Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell-Based Therapy for Diabetes Mellitus: Enhancement Strategies and Future Perspectives

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM), a chronic disorder of carbohydrate metabolism, is characterized by the unbridled hyperglycemia resulted from the impaired ability of the body to either produce or respond to insulin. As a cell-based regenerative therapy, mesenchymal stem cells (MSCs) hold immense potency for curing DM duo to their easy isolation, multi-differentiation potential, and immunomodulatory property. However, despite the promising efficacy in pre-clinical animal models, naive MSC administration fails to exhibit clinically satisfactory therapeutic outcomes, which varies greatly among individuals with DM. Recently, numbers of innovative strategies have been applied to improve MSC-based therapy. Preconditioning, genetic modification, combination therapy and exosome application are representative strategies to maximize the therapeutic benefits of MSCs. Therefore, in this review, we summarize recent advancements in mechanistic studies of MSCs-based treatment for DM, and mainly focus on the novel approaches aiming to improve the anti-diabetic potentials of naive MSCs. Additionally, the potential directions of MSCs-based therapy for DM are also proposed at a glance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The literatures in this study are available from the corresponding authors on reasonable request.

References

  1. Kamal, M. M., & Kassem, D. H. (2020). Therapeutic potential of Wharton’s jelly mesenchymal stem cells for diabetes: Achievements and challenges. Frontiers in Cell and Developmental Biology, 8, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Donzelli, E., & Scuteri, A. (2020). Mesenchymal stem cells: A trump card for the treatment of diabetes? Biomedicines, 8(5), 112.

    Article  PubMed Central  Google Scholar 

  3. Grohová, A., Dáňová, K., Špíšek, R., & Palová-Jelínková, L. (2019). Cell based therapy for type 1 diabetes: Should we take hyperglycemia into account? Frontiers in Immunology, 10, 79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Qi, Y., Ma, J., Li, S., & Liu, W. (2019). Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Research & Therapy, 10(1), 274.

    Article  Google Scholar 

  5. Keane, K. N., Calton, E. K., Carlessi, R., Hart, P. H., & Newsholme, P. (2017). The bioenergetics of inflammation: Insights into obesity and type 2 diabetes. European Journal of Clinical Nutrition, 71(7), 904–912.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, M., Zhang, W., Xu, S., Peng, L., Wang, Z., Liu, H., Fang, Q., Deng, T., Men, X., & Lou, J. (2017). TRB3 mediates advanced glycation end product-induced apoptosis of pancreatic β-cells through the protein kinase C β pathway. International Journal of Molecular Medicine, 40(1), 130–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samuel, V. T., & Shulman, G. I. (2016). The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. Journal of Clinical Investigation, 126(1), 12–22.

    Article  Google Scholar 

  8. Nowak, C., Sundström, J., Gustafsson, S., Giedraitis, V., Lind, L., Ingelsson, E., & Fall, T. (2016). Protein biomarkers for insulin resistance and type 2 diabetes risk in two large community cohorts. Diabetes, 65(1), 276–284.

    CAS  PubMed  Google Scholar 

  9. Zang, L., Hao, H., Liu, J., Li, Y., Han, W., & Mu, Y. (2017). Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetology & Metabolic Syndrome, 9, 36.

    Article  CAS  Google Scholar 

  10. Sneddon, J. B., Tang, Q., Stock, P., Bluestone, J. A., Roy, S., Desai, T., & Hebrok, M. (2018). Stem cell therapies for treating diabetes: Progress and remaining challenges. Cell Stem Cell, 22(6), 810–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93(1), 137–188.

    Article  CAS  PubMed  Google Scholar 

  12. Fradkin, J. E., & Rodgers, G. P. (2017). Glycemic therapy for type 2 diabetes: Choices expand, data lag behind. Annals of Internal Medicine, 166(4), 309–310.

    Article  PubMed  Google Scholar 

  13. Pathak, V., Pathak, N. M., O'Neill, C. L., Guduric-Fuchs, J., & Medina, R. J. (2019). Therapies for type 1 diabetes: Current scenario and future perspectives. Clinical Medicine Insights: Endocrinology and Diabetes, 12, 1179551419844521.

    PubMed  PubMed Central  Google Scholar 

  14. Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P., & Mirza, W. (2017). Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sheykhhasan, M. (2019). Towards standardized stem cell therapy in type 2 diabetes mellitus: A systematic review. Current Stem Cell Research & Therapy, 14(1), 75–76.

    Article  CAS  Google Scholar 

  16. Latres, E., Finan, D. A., Greenstein, J. L., Kowalski, A., & Kieffer, T. J. (2019). Navigating two roads to glucose normalization in diabetes: Automated insulin delivery devices and cell therapy. Cell Metabolism, 29(3), 545–563.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, S. A., Delgado, M., Mendez, V. E., & Joddar, B. (2019). Applications of stem cells and bioprinting for potential treatment of diabetes. World Journal of Stem Cells, 11(1), 13–32.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Y., Chen, W., Feng, B., & Cao, H. (2020). The clinical efficacy and safety of stem cell therapy for diabetes mellitus: A systematic review and meta-analysis. Aging and Disease, 11(1), 141–153.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kondo, Y., Toyoda, T., Inagaki, N., & Osafune, K. (2018). iPSC technology-based regenerative therapy for diabetes. Journal of Diabetes Investigation, 9(2), 234–243.

    Article  PubMed  Google Scholar 

  20. Päth, G., Perakakis, N., Mantzoros, C. S., & Seufert, J. (2019). Stem cells in the treatment of diabetes mellitus - focus on mesenchymal stem cells. Metabolism, 90, 1–15.

    Article  PubMed  CAS  Google Scholar 

  21. Velazco-Cruz, L., Song, J., Maxwell, K. G., Goedegebuure, M. M., Augsornworawat, P., Hogrebe, N. J., & Millman, J. R. (2019). Acquisition of Dynamic Function in human stem cell-derived β cells. Stem Cell Reports, 12(2), 351–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Torren, C. R., Zaldumbide, A., Duinkerken, G., Brand-Schaaf, S. H., Peakman, M., Stangé, G., Martinson, L., Kroon, E., Brandon, E. P., Pipeleers, D., & Roep, B. O. (2017). Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia, 60(1), 126–133.

