silva, L.F., Matos, A.C., Novaes, M.A., Bahia, C.M., de Oliveira, M.M.A., Kaneto, C.M., Furtado, S.B., Sampaio, G.P., Soares, M.B., & Dos, S.R. (2014) Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Research & Therapy, 5(6):126. https://doi.org/10.1186/scrt516.

    Article  Google Scholar 

  60. Park, J.H., Kim, D.Y., Sung, I.Y., Choi, G.H., Jeon, M.H., Kim, K.K., & Jeon, S.R. (2012) Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery, 70(5):1238–1247, 1247. https://doi.org/10.1227/NEU.0b013e31824387f9.

    Article  PubMed  Google Scholar 

  61. Bhanot, Y., Rao, S., Ghosh, D., Balaraju, S., Radhika, C. R., & Satish, K. K. (2011). Autologous mesenchymal stem cells in chronic spinal cord injury. British Journal of Neurosurgery, 25(4), 516–522. https://doi.org/10.3109/02688697.2010.550658.

    Article  PubMed  Google Scholar 

  62. Song, J.L., Zheng, W., Chen, W., Qian, Y., Ouyang, Y.M., & Fan, C.Y. (2017) Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Experimental and Molecular Medicine, 49(5):e332. https://doi.org/10.1038/emm.2017.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao, Y., Jiang, H., Liu, X.W., Xiang, L.B., Zhou, D.P., & Chen, J.T. (2015) MiR-124 promotes bone marrow mesenchymal stem cells differentiation into neurogenic cells for accelerating recovery in the spinal cord injury. Tissue & Cell, 47(2):140–146. https://doi.org/10.1016/j.tice.2015.01.007.

    Article  CAS  Google Scholar 

  64. Makeyev, E.V., Zhang, J., Carrasco, M.A., & Maniatis, T. (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27(3):435–448. https://doi.org/10.1016/j.molcel.2007.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiong, L. L., Qin, Y. X., Xiao, Q. X., Jin, Y., Al-Hawwas, M., Ma, Z., et al. (2020). MicroRNA339 targeting PDXK improves motor dysfunction and promotes neurite growth in the remote cortex subjected to spinal cord transection. Frontiers in Cell and Development Biology, 8, 577. https://doi.org/10.3389/fcell.2020.00577.

    Article  Google Scholar 

  66. Hung, C. Y., Hsu, T. I., Chuang, J. Y., Su, T. P., Chang, W. C., & Hung, J. J. (2020). Sp1 in astrocyte is important for neurite outgrowth and synaptogenesis. Molecular Neurobiology, 57(1), 261–277. https://doi.org/10.1007/s12035-019-01694-7.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, T., Liu, C., & Chi, L. (2020) Suppression of miR-10a-5p in bone marrow mesenchymal stem cells enhances the therapeutic effect on spinal cord injury via BDNF. Neuroscience Letters, 714:134562. https://doi.org/10.1016/j.neulet.2019.134562.

    Article  CAS  PubMed  Google Scholar 

  68. Liu, Q., Cheng, G., Wang, Z., Zhan, S., Xiong, B., & Zhao, X. (2015). Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene. In Vitro Cellular & Developmental Biology. Animal, 51(3), 319–327. https://doi.org/10.1007/s11626-015-9875-1.

    Article  CAS  Google Scholar 

  69. Wei, G. J., An, G., Shi, Z. W., Wang, K. F., Guan, Y., Wang, Y. S., et al. (2017). Suppression of microRNA-383 enhances therapeutic potential of human bone-marrow-derived mesenchymal stem cells in treating spinal cord injury via GDNF. Cellular Physiology and Biochemistry, 41(4), 1435–1444. https://doi.org/10.1159/000468057.

    Article  CAS  PubMed  Google Scholar 

  70. Yue, X. H., Guo, L., Wang, Z. Y., & Jia, T. H. (2019). Inhibition of miR-17-5p promotes mesenchymal stem cells to repair spinal cord injury. European Review for Medical and Pharmacological Sciences, 23(9), 3899–3907. https://doi.org/10.26355/eurrev_201905_17819.

    Article  PubMed  Google Scholar 

  71. Gorabi, A.M., Kiaie, N., Barreto, G.E., Read, M.I., Tafti, H.A., & Sahebkar, A. (2019) The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Treatment of Neurodegenerative Diseases. Molecular Neurobiology, 56(12):8157–8167. https://doi.org/10.1007/s12035-019-01663-0.

