Vasile, F., Dossi, E., & Rouach, N. (2017). Human astrocytes: structure and functions in the healthy brain. Brain Structure & Function, 222(5), 2017–2029.
CAS
Article
Google Scholar
González-Reyes, R. E., Nava-Mesa, M. O., Vargas-Sánchez, K., Ariza-Salamanca, D., & Mora-Muñoz, L. (2017). Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Frontiers in Molecular Neuroscience, 10(December), 1–20.
Google Scholar
Palmer, A. L., & Ousman, S. S. (2018). Astrocytes and aging. Frontiers in Aging Neuroscience, 10(October), 1–14.
Google Scholar
Wang, D. D., & Bordey, A. (2008). The astrocyte odyssey. Progress in Neurobiology, 86(4), 342–367.
CAS
PubMed
PubMed Central
Google Scholar
Jha, M. K., & Morrison, B. M. (2018). Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters. Experimental Neurology [Internet], 309(May):23–31. Available from: https://doi.org/10.1016/j.expneurol.2018.07.009.
Lee, S. W., Kim, W. J., Choi, Y. K., & Kim, K. W. (2004). Oxygen regulates brain angiogenesis and tight junction formation in blood–brain barrier. International Congress Series, 1262(C), 287–291.
CAS
Article
Google Scholar
Pfrieger, F. W. (2010). Role of glial cells in the formation and maintenance of synapses. Brain Research Reviews [Internet], 63(1–2):39–46. Available from: https://doi.org/10.1016/j.brainresrev.2009.11.002.
Min, R., & van der Knaap, M. S. (2018). Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathology, 28(3), 372–387.
PubMed
PubMed Central
Article
Google Scholar
Schousboe, A., Bak, L. K., & Waagepetersen, H. S. (2013). Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Frontiers in Endocrinology (Lausanne), 4(AUG), 1–11.
Google Scholar
Zhang, Y., Pak, C. H., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785–798.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kuijlaars, J., Oyelami, T., Diels, A., Rohrbacher, J., Versweyveld, S., Meneghello, G., et al. (2016). Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Science Reporter, 6(February 2016), 1–14.
Google Scholar
Meijer, M., Rehbach, K., Brunner, J. W., Classen, J. A., Lammertse, H. C. A., van Linge, L. A., et al. (2019). A single-cell model for synaptic transmission and plasticity in human iPSC-derived neurons. Cell Reports, 27(7), 2199-2211.e6.
CAS
PubMed
Article
Google Scholar
Taga, A., Dastgheyb, R., Habela, C., Joseph, J., Richard, J. P., Gross, S. K., et al. (2019). Role of human-induced pluripotent stem cell-derived spinal cord astrocytes in the functional maturation of motor neurons in a multielectrode array system. Stem Cells Translational Medicine, 8(12), 1272–1285.
CAS
PubMed
PubMed Central
Article
Google Scholar
Oberheim, N. A., Takano, T., Han, X., He, W., Lin, J. H. C., Wang, F., et al. (2009). Uniquely hominid features of adult human astrocytes. The Journal of Neuroscience, 29(10), 3276–3287.
CAS
PubMed
PubMed Central
Article
Google Scholar
Perriot, S., Mathias, A., Perriard, G., Canales, M., Jonkmans, N., Merienne, N., et al. (2018). Human induced pluripotent stem cell-derived astrocytes are differentially activated by multiple sclerosis-associated cytokines. Stem Cell Reports, 11(5), 1199–1210.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sloan, S. A., Darmanis, S., Huber, N., Khan, T. A., Birey, F., Caneda, C., et al. (2017). Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron, 95(4), 779-790.e6.
CAS
PubMed
PubMed Central
Article
Google Scholar
di Domenico, A., Carola, G., Calatayud, C., Pons-Espinal, M., Muñoz, J. P., Richaud-Patin, Y., et al. (2019). Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s disease. Stem Cell Reports, 12(2), 213–229.
PubMed
PubMed Central
Article
CAS
Google Scholar
Oksanen, M., Petersen, A. J., Naumenko, N., Puttonen, K., Lehtonen, Š, Gubert Olivé, M., et al. (2017). PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports, 9(6), 1885–1897.
CAS
PubMed
PubMed Central
Article
Google Scholar
Caiazzo, M., Giannelli, S., Valente, P., Lignani, G., Carissimo, A., Sessa, A., et al. (2015). Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports [Internet], 4(1):25–36. Available from: https://doi.org/10.1016/j.stemcr.2014.12.002.
Canals, I., Ginisty, A., Quist, E., Timmerman, R., Fritze, J., Miskinyte, G., et al. (2018). Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nature Methods, 15(9), 693–696.