    Article  PubMed  CAS  Google Scholar 

  23. Hrvatin, S., O'Donnell, C. W., Deng, F., Millman, J. R., Pagliuca, F. W., DiIorio, P., Rezania, A., Gifford, D. K., & Melton, D. A. (2014). Differentiated human stem cells resemble fetal, not adult, β cells. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 3038–3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sordi, V., Pellegrini, S., Krampera, M., Marchetti, P., Pessina, A., Ciardelli, G., Fadini, G., Pintus, C., Pantè, G., & Piemonti, L. (2017). Stem cells to restore insulin production and cure diabetes. Nutrition, Metabolism & Cardiovascular Diseases, 27(7), 583–600.

    Article  CAS  Google Scholar 

  25. Couri, C. E., Oliveira, M. C., Stracieri, A. B., Moraes, D. A., Pieroni, F., Barros, G. M., Madeira, M. I., Malmegrim, K. C., Foss-Freitas, M. C., Simões, B. P., Martinez, E. Z., Foss, M. C., Burt, R. K., & Voltarelli, J. C. (2009). C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA, 301(15), 1573–1579.

    Article  CAS  PubMed  Google Scholar 

  26. D'Addio, F., Valderrama Vasquez, A., Ben Nasr, M., Franek, E., Zhu, D., Li, L., Ning, G., Snarski, E., & Fiorina, P. (2014). Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: A multicenter analysis. Diabetes, 63(9), 3041–3046.

    Article  PubMed  Google Scholar 

  27. Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine, 4, 22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Khaki, M., Salmanian, A. H., Abtahi, H., Ganji, A., & Mosayebi, G. (2018). Mesenchymal stem cells differentiate to endothelial cells using recombinant vascular endothelial growth factor -a. Reports of Biochemistry and Molecular Biology, 6(2), 144–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2), e00191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Filho, D. M., de Carvalho Ribeiro, P., Oliveira, L. F., Dos Santos, A., Parreira, R. C., Pinto, M. C. X., & Resende, R. R. (2019). Enhancing the therapeutic potential of mesenchymal stem cells with the CRISPR-Cas system. Stem Cell Reviews and Reports, 15(4), 463–473.

    Article  PubMed  Google Scholar 

  31. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., Pattany, P. M., Zambrano, J. P., Hu, Q., McNiece, I., Heldman, A. W., & Hare, J. M. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14022–14027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo, X., Bai, Y., Zhang, L., Zhang, B., Zagidullin, N., Carvalho, K., Du, Z., & Cai, B. (2018). Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: New regulators and its implications. Stem Cell Research & Therapy, 9(1), 44.

    Article  CAS  Google Scholar 

  33. Antonitsis, P., Ioannidou-Papagiannaki, E., Kaidoglou, A., Charokopos, N., Kalogeridis, A., Kouzi-Koliakou, K., Kyriakopoulou, I., Klonizakis, I., & Papakonstantinou, C. (2008). Cardiomyogenic potential of human adult bone marrow mesenchymal stem cells in vitro. Thoracic and Cardiovascular Surgeon, 56(2), 77–82.

    Article  CAS  PubMed  Google Scholar 

  34. Xu, W., Zhang, X., Qian, H., Zhu, W., Sun, X., Hu, J., Zhou, H., & Chen, Y. (2004). Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Experimental biology and medicine (Maywood, N.J.), 229(7), 623–631.

    Article  CAS  Google Scholar 

  35. Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., Keating, S. C., Parker, T. G., Backx, P. H., & Keating, A. (2008). Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells, 26(11), 2884–2892.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, D. D., Ullah, M., Concepcion, W., Dahl, J. J., & Thakor, A. S. (2020). The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Translational Medicine, 9(8), 850–866.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pires, A. O., Mendes-Pinheiro, B., Teixeira, F. G., Anjo, S. I., Ribeiro-Samy, S., Gomes, E. D., Serra, S. C., Silva, N. A., Manadas, B., Sousa, N., & Salgado, A. J. (2016). Unveiling the differences of Secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: A proteomic analysis. Stem Cells and Development, 25(14), 1073–1083.

    Article  CAS  PubMed  Google Scholar 

  38. Shi, Y., Wang, Y., Li, Q., Liu, K., Hou, J., Shao, C., & Wang, Y. (2018). Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nature Reviews Nephrology, 14(8), 493–507.

    Article  CAS  PubMed  Google Scholar 

  39. Wu, Y., Hoogduijn, M. J., Baan, C. C., Korevaar, S. S., de Kuiper, R., Yan, L., Wang, L., & van Besouw, N. M. (2017). Adipose tissue-derived mesenchymal stem cells have a heterogenic cytokine secretion profile. Stem Cells International, 2017, 4960831.

    PubMed  PubMed Central  Google Scholar 

  40. Xie, Z., Hao, H., Tong, C., Cheng, Y., Liu, J., Pang, Y., Si, Y., Guo, Y., Zang, L., Mu, Y., & Han, W. (2016). Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells, 34(3), 627–639.

    Article  CAS  PubMed  Google Scholar 

  41. Xie, M., Hao, H. J., Cheng, Y., Xie, Z. Y., Yin, Y. Q., Zhang, Q., Gao, J. Q., Liu, H. Y., Mu, Y. M., & Han, W. D. (2017). Adipose-derived mesenchymal stem cells ameliorate hyperglycemia through regulating hepatic glucose metabolism in type 2 diabetic rats. Biochemical and Biophysical Research Communications, 483(1), 435–441.

    Article  CAS  PubMed  Google Scholar 

  42. Yin, Y., Hao, H., Cheng, Y., Zang, L., Liu, J., Gao, J., Xue, J., Xie, Z., Zhang, Q., Han, W., & Mu, Y. (2018). Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death & Disease, 9(7), 760.

    Article  CAS  Google Scholar 

  43. Lau, T. T., & Wang, D. A. (2011). Stromal cell-derived factor-1 (SDF-1): Homing factor for engineered regenerative medicine. Expert Opinion on Biological Therapy, 11(2), 189–197.