    Article  CAS  PubMed  Google Scholar 

  72. Yu, T., Zhao, C., Hou, S., Zhou, W., Wang, B., & Chen, Y. (2019) Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Brazilian Journal of Medical and Biological Research, 52(12): e8735. https://doi.org/10.1590/1414-431X20198735.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sun, Y., Chen, S., Zhang, X., & Pei, M. (2019). Significance of cellular cross-talk in stromal vascular fraction of adipose tissue in neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(6), 1034–1044. https://doi.org/10.1161/ATVBAHA.119.312425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang, J. H., Xu, Y., Yin, X. M., & Lin, F. Y. (2020). Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats. Neuroscience, 424, 133–145. https://doi.org/10.1016/j.neuroscience.2019.10.043.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou, X., Chu, X., Yuan, H., Qiu, J., Zhao, C., Xin, D., Li, T., Ma, W., Wang, H., Wang, Z., & Wang, D. (2019) Mesenchymal stem cell derived EVs mediate neuroprotection after spinal cord injury in rats via the microRNA-21-5p/FasL gene axis. Biomedicine & Pharmacotherapy, 115:108818. https://doi.org/10.1016/j.biopha.2019.108818.

    Article  CAS  Google Scholar 

  76. Nagata, S. (1996). Fas-induced apoptosis, and diseases caused by its abnormality. Genes to Cells, 1(10), 873–879. https://doi.org/10.1046/j.1365-2443.1996.d01-214.x

  77. Li, D., Zhang, P., Yao, X., Li, H., Shen, H., Li, X., et al. (2018). Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Frontiers in Neuroscience, 12, 845. https://doi.org/10.3389/fnins.2018.00845.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wu, X., Walker, C. L., Lu, Q., Wu, W., Eddelman, D. B., Parish, J. M., & Xu, X. M. (2017). RhoA/Rho kinase mediates neuronal death through regulating cPLA2 activation. Molecular Neurobiology, 54(9), 6885–6895. https://doi.org/10.1007/s12035-016-0187-6.

    Article  CAS  PubMed  Google Scholar 

  79. Kang, J., Li, Z., Zhi, Z., Wang, S., & Xu, G. (2019) MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury. Gene Therapy, 26(12):491–503. https://doi.org/10.1038/s41434-019-0101-8.

    Article  CAS  PubMed  Google Scholar 

  80. Gaojian, T., Dingfei, Q., Linwei, L., Xiaowei, W., Zheng, Z., Wei, L., et al. (2020). Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-kappaB and STAT 1/3 signaling pathway. Cell Death Discovery, 6, 97. https://doi.org/10.1038/s41420-020-00333-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, C., Wang, Q., Lou, Y., Xu, J., Feng, Z., Chen, Y., Tang, Q., Zheng, G., Zhang, Z., Wu, Y., Tian, N., Zhou, Y., Xu, H., & Zhang, X. (2018) Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. Journal of Cellular and Molecular Medicine, 22(2):1148–1166. https://doi.org/10.1111/jcmm.13368.

    Article  CAS  PubMed  Google Scholar 

  82. Shao, M., Jin, M., Xu, S., Zheng, C., Zhu, W., Ma, X., & Lv, F. (2020). Exosomes from long noncoding RNA-Gm37494-ADSCs repair spinal cord injury via shifting microglial M1/M2 polarization. Inflammation, 43(4), 1536–1547. https://doi.org/10.1007/s10753-020-01230-z.

    Article  CAS  PubMed  Google Scholar 

  83. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., et al. (2017). Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation, 135(10), e146–e603. https://doi.org/10.1161/CIR.0000000000000485.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang, W., Zhao, J., Wang, R., Jiang, M., Ye, Q., Smith, A.D., Chen, J., & Shi, Y. (2019) Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain. CNS Neuroscience & Therapeutics, 25(12):1329–1342. https://doi.org/10.1111/cns.13256.

    Article  CAS  Google Scholar 

  85. Stonesifer, C., Corey, S., Ghanekar, S., Diamandis, Z., Acosta, S.A., & Borlongan, C.V. (2017) Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Progress in Neurobiology, 158:94–131. https://doi.org/10.1016/j.pneurobio.2017.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, C., Fei, K., Tian, F., Gao, C., & Yang, S. (2019) Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating miR-21-3p/MAT2B signaling transduction. Croatian Medical Journal, 60(5):439–448.