CAS
PubMed
Article
Google Scholar
Li, X., Tao, Y., Bradley, R., Du, Z., Tao, Y., Kong, L., et al. (2018). Fast generation of functional subtype astrocytes from human pluripotent stem cells. Stem Cell Reports, 11(4), 998–1008.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tchieu, J., Calder, E. L., Guttikonda, S. R., Gutzwiller, E. M., Aromolaran, K. A., Steinbeck, J. A., et al. (2019). NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nature Biotechnology [Internet], 37(3):267–75. Available from: https://doi.org/10.1038/s41587-019-0035-0.
Laug, D., Glasgow, S. M., & Deneen, B. (2018). A glial blueprint for gliomagenesis. Nature Reviews Neuroscience [Internet], 19(7):393–403. Available from: https://doi.org/10.1038/s41583-018-0014-3.
Klum, S., Zaouter, C., Alekseenko, Z., Björklund, Å. K., Hagey, D. W., Ericson, J., et al. (2018). Sequentially acting SOX proteins orchestrate astrocyte- and oligodendrocyte‐specific gene expression. EMBO Reports, 19(11), 1–14.
Article
CAS
Google Scholar
Stolt, C. C., Lommes, P., Sock, E., Chaboissier, M. C., Schedl, A., & Wegner, M. (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes & Development, 17(13), 1677–1689.
CAS
Article
Google Scholar
Martini, S., Bernoth, K., Main, H., Ortega, G. D. C., Lendahl, U., Just, U., et al. (2013). A critical role for Sox9 in Notch-induced astrogliogenesis and stem cell maintenance. Stem Cells, 31(4), 741–751.
CAS
PubMed
Article
Google Scholar
García-León, J. A., Kumar, M., Boon, R., Chau, D., One, J., Wolfs, E., et al. (2018). SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Reports [Internet], 10, 655-672. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2213671117305623.
García-León, J. A., García-Díaz, B., Eggermont, K., Cáceres-Palomo, L., Neyrinck, K., Madeiro da Costa, R., et al. (2020). Generation of oligodendrocytes and establishment of an all-human myelinating platform from human pluripotent stem cells. Nature Protocols [Internet], 15(11):3716–44. Available from: https://doi.org/10.1038/s41596-020-0395-4.
Ordovás, L., Boon, R., Pistoni, M., Chen, Y., Wolfs, E., Guo, W., et al. (2015). Efficient recombinase-mediated cassette exchange in hPSCs to study the hepatocyte lineage reveals AAVS1 locus-mediated transgene inhibition. Stem Cell Reports, 5(5), 918–931.
PubMed
PubMed Central
Article
CAS
Google Scholar
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1).
Morgan, M., Anders, S., Lawrence, M., Aboyoun, P., Pagès, H., Gentleman, R. ShortRead (2009). A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics, 25(19), 2607–2608.
CAS
PubMed
PubMed Central
Article
Google Scholar
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21.
CAS
PubMed
Article
Google Scholar
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.
PubMed
PubMed Central
Article
CAS
Google Scholar
Liao, Y., Smyth, G. K., & Shi, W. (2014). FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930.
CAS
PubMed
Article
Google Scholar
Risso, D., Schwartz, K., Sherlock, G., & Dudoit, S. (2011). GC-content normalization for RNA-Seq data. BMC Bioinformatics, 12(1), 480+.
Robinson, M. D., & Smyth, G. K. (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23(21), 2881–2887.
CAS
PubMed
Article
Google Scholar
Hochberg, Y. (2016). Controlling the false discovery rate: a practical and powerful approach to multiple testing author (s): Yoav Benjamini and Yosef Hochberg Source: Journal of the Royal Statistical Society Series B (Methodological), 57, No. 1 (1995), Publi. 57(1), 289–300.
Zhang, Y., Sloan, S. A., Clarke, L. E., Caneda, C., Plaza, C. A., Blumenthal, P. D., et al. (2016). Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron [Internet], 89(1):37–53. Available from: https://doi.org/10.1016/j.neuron.2015.11.013.
Elia, I., Broekaert, D., Christen, S., Boon, R., Radaelli, E., Orth, M. F., et al. (2017). Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature Communications, 8, 15267.
van Gorsel, M., Elia, I., Fendt, S. M. (2019). 13 C tracer analysis and metabolomics in 3D cultured cancer cells. Methods in Molecular Biology, 1862:53-66.
Lorendeau, D., Rinaldi, G., Boon, R., Spincemaille, P., Metzger, K., Jäger, C., et al. (2017). Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metabolic Engineering [Internet], 43(November 2016):187–97. Available from: https://doi.org/10.1016/j.ymben.2016.11.005.
Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F., & Brunengraber, H. (1996). Correction of 13 C mass isotopomer distributions for natural stable isotope abundance. Journal of Mass Spectrometry, 31(3), 255–262.
CAS
PubMed
Article
Google Scholar
Mahmoud, S., Gharagozloo, M., Simard, C., & Gris, D. (2019). Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells, 8(2), 184.