    Article  CAS  PubMed  Google Scholar 

  44. Yin, Y., Hao, H., Cheng, Y., Gao, J., Liu, J., Xie, Z., Zhang, Q., Zang, L., Han, W., & Mu, Y. (2018). The homing of human umbilical cord-derived mesenchymal stem cells and the subsequent modulation of macrophage polarization in type 2 diabetic mice. International Immunopharmacology, 60, 235–245.

    Article  CAS  PubMed  Google Scholar 

  45. Sood, V., Mittal, B. R., Bhansali, A., Singh, B., Khandelwal, N., Marwaha, N., & Jain, A. (2015). Biodistribution of 18F-FDG-labeled autologous bone marrow-derived stem cells in patients with type 2 diabetes mellitus: Exploring targeted and intravenous routes of delivery. Clinical Nuclear Medicine, 40(9), 697–700.

    Article  PubMed  Google Scholar 

  46. Ghoneim, M. A., Refaie, A. F., Elbassiouny, B. L., Gabr, M. M., & Zakaria, M. M. (2020). From mesenchymal stromal/stem cells to insulin-producing cells: Progress and challenges. Stem Cell Reviews and Reports, 16(6), 1156–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghoneim, M. A., Refaie, A. F., Elbassiouny, B. L., Gabr, M. M., & Zakaria, M. M. (2020). From mesenchymal stromal/stem cells to insulin-producing cells: Progress and challenges. Stem Cell Research & Therapy, 16(6), 1156–1172.

    CAS  Google Scholar 

  48. El-Demerdash, R. F., Hammad, L. N., Kamal, M. M., & El Mesallamy, H. O. (2015). A comparison of Wharton's jelly and cord blood as a source of mesenchymal stem cells for diabetes cell therapy. Regenerative Medicine, 10(7), 841–855.

    Article  CAS  PubMed  Google Scholar 

  49. Wu, L. F., Wang, N. N., Liu, Y. S., & Wei, X. (2009). Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Engineering Part A, 15(10), 2865–2873.

    Article  CAS  PubMed  Google Scholar 

  50. Tsai, P. J., Wang, H. S., Lin, G. J., Chou, S. C., Chu, T. H., Chuan, W. T., Lu, Y. J., Weng, Z. C., Su, C. H., Hsieh, P. S., Sytwu, H. K., Lin, C. H., Chen, T. H., & Shyu, J. F. (2015). Undifferentiated Wharton's jelly mesenchymal stem cell transplantation induces insulin-producing cell differentiation and suppression of T-cell-mediated autoimmunity in nonobese diabetic mice. Cell Transplantation, 24(8), 1555–1570.

    Article  PubMed  Google Scholar 

  51. Wang, M., Yuan, Q., & Xie, L. (2018). Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells International, 2018, 3057624.

    PubMed  PubMed Central  Google Scholar 

  52. Hu, J., Fu, Z., Chen, Y., Tang, N., Wang, L., Wang, F., Sun, R., & Yan, S. (2015). Effects of autologous adipose-derived stem cell infusion on type 2 diabetic rats. Endocrine Journal, 62(4), 339–352.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, K., Hao, H., Liu, J., Tong, C., Cheng, Y., Xie, Z., Zang, L., Mu, Y., & Han, W. (2015). Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death & Disease, 6(9), e1885.

    Article  CAS  Google Scholar 

  54. Xu, Y., Tan, M., Ma, X., Li, H., He, X., Chen, Z., Tan, Y., Nie, W., Rong, P., & Wang, W. (2020). Human mesenchymal stem cells-derived conditioned medium inhibits hypoxia-induced death of neonatal porcine islets by inducing autophagy. Xenotransplantation, 27(1), e12556.

    Article  PubMed  Google Scholar 

  55. Hung, S. C., Pochampally, R. R., Chen, S. C., Hsu, S. C., & Prockop, D. J. (2007). Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells, 25(9), 2363–2370.

    Article  CAS  PubMed  Google Scholar 

  56. Mundra, V., Wu, H., & Mahato, R. I. (2013). Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation. PLoS One, 8(10), e77591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu, J., Wang, F., Sun, R., Wang, Z., Yu, X., Wang, L., Gao, H., Zhao, W., Yan, S., & Wang, Y. (2014). Effect of combined therapy of human Wharton's jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. Endocrine, 45(2), 279–287.

    Article  CAS  PubMed  Google Scholar 

  58. Som, C., & Venkataramana, N. K. (2018). Evaluation of efficacy and regenerative potential of Wharton’s jelly and bone marrow derived mesenchymal stem cells in diabetic rats. Journal of Pre-Clinical and Clinical Research., 12(1), 30–35.

    Article  CAS  Google Scholar 

  59. Saeedi, P., Halabian, R., & Imani Fooladi, A. A. (2019). A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investigation, 6, 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  61. Kim, D. W., Staples, M., Shinozuka, K., Pantcheva, P., Kang, S. D., & Borlongan, C. V. (2013). Wharton's jelly-derived mesenchymal stem cells: Phenotypic characterization and optimizing their therapeutic potential for clinical applications. International Journal of Molecular Sciences, 14(6), 11692–11712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pirola, L., & Ferraz, J. C. (2017). Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World Journal of Biological Chemistry, 8(2), 120–128.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sun, Y., Shi, H., Yin, S., Ji, C., Zhang, X., Zhang, B., Wu, P., Shi, Y., Mao, F., Yan, Y., Xu, W., & Qian, H. (2018). Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano, 12(8), 7613–7628.

    Article  CAS  PubMed  Google Scholar 

  64. Si, Y., Zhao, Y., Hao, H., Liu, J., Guo, Y., Mu, Y., Shen, J., Cheng, Y., Fu, X., & Han, W. (2012). Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: Identification of a novel role in improving insulin sensitivity. Diabetes, 61(6), 1616–1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Serena, C., Keiran, N., Ceperuelo-Mallafre, V., Ejarque, M., Fradera, R., Roche, K., Nuñez-Roa, C., Vendrell, J., & Fernández-Veledo, S. (2016). Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells, 34(10), 2559–2573.

    Article  CAS  PubMed  Google Scholar 

  66. Oñate, B., Vilahur, G., Camino-López, S., Díez-Caballero, A., Ballesta-López, C., Ybarra, J., Moscatiello, F., Herrero, J., & Badimon, L. (2013). Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics, 14, 625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chang, T. C., Hsu, M. F., & Wu, K. K. (2015). High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS One, 10(5), e0126537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sen, S., Domingues, C. C., Rouphael, C., Chou, C., Kim, C., & Yadava, N. (2015). Genetic modification of human mesenchymal stem cells helps to reduce adiposity and improve glucose tolerance in an obese diabetic mouse model. Stem Cell Research & Therapy, 6, 242.