    Article  CAS  Google Scholar 

  87. Gao, X., Xiong, Y., Li, Q., Han, M., Shan, D., Yang, G., Zhang, S., Xin, D., Zhao, R., Wang, Z., Xue, H., & Li, G. (2020) Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage. Cell Death & Disease, 11(5):363. https://doi.org/10.1038/s41419-020-2530-0.

    Article  CAS  Google Scholar 

  88. Chen, Y., Luo, C., Zhao, M., Li, Q., Hu, R., Zhang, J.H., Liu, Z., & Feng, H. (2015) Administration of a PTEN inhibitor BPV (pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats. Neuroscience Letters, 588:131–136. https://doi.org/10.1016/j.neulet.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  89. Deng, Y., Chen, D., Gao, F., Lv, H., Zhang, G., Sun, X., Liu, L., Mo, D., Ma, N., Song, L., Huo, X., Yan, T., Zhang, J., & Miao, Z. (2019) Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. Journal of Biological Engineering, 13:71. https://doi.org/10.1186/s13036-019-0193-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bi, F., Huang, C., Tong, J., Qiu, G., Huang, B., Wu, Q., et al. (2013). Reactive astrocytes secrete lcn2 to promote neuron death. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 4069–4074. https://doi.org/10.1073/pnas.1218497110.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jiang, M., Wang, H., Jin, M., Yang, X., Ji, H., Jiang, Y., et al. (2018). Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cellular Physiology and Biochemistry, 47(2), 864–878. https://doi.org/10.1159/000490078.

    Article  CAS  PubMed  Google Scholar 

  92. Duan, S., Wang, F., Cao, J., & Wang, C. (2020). Exosomes derived from MicroRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization. Drug Design, Development and Therapy, 14, 3143–3158. https://doi.org/10.2147/DDDT.S255828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang, Y., Liao, Z., Lin, X., Wu, X., Chen, X., Bai, X., et al. (2019). Overexpression of miR-146a might regulate polarization transitions of BV-2 cells induced by high glucose and glucose fluctuations. Frontiers in Endocrinology (Lausanne), 10, 719. https://doi.org/10.3389/fendo.2019.00719.

    Article  Google Scholar 

  94. Song, T., Ma, X., Gu, K., Yang, Y., Yang, L., Ma, P., Wang, W., Zhao, J., Yan, R., Guan, J., Wang, C., Qi, Y., & Ya, J. (2016) Thalidomide represses inflammatory response and reduces radiculopathic pain by inhibiting IRAK-1 and NF-kappaB/p38/JNK signaling. Journal of Neuroimmunology, 290:1–8. https://doi.org/10.1016/j.jneuroim.2015.11.007.

    Article  CAS  PubMed  Google Scholar 

  95. Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z.G., & Chopp, M. (2013) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 31(12):2737–2746. https://doi.org/10.1002/stem.1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hertel, M., Tretter, Y., Alzheimer, C., & Werner, S. (2000). Connective tissue growth factor: a novel player in tissue reorganization after brain injury? European Journal of Neuroscience, 12(1), 376–380. https://doi.org/10.1046/j.1460-9568.2000.00930.x.

  97. Xin, H., Katakowski, M., Wang, F., Qian, J. Y., Liu, X. S., Ali, M. M., et al. (2017). MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke, 48(3), 747–753. https://doi.org/10.1161/STROKEAHA.116.015204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu, H., Han, C., Lu, D., & Wu, T. (2014) miR-17-92 cluster promotes cholangiocarcinoma growth: evidence for PTEN as downstream target and IL-6/Stat3 as upstream activator. American Journal of Pathology, 184(10):2828–2839. https://doi.org/10.1016/j.ajpath.2014.06.024.

    Article  CAS  Google Scholar 

  99. Zhang, Y., Ueno, Y., Liu, X.S., Buller, B., Wang, X., Chopp, M., & Zhang, Z.G. (2013) The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. Journal of Neuroscience, 33(16):6885–6894. https://doi.org/10.1523/JNEUROSCI.5180-12.2013.

    Article  CAS  PubMed  Google Scholar 

  100. Andreas, E., Hoelker, M., Neuhoff, C., Tholen, E., Schellander, K., Tesfaye, D., & Salilew-Wondim, D. (2016) MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell and Tissue Research, 366(1):219–230. https://doi.org/10.1007/s00441-016-2425-7.