CAS
PubMed Central
Article
Google Scholar
García-León, J. A., Cabrera-Socorro, A., Eggermont, K., Swijsen, A., Terryn, J., Fazal, R., et al. (2018). Generation of a human induced pluripotent stem cell–based model for tauopathies combining three microtubule-associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimer’s Dement, 14(10), 1261–1280.
Article
Google Scholar
Atakpa, P., Van Marrewijk, L. M., Apta-Smith, M., Chakraborty, S., & Taylor, C. W. (2019). GPN does not release lysosomal Ca 2 + but evokes Ca 2 + release from the ER by increasing the cytosolic pH independently of cathepsin C. Journal of Cell Science, 132(3):jcs223883.
Zhao, Z., Gordan, R., Wen, H., Fefelova, N., Zang, W. J., & Xie, L. H. (2013). Modulation of intracellular calcium waves and triggered activities by mitochondrial Ca flux in mouse cardiomyocytes. PLoS One, 8(11), 1–17.
Google Scholar
Guo, W., Naujock, M., Fumagalli, L., Vandoorne, T., Baatsen, P., Boon, R., et al. (2017). HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nature Communications [Internet], 8(1):1–14. Available from: https://doi.org/10.1038/s41467-017-00911-y.
Ho, S. M., Hartley, B. J., TCW, J., Beaumont, M., Stafford, K., Slesinger, P. A., et al. (2016). Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods [Internet], 101:113–24. Available from: https://doi.org/10.1016/j.ymeth.2015.11.019.
Placone, A. L., McGuiggan, P. M., Bergles, D. E., Guerrero-Cazares, H., Quiñones-Hinojosa, A., & Searson, P. C. (2015). Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials, 42, 134–143.
CAS
PubMed
Article
Google Scholar
Ridet, J. L., Malhotra, S. K., Privat, A., & Gage, F. H. (1997). Reactive astrocytes: Cellular and molecular cues to biological function. Trends in Neurosciences, 20(12), 570–577.
CAS
PubMed
Article
Google Scholar
Hyvärinen, T., Hagman, S., Ristola, M., Sukki, L., Veijula, K., Kreutzer, J., et al. (2019). Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Scientific Reports, 9(1), 1–15.
Google Scholar
Barbar, L., Jain, T., Zimmer, M., Kruglikov, I., Burstein, S., Rusielewicz, T., et al. (2020). CD49f is a novel marker to purify functional human iPSC-derived astrocytes. Neuron, 107(3), 436-453.
Agulhon, C., Petravicz, J., McMullen, A. B., Sweger, E. J., Minton, S. K., Taves, S. R., et al. (2008). What is the role of astrocyte calcium in neurophysiology? Neuron, 59(6), 932–946.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hamilton, N., Vayro, S., Kirchhoff, F., Verkhratsky, A., Robbins, J., Gorecki, D. C., et al. (2008). Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia, 56(7), 734–749.
PubMed
Article
Google Scholar
Sharma, G., & Vijayaraghavan, S. (2001). Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4148–4153.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lange, J., Haslett, L. J., Lloyd-Evans, E., Pocock, J. M., Sands, M. S., Williams, B. P., et al. (2018). Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis. Acta Neuropathologica Communications, 6(1), 74.
PubMed
PubMed Central
Article
CAS
Google Scholar
Peuchen, S., Clark, J. B., & Duchen, M. R. (1996). Mechanisms of intracellular calcium regulation in adult astrocytes. Neuroscience, 71(3), 871–883.
CAS
PubMed
Article
Google Scholar
Jackson, J. G., & Robinson, M. B. (2015). Reciprocal regulation of mitochondrial dynamics and calcium signaling in astrocyte processes. The Journal of Neuroscience, 35(45), 15199–15213.
CAS
PubMed
PubMed Central
Article
Google Scholar
Müller, M. S., Obel, L. F., Waagepetersen, H. S., Schousboe, A., & Bak, L. K. (2013). Complex actions of ionomycin in cultured cerebellar astrocytes affecting both calcium-induced calcium release and store-operated calcium entry. Neurochemical Research, 38(6), 1260–1265.
PubMed
Article
CAS
Google Scholar
VanderWall, K. B., Vij, R., Ohlemacher, S. K., Sridhar, A., Fligor, C. M., Feder, E. M., et al. (2019). Astrocytes regulate the development and maturation of retinal ganglion cells derived from human pluripotent stem cells. Stem Cell Reports [Internet], 12(2):201–12. Available from: https://doi.org/10.1016/j.stemcr.2018.12.010.
Hedegaard, A., Monzón-Sandoval, J., Newey, S. E., Whiteley, E. S., Webber, C., & Akerman, C. J. (2020). Pro-maturational Effects of Human iPSC-Derived Cortical Astrocytes upon iPSC-Derived Cortical Neurons. Stem Cell Reports, 15(1), 38–51.
CAS
PubMed
PubMed Central
Article
Google Scholar