    Article  CAS  Google Scholar 

  69. Xu, J., Huang, Z., Lin, L., Fu, M., Song, Y., Shen, Y., Ren, D., Gao, Y., Su, Y., Zou, Y., Chen, Y., Zhang, D., Hu, W., Qian, J., & Ge, J. (2015). miRNA-130b is required for the ERK/FOXM1 pathway activation-mediated protective effects of isosorbide dinitrate against mesenchymal stem cell senescence induced by high glucose. International Journal of Molecular Medicine, 35(1), 59–71.

    Article  PubMed  CAS  Google Scholar 

  70. Seo, Y., Shin, T. H., & Kim, H. S. (2019). Current strategies to enhance adipose stem cell function: An update. International Journal of Molecular Sciences, 20(15), 3827.

    Article  PubMed Central  Google Scholar 

  71. Atashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells and Development, 24(10), 1150–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chaudhari, P., Ye, Z., & Jang, Y. Y. (2014). Roles of reactive oxygen species in the fate of stem cells. Antioxidants & Redox Signaling, 20(12), 1881–1890.

    Article  CAS  Google Scholar 

  73. Yang, S. R., Park, J. R., & Kang, K. S. (2015). Reactive oxygen species in mesenchymal stem cell aging: Implication to lung diseases. Oxidative Medicine and Cellular Longevity, 2015, 486263.

    PubMed  PubMed Central  Google Scholar 

  74. Ishizuka, T., Hinata, T., & Watanabe, Y. (2011). Superoxide induced by a high-glucose concentration attenuates production of angiogenic growth factors in hypoxic mouse mesenchymal stem cells. Journal of Endocrinology, 208(2), 147–159.

    Article  CAS  Google Scholar 

  75. Zhang, H., Zhai, Z., Wang, Y., Zhang, J., Wu, H., Wang, Y., Li, C., Li, D., Lu, L., Wang, X., Chang, J., Hou, Q., Ju, Z., Zhou, D., & Meng, A. (2013). Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radical Biology and Medicine, 54, 40–50.

    Article  CAS  PubMed  Google Scholar 

  76. Chen, T. S., Kuo, C. H., Day, C. H., Pan, L. F., Chen, R. J., Chen, B. C., Padma, V. V., Lin, Y. M., & Huang, C. Y. (2019). Resveratrol increases stem cell function in the treatment of damaged pancreas. Journal of Cellular Physiology, 234(11), 20443–20452.

    Article  CAS  PubMed  Google Scholar 

  77. ShamsEldeen, A. M., Ashour, H., Shoukry, H. S., Fadel, M., Kamar, S. S., Aabdelbaset, M., Rashed, L. A., & Ammar, H. I. (2019). Combined treatment with systemic resveratrol and resveratrol preconditioned mesenchymal stem cells, maximizes antifibrotic action in diabetic cardiomyopathy. Journal of Cellular Physiology, 234(7), 10942–10963.

    Article  CAS  PubMed  Google Scholar 

  78. Goossens, G. H., & Blaak, E. E. (2012). Adipose tissue oxygen tension: Implications for chronic metabolic and inflammatory diseases. Current Opinion in Clinical Nutrition & Metabolic Care, 15(6), 539–546.

    Article  CAS  Google Scholar 

  79. Tsai, C. C., Yew, T. L., Yang, D. C., Huang, W. H., & Hung, S. C. (2012). Benefits of hypoxic culture on bone marrow multipotent stromal cells. American Journal of Blood Research, 2(3), 148–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, C., & Li, L. (2018). Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. Journal of Cellular and Molecular Medicine, 22(3), 1428–1442.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ito, A., Aoyama, T., Yoshizawa, M., Nagai, M., Tajino, J., Yamaguchi, S., Iijima, H., Zhang, X., & Kuroki, H. (2015). The effects of short-term hypoxia on human mesenchymal stem cell proliferation, viability and p16(INK4A) mRNA expression: Investigation using a simple hypoxic culture system with a deoxidizing agent. Journal of Stem cells and Regenerative Medicine, 11(1), 25–31.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chacko, S. M., Ahmed, S., Selvendiran, K., Kuppusamy, M. L., Khan, M., & Kuppusamy, P. (2010). Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. American Journal of Physiology-Cell Physiology, 299(6), C1562–C1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Estrada, J. C., Albo, C., Benguría, A., Dopazo, A., López-Romero, P., Carrera-Quintanar, L., Roche, E., Clemente, E. P., Enríquez, J. A., Bernad, A., & Samper, E. (2012). Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death & Differentiation, 19(5), 743–755.

    Article  CAS  Google Scholar 

  84. Choi, J. R., Pingguan-Murphy, B., Wan Abas, W. A., Noor Azmi, M. A., Omar, S. Z., Chua, K. H., & Wan Safwani, W. K. (2014). Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochemical and Biophysical Research Communications, 448(2), 218–224.

    Article  CAS  PubMed  Google Scholar 

  85. Liu, L., Gao, J., Yuan, Y., Chang, Q., Liao, Y., & Lu, F. (2013). Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biology International, 37(6), 551–560.

    Article  CAS  PubMed  Google Scholar 

  86. Schive, S. W., Mirlashari, M. R., Hasvold, G., Wang, M., Josefsen, D., Gullestad, H. P., Korsgren, O., Foss, A., Kvalheim, G., & Scholz, H. (2017). Human adipose-derived mesenchymal stem cells respond to short-term hypoxia by secreting factors beneficial for human islets in vitro and potentiate antidiabetic effect in vivo. Cell Medicine, 9(3), 103–116.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xiang, C., & Xie, Q. P. (2018). Protection of mouse pancreatic islet function by co-culture with hypoxia pre-treated mesenchymal stromal cells. Molecular Medicine Reports, 18(3), 2589–2598.