    Article  CAS  PubMed  Google Scholar 

  101. Sung, P.S., Lin, P.Y., Liu, C.H., Su, H.C., & Tsai, K.J. (2020). Neuroinflammation and neurogenesis in Alzheimer’s disease and potential therapeutic approaches. International Journal of Molecular Sciences, 21(3). https://doi.org/10.3390/ijms21030701.

  102. Jahangard, Y., Monfared, H., Moradi, A., Zare, M., Mirnajafi-Zadeh, J., & Mowla, S. J. (2020). Therapeutic effects of transplanted exosomes containing miR-29b to a rat model of Alzheimer’s disease. Frontiers in Neuroscience, 14, 564. https://doi.org/10.3389/fnins.2020.00564.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu, Z., Wang, C., Wang, X., & Xu, S. (2015). Therapeutic effects of transplantation of As-MiR-937-expressing mesenchymal stem cells in murine model of Alzheimer’s disease. Cellular Physiology and Biochemistry, 37(1), 321–330. https://doi.org/10.1159/000430356.

    Article  CAS  PubMed  Google Scholar 

  104. Nakano, M., Kubota, K., Kobayashi, E., Chikenji, T. S., Saito, Y., Konari, N., & Fujimiya, M. (2020). Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus. Science Reports, 10(1), 10772. https://doi.org/10.1038/s41598-020-67460-1.

    Article  CAS  Google Scholar 

  105. Zochodne, D.W. (2012). The challenges and beauty of peripheral nerve regrowth. Journal of the Peripheral Nervous System, 17(1), 1–18. https://doi.org/10.1111/j.1529-8027.2012.00378.x.

  106. Martinez, A.M., Goulart, C.O., Ramalho, B.S., Oliveira, J.T., & Almeida, F.M. (2014) Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World Journal of Stem Cells, 6(2):179–194. https://doi.org/10.4252/wjsc.v6.i2.179.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Roballo, K., Da, S. J., Bressan, F. F., de Souza, A. F., Pereira, V. M., Porras, J., et al. (2019). Neurons-derived extracellular vesicles promote neural differentiation of ADSCs: a model to prevent peripheral nerve degeneration. Science Reports, 9(1), 11213. https://doi.org/10.1038/s41598-019-47229-x.

    Article  CAS  Google Scholar 

  108. Chen, W., Xiao, S., Wei, Z., Deng, C., Nie, K., & Wang, D. (2019). Schwann cell-like cells derived from human amniotic mesenchymal stem cells promote peripheral nerve regeneration through a microRNA-214/c-jun pathway. Stem Cells International, 2019, 2490761. https://doi.org/10.1155/2019/2490761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hu, F., Zhang, X., Liu, H., Xu, P., Doulathunnisa, Teng, G., & Xiao, Z. (2017). Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration. Biochemical and Biophysical Research Communications, 489(2), 171–178. https://doi.org/10.1016/j.bbrc.2017.05.119.

    Article  CAS  PubMed  Google Scholar 

  110. Wu, W., Zhang, S., Chen, Y., & Liu, H. (2017). Biological function and mechanism of bone marrow mesenchymal stem cells-packed poly (3,4-ethylenedioxythiophene) (PEDOT) scaffolds for peripheral nerve injury: the involvement of miR-21-notch signaling pathway. Current Neurovascular Research, 14(1), 19–25. https://doi.org/10.2174/1567202614666161123112832.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from the Natural Science Foundation of Guangdong Province (Grant No. 2020A1515011455 and Grant No. 2020A1515110027).

Author information

Authors and Affiliations

Authors

Contributions

Yifei Luo and Fuchun Fang contributed to the conception and logic of the review. Yifei Luo and Wei Qiu contributed to the writing and drafting of the manuscript. Fuchun Fang, Wei Qiu and Buling Wu contributed to the critical revision of the manuscript for important intellectual content. All the authors have given final approval of the version to be published and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Fuchun Fang.

Ethics declarations

Consent for Publication

Not applicable.

Conflict of Interest

The authors have declared no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The author name Yifei Luo was incorrectly written as Yifen Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Qiu, W., Wu, B. et al. An Overview of Mesenchymal Stem Cell-based Therapy Mediated by Noncoding RNAs in the Treatment of Neurodegenerative Diseases. Stem Cell Rev and Rep 18, 457–473 (2022). https://doi.org/10.1007/s12015-021-10206-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10206-x

Keywords

Navigation