    CAS  PubMed  Google Scholar 

  88. Najafi, R., & Sharifi, A. M. (2013). Deferoxamine preconditioning potentiates mesenchymal stem cell homing in vitro and in streptozotocin-diabetic rats. Expert Opinion on Biological Therapy, 13(7), 959–972.

    Article  CAS  PubMed  Google Scholar 

  89. Oses, C., Olivares, B., Ezquer, M., Acosta, C., Bosch, P., Donoso, M., Léniz, P., & Ezquer, F. (2017). Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One, 12(5), e0178011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wei, W., Huang, Y., Li, D., Gou, H. F., & Wang, W. (2018). Improved therapeutic potential of MSCs by genetic modification. Gene Therapy, 25(8), 538–547.

    Article  CAS  PubMed  Google Scholar 

  91. Hodgkinson, C. P., Gomez, J. A., Mirotsou, M., & Dzau, V. J. (2010). Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Human Gene Therapy, 21(11), 1513–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Banerjee, M., & Vats, P. (2014). Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus. Indian Journal of Human Genetics, 20(1), 10–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Baldari, S., Di Rocco, G., Trivisonno, A., Samengo, D., Pani, G., & Toietta, G. (2016). Promotion of survival and engraftment of transplanted adipose tissue-derived stromal and vascular cells by overexpression of manganese superoxide dismutase. International Journal of Molecular Sciences, 17(7), 1082.

    Article  PubMed Central  CAS  Google Scholar 

  94. Domingues, C. C., Kundu, N., Kropotova, Y., Ahmadi, N., & Sen, S. (2019). Antioxidant-upregulated mesenchymal stem cells reduce inflammation and improve fatty liver disease in diet-induced obesity. Stem Cell Research & Therapy, 10(1), 280.

    Article  CAS  Google Scholar 

  95. Röder, P. V., Wu, B., Liu, Y., & Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine, 48(3), e219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Gagliardino, J. J. (2005). Physiological endocrine control of energy homeostasis and postprandial blood glucose levels. European Review for Medical and Pharmacological Sciences, 9(2), 75–92.

    PubMed  Google Scholar 

  97. Hui, H., Farilla, L., Merkel, P., & Perfetti, R. (2002). The short half-life of glucagon-like peptide-1 in plasma does not reflect its long-lasting beneficial effects. European Journal of Endocrinology, 146(6), 863–869.

    Article  CAS  PubMed  Google Scholar 

  98. Gao, L. R., Zhang, N. K., Zhang, Y., Chen, Y., Wang, L., Zhu, Y., & Tang, H. H. (2018). Overexpression of apelin in Wharton' jelly mesenchymal stem cell reverses insulin resistance and promotes pancreatic β cell proliferation in type 2 diabetic rats. Stem Cell Research & Therapy, 9(1), 339.

    Article  CAS  Google Scholar 

  99. Trahair, L. G., Horowitz, M., Stevens, J. E., Feinle-Bisset, C., Standfield, S., Piscitelli, D., Rayner, C. K., Deane, A. M., & Jones, K. L. (2015). Effects of exogenous glucagon-like peptide-1 on blood pressure, heart rate, gastric emptying, mesenteric blood flow and glycaemic responses to oral glucose in older individuals with normal glucose tolerance or type 2 diabetes. Diabetologia, 58(8), 1769–1778.

    Article  CAS  PubMed  Google Scholar 

  100. Grunnet, L. G., & Mandrup-Poulsen, T. (2011). Cytokines and type 1 diabetes: A numbers game. Diabetes, 60(3), 697–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nauck, M. A. (2004). Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes. Hormone and Metabolic Research, 36(11–12), 852–858.

    Article  CAS  PubMed  Google Scholar 

  102. Chang, Y., Dong, M., Wang, Y., Yu, H., Sun, C., Jiang, X., Chen, W., Wang, X., Xu, N., Liu, W., & Jin, N. (2019). GLP-1 gene-modified human umbilical cord mesenchymal stem cell line improves blood glucose level in type 2 diabetic mice. Stem Cells International, 2019, 4961865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yi, P., Park, J. S., & Melton, D. A. (2013). Betatrophin: A hormone that controls pancreatic β cell proliferation. Cell, 153(4), 747–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sun, L. L., Liu, T. J., Li, L., Tang, W., Zou, J. J., Chen, X. F., Zheng, J. Y., Jiang, B. G., & Shi, Y. Q. (2017). Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces β-cell proliferation in diabetic mice. International Journal of Molecular Medicine, 39(4), 936–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yue, P., Jin, H., Aillaud, M., Deng, A. C., Azuma, J., Asagami, T., Kundu, R. K., Reaven, G. M., Quertermous, T., & Tsao, P. S. (2010). Apelin is necessary for the maintenance of insulin sensitivity. American Journal of Physiology-Endocrinology and Metabolism, 298(1), E59–E67.

    Article  CAS  PubMed  Google Scholar 

  106. Antushevich, H., & Wójcik, M. (2018). Review: Apelin in disease. Clinica Chimica Acta, 483, 241–248.

    Article  CAS  Google Scholar 

  107. Fournel, A., Drougard, A., Duparc, T., Marlin, A., Brierley, S. M., Castro, J., Le-Gonidec, S., Masri, B., Colom, A., Lucas, A., Rousset, P., Cenac, N., Vergnolle, N., Valet, P., Cani, P. D., & Knauf, C. (2017). Apelin targets gut contraction to control glucose metabolism via the brain. Gut, 66(2), 258–269.

    Article  CAS  PubMed  Google Scholar 

  108. Bertrand, C., Valet, P., & Castan-Laurell, I. (2015). Apelin and energy metabolism. Frontiers in Physiology, 6, 115.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chen, H., Zheng, C., Zhang, X., Li, J., Li, J., Zheng, L., & Huang, K. (2011). Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides, 32(8), 1634–1639.

    Article  CAS  PubMed  Google Scholar 

  110. Dray, C., Knauf, C., Daviaud, D., Waget, A., Boucher, J., Buléon, M., Cani, P. D., Attané, C., Guigné, C., Carpéné, C., Burcelin, R., Castan-Laurell, I., & Valet, P. (2008). Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metabolism, 8(5), 437–445.

    Article  CAS  PubMed  Google Scholar 

  111. Thowfeequ, S., Ralphs, K. L., Yu, W. Y., Slack, J. M., & Tosh, D. (2007). Betacellulin inhibits amylase and glucagon production and promotes beta cell differentiation in mouse embryonic pancreas. Diabetologia, 50(8), 1688–1697.

    Article  CAS  PubMed  Google Scholar 

  112. Nakano, Y., Furuta, H., Doi, A., Matsuno, S., Nakagawa, T., Shimomura, H., Sakagashira, S., Horikawa, Y., Nishi, M., Sasaki, H., Sanke, T., & Nanjo, K. (2005). A functional variant in the human betacellulin gene promoter is associated with type 2 diabetes. Diabetes, 54(12), 3560–3566.

    Article  CAS  PubMed  Google Scholar 

  113. Silver, K., Tolea, M., Wang, J., Pollin, T. I., Yao, F., & Mitchell, B. D. (2005). The exon 1 Cys7Gly polymorphism within the betacellulin gene is associated with type 2 diabetes in African Americans. Diabetes, 54(4), 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  114. Oh, Y. S., Shin, S., Lee, Y. J., Kim, E. H., & Jun, H. S. (2011). Betacellulin-induced beta cell proliferation and regeneration is mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One, 6(8), e23894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Oh, Y. S., Shin, S., Li, H. Y., Park, E. Y., Lee, S. M., Choi, C. S., Lim, Y., Jung, H. S., & Jun, H. S. (2015). Betacellulin ameliorates hyperglycemia in obese diabetic db/db mice. Journal of Molecular Medicine, 93(11), 1235–1245.

    Article  CAS  PubMed  Google Scholar 

  116. Shin, S., Li, N., Kobayashi, N., Yoon, J. W., & Jun, H. S. (2008). Remission of diabetes by β-cell regeneration in diabetic mice treated with a recombinant adenovirus expressing Betacellulin. Molecular Therapy, 16(5), 854–861.

    Article  CAS  PubMed  Google Scholar 

  117. Paz, A. H., Salton, G. D., Ayala-Lugo, A., Gomes, C., Terraciano, P., Scalco, R., Laurino, C. C., Passos, E. P., Schneider, M. R., Meurer, L., & Cirne-Lima, E. (2011). Betacellulin overexpression in mesenchymal stem cells induces insulin secretion in vitro and ameliorates streptozotocin-induced hyperglycemia in rats. Stem Cells and Development, 20(2), 223–232.

    Article  CAS  PubMed  Google Scholar 

  118. Sauter, N. S., Schulthess, F. T., Galasso, R., Castellani, L. W., & Maedler, K. (2008). The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology, 149(5), 2208–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Volarevic, V., Al-Qahtani, A., Arsenijevic, N., Pajovic, S., & Lukic, M. L. (2010). Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity, 43(4), 255–263.

    Article  CAS  PubMed  Google Scholar 

  120. Stosić-Grujicić, S., Lukić, M., & Ostajić, N. (1994). [interleukin 1 receptor antagonists prevent the induction of experimental insulin-dependent autoimmune diabetes]. Srpski Arhiv Za Celokupno Lekarstvo, 122 Suppl 1, 11-12.

  121. Larsen, C. M., Faulenbach, M., Vaag, A., Vølund, A., Ehses, J. A., Seifert, B., Mandrup-Poulsen, T., & Donath, M. Y. (2007). Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine, 356(15), 1517–1526.

    Article  CAS  Google Scholar 

  122. An, T., Chen, Y., Tu, Y., & Lin, P. (2020). Mesenchymal stromal cell-derived extracellular vesicles in the treatment of diabetic foot Ulcers: Application and Challenges. Stem Cell Reviews and Reports. doi: https://doi.org/10.1007/s12015-020-10014-9.

  123. Jia, Y., Cao, N., Zhai, J., Zeng, Q., Zheng, P., Su, R., Liao, T., Liu, J., Pei, H., Fan, Z., Zhou, J., Xi, J., He, L., Chen, L., Nan, X., Yue, W., & Pei, X. (2020). HGF mediates clinical-grade human umbilical cord-derived mesenchymal stem cells improved functional recovery in a senescence-accelerated mouse model of Alzheimer's disease. Advanced Science, 7(17), 1903809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Suzuki, J., Shimamura, M., Suda, H., Wakayama, K., Kumagai, H., Ikeda, Y., Akazawa, H., Isobe, M., Komuro, I., & Morishita, R. (2016). Current therapies and investigational drugs for peripheral arterial disease. Hypertension Research, 39(4), 183–191.

    Article  CAS  PubMed  Google Scholar 

  125. Jing, Y., Sun, Q., Xiong, X., Meng, R., Tang, S., Cao, S., Bi, Y., & Zhu, D. (2019). Hepatocyte growth factor alleviates hepatic insulin resistance and lipid accumulation in high-fat diet-fed mice. Journal of Diabetes Investigation, 10(2), 251–260.

    Article  CAS  PubMed  Google Scholar 

  126. Araújo, T. G., Oliveira, A. G., Carvalho, B. M., Guadagnini, D., Protzek, A. O., Carvalheira, J. B., Boschero, A. C., & Saad, M. J. (2012). Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms. Endocrinology, 153(12), 5760–5769.

    Article  PubMed  CAS  Google Scholar 

  127. Wu, H., Lu, W., & Mahato, R. I. (2011). Mesenchymal stem cells as a gene delivery vehicle for successful islet transplantation. Pharmaceutical Research, 28(9), 2098–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, H. S., Lee, J. G., Yeom, H. J., Chung, Y. S., Kang, B., Hurh, S., Cho, B., Park, H., Hwang, J. I., Park, J. B., Ahn, C., Kim, S. J., & Yang, J. (2016). The introduction of human Heme Oxygenase-1 and soluble tumor necrosis factor-α receptor type I with human IgG1 fc in porcine islets prolongs islet xenograft survival in humanized mice. American Journal of Transplantation, 16(1), 44–57.

    Article  CAS  PubMed  Google Scholar 

  129. Öllinger, R., & Pratschke, J. (2010). Role of heme oxygenase-1 in transplantation. Transplant International, 23(11), 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  130. Machen, J., Bertera, S., Chang, Y., Bottino, R., Balamurugan, A. N., Robbins, P. D., Trucco, M., & Giannoukakis, N. (2004). Prolongation of islet allograft survival following ex vivo transduction with adenovirus encoding a soluble type 1 TNF receptor-Ig fusion decoy. Gene Therapy, 11(20), 1506–1514.

    Article  CAS  PubMed  Google Scholar 

  131. Lee, H. S., Song, S., Shin, D. Y., Kim, G. S., Lee, J. H., Cho, C. W., Lee, K. W., Park, H., Ahn, C., Yang, J., Yang, H. M., Park, J. B., & Kim, S. J. (2018). Enhanced effect of human mesenchymal stem cells expressing human TNF-αR-fc and HO-1 gene on porcine islet xenotransplantation in humanized mice. Xenotransplantation, 25(1). https://doi.org/10.1111/xen.12342.

  132. Gao, J., Cheng, Y., Hao, H., Yin, Y., Xue, J., Zhang, Q., Li, L., Liu, J., Xie, Z., Yu, S., Li, B., Han, W., & Mu, Y. (2019). Decitabine assists umbilical cord-derived mesenchymal stem cells in improving glucose homeostasis by modulating macrophage polarization in type 2 diabetic mice. Stem Cell Research & Therapy, 10(1), 259.

    Article  CAS  Google Scholar 

  133. Issa, J. P., Gharibyan, V., Cortes, J., Jelinek, J., Morris, G., Verstovsek, S., Talpaz, M., Garcia-Manero, G., & Kantarjian, H. M. (2005). Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. Journal of Clinical Oncology, 23(17), 3948–3956.

    Article  CAS  PubMed  Google Scholar 

  134. Xue, J., Cheng, Y., Hao, H., Gao, J., Yin, Y., Yu, S., Zou, J., Liu, J., Zhang, Q., & Mu, Y. (2020). Low-dose Decitabine assists human umbilical cord-derived mesenchymal stem cells in protecting β cells via the modulation of the macrophage phenotype in type 2 diabetic mice. Stem Cells International, 2020, 4689798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Katzeff, H. L., Williams-Herman, D., Xu, L., Golm, G. T., Wang, H., Dong, Q., Johnson, J. R., O'Neill, E. A., Kaufman, K. D., Engel, S. S., & Goldstein, B. J. (2015). Long-term efficacy of sitagliptin as either monotherapy or add-on therapy to metformin: Improvement in glycemic control over 2 years in patients with type 2 diabetes. Current Medical Research and Opinion, 31(6), 1071–1077.

    Article  CAS  PubMed  Google Scholar 

  136. Monami, M., Iacomelli, I., Marchionni, N., & Mannucci, E. (2010). Dipeptydil peptidase-4 inhibitors in type 2 diabetes: A meta-analysis of randomized clinical trials. Nutrition, Metabolism & Cardiovascular Diseases, 20(4), 224–235.

    Article  CAS  Google Scholar 

  137. Zhang, Q., Xiao, X., Zheng, J., & Li, M. (2019). A glucagon-like peptide-1 analog, liraglutide, ameliorates endothelial dysfunction through miRNAs to inhibit apoptosis in rats. PeerJ, 7, e6567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Li, L. R., Jia, X. L., Hui, H., Zhang, J., Liu, Y., Cui, W. J., Xu, Q. Y., & Zhu, D. L. (2016). Liraglutide enhances the efficacy of human mesenchymal stem cells in preserving islet β-cell function in severe non-obese diabetic mice. Molecular Medicine, 22, 800–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, W., Wu, R. D., Chen, P., Xu, X. J., Shi, X. Z., Huang, L. H., Shao, Z. L., & Guo, W. (2020). Liraglutide combined with human umbilical cord mesenchymal stem cell transplantation inhibits beta-cell apoptosis via mediating the ASK1/JNK/BAX pathway in rats with type 2 diabetes. Diabetes-Metabolism Research and Review, 36(2), e3212.

    Google Scholar 

  140. Chen, P., Huang, Q., Xu, X. J., Shao, Z. L., Huang, L. H., Yang, X. Z., Guo, W., Li, C. M., & Chen, C. (2016). The effect of liraglutide in combination with human umbilical cord mesenchymal stem cells treatment on glucose metabolism and β cell function in type 2 diabetes mellitus. Zhonghua Nei Ke Za Zhi, 55(5), 349–354.

    CAS  PubMed  Google Scholar 

  141. Dadheech, N., Srivastava, A., Vakani, M., Shrimali, P., Bhonde, R., & Gupta, S. (2020). Direct lineage tracing reveals Activin-a potential for improved pancreatic homing of bone marrow mesenchymal stem cells and efficient ß-cell regeneration in vivo. Stem Cell Research & Therapy, 11(1), 327.

    Article  CAS  Google Scholar 

  142. Xia, Y., & Schneyer, A. L. (2009). The biology of activin: Recent advances in structure, regulation and function. Journal of Endocrinology, 202(1), 1–12.

    Article  CAS  Google Scholar 

  143. Zhang, Y. Q., Cleary, M. M., Si, Y., Liu, G., Eto, Y., Kritzik, M., Dabernat, S., Kayali, A. G., & Sarvetnick, N. (2004). Inhibition of activin signaling induces pancreatic epithelial cell expansion and diminishes terminal differentiation of pancreatic beta-cells. Diabetes, 53(8), 2024–2033.

    Article  CAS  PubMed  Google Scholar 

  144. Gomzikova, M. O., James, V., & Rizvanov, A. A. (2019). Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation. Frontiers in Immunology, 10, 2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., & Mathivanan, S. (2016). ExoCarta: A web-based compendium of Exosomal cargo. Journal of Molecular Biology, 428(4), 688–692.

    Article  CAS  PubMed  Google Scholar 

  146. Phinney, D. G., & Pittenger, M. F. (2017). Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 35(4), 851–858.

    Article  CAS  PubMed  Google Scholar 

  147. Miceli, V., Pampalone, M., Vella, S., Carreca, A. P., Amico, G., & Conaldi, P. G. (2019). Comparison of immunosuppressive and Angiogenic properties of human amnion-derived mesenchymal stem cells between 2D and 3D culture systems. Stem Cells International, 2019, 7486279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Casado-Díaz, A., Quesada-Gómez, J. M., & Dorado, G. (2020). Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: Applications in skin wound healing. Frontiers in Bioengineering and Biotechnology, 8, 146.

    Article  PubMed  PubMed Central  Google Scholar 

  149. He, Q., Wang, L., Zhao, R., Yan, F., Sha, S., Cui, C., Song, J., Hu, H., Guo, X., Yang, M., Cui, Y., Sun, Y., Sun, Z., Liu, F., Dong, M., Hou, X., & Chen, L. (2020). Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy. Stem Cell Research & Therapy, 11(1), 223.

    Article  CAS  Google Scholar 

  150. Sabry, D., Marzouk, S., Zakaria, R., Ibrahim, H. A., & Samir, M. (2020). The effect of exosomes derived from mesenchymal stem cells in the treatment of induced type 1 diabetes mellitus in rats. Biotechnology Letters, 42(8), 1597–1610.

    Article  CAS  PubMed  Google Scholar 

  151. Nojehdehi, S., Soudi, S., Hesampour, A., Rasouli, S., Soleimani, M., & Hashemi, S. M. (2018). Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. Journal of Cellular Biochemistry, 119(11), 9433–9443.

    Article  CAS  PubMed  Google Scholar 

  152. Lamichhane, T. N., Sokic, S., Schardt, J. S., Raiker, R. S., Lin, J. W., & Jay, S. M. (2015). Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Engineering Part B: Reviews, 21(1), 45–54.

    Article  CAS  Google Scholar 

  153. Ding, J., Wang, X., Chen, B., Zhang, J., & Xu, J. (2019). Exosomes derived from human bone marrow mesenchymal stem cells stimulated by Deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. BioMed Research International, 2019, 9742765.

    PubMed  PubMed Central  Google Scholar 

  154. Liu, W., Yu, M., Xie, D., Wang, L., Ye, C., Zhu, Q., Liu, F., & Yang, L. (2020). Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Research & Therapy, 11(1), 259.

    Article  CAS  Google Scholar 

  155. Yu, M., Liu, W., Li, J., Lu, J., Lu, H., Jia, W., & Liu, F. (2020). Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Research & Therapy, 11(1), 350.

    Article  CAS  Google Scholar 

  156. Wang, B., Yao, K., Huuskes, B. M., Shen, H. H., Zhuang, J., Godson, C., Brennan, E. P., Wilkinson-Berka, J. L., Wise, A. F., & Ricardo, S. D. (2016). Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Molecular Therapy, 24(7), 1290–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tao, S. C., Guo, S. C., Li, M., Ke, Q. F., Guo, Y. P., & Zhang, C. Q. (2017). Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Translational Medicine, 6(3), 736–747.

    Article  CAS  PubMed  Google Scholar 

  158. Ngoc, P. K., Phuc, P. V., Nhung, T. H., Thuy, D. T., & Nguyet, N. T. (2011). Improving the efficacy of type 1 diabetes therapy by transplantation of immunoisolated insulin-producing cells. Human Cell, 24(2), 86–95.

    Article  PubMed  Google Scholar 

  159. El-Halawani, S. M., Gabr, M. M., El-Far, M., Zakaria, M. M., Khater, S. M., Refaie, A. F., & Ghoneim, M. A. (2020). Subcutaneous transplantation of bone marrow derived stem cells in macroencapsulation device for treating diabetic rats; clinically transplantable site. Heliyon, 6(5), e03914.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Sabek, O. M., Farina, M., Fraga, D. W., Afshar, S., Ballerini, A., Filgueira, C. S., Thekkedath, U. R., Grattoni, A., & Gaber, A. O. (2016). Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment. Journal of Tissue Engineering, 7, 2041731416638198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Barati, G., Nadri, S., Hajian, R., Rahmani, A., Mostafavi, H., Mortazavi, Y., & Taromchi, A. H. (2019). Differentiation of microfluidic-encapsulated trabecular meshwork mesenchymal stem cells into insulin producing cells and their impact on diabetic rats. Journal of Cellular Physiology, 234(5), 6801–6809.

    Article  CAS  PubMed  Google Scholar 

  162. Gabr, M. M., Zakaria, M. M., Refaie, A. F., Ismail, A. M., Khater, S. M., Ashamallah, S. A., Azzam, M. M., & Ghoneim, M. A. (2018). Insulin-producing cells from adult human bone marrow mesenchymal stromal cells could control chemically induced diabetes in dogs: A preliminary study. Cell Transplantation, 27(6), 937–947.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Teotia, R. S., Kadam, S., Singh, A. K., Verma, S. K., Bahulekar, A., Kanetkar, S., & Bellare, J. (2017). Islet encapsulated implantable composite hollow fiber membrane based device: A bioartificial pancreas. Materials Science & Engineering C-Materials for Biological Applications, 77, 857–866.

    Article  CAS  Google Scholar 

  164. Kadam, S. S., Sudhakar, M., Nair, P. D., & Bhonde, R. R. (2010). Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules. Cytotherapy, 12(8), 982–991.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Key Research and Development Program of China (Grant No. 2017YFA0103902 & 2019YFA0111400), the National Natural Science Foundation of China (Grant No. 31771283), Innovative Research Team of High-level Local Universities in Shanghai (Grant No. SSMU-ZDCX20180700) and a Key Laboratory Program of the Education Commission of Shanghai Municipality (Grant No. ZDSYS14005).

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HS.L. performed the literature search, devised the conceptual ideas, and wrote the manuscript. H.Z. performed the literature search, and wrote the manuscript. T.G. performed the literature search. ZF.W. devised the conceptual ideas, wrote the manuscript, and critically revised the manuscript. C.Z. initiated the study, revised the manuscript, and supervised the project.

Corresponding authors

Correspondence to Zhifeng Wang or Chao Zhang.

Ethics declarations

Ethics Approval

Not applicable. This article does not contain any studies with human or animal subjects performed by any of the authors.

Consent to Participate

Informed consents have been acquired from all participants.

Consent for Publication

All participants approve this article to be published.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, H., Ge, T. et al. Mesenchymal Stem Cell-Based Therapy for Diabetes Mellitus: Enhancement Strategies and Future Perspectives. Stem Cell Rev and Rep 17, 1552–1569 (2021). https://doi.org/10.1007/s12015-021-10139-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10139-5

Keywords

Navigation