Pericytes Extend Survival of ALS SOD1 Mice and Induce the Expression of Antioxidant Enzymes in the Murine Model and in IPSCs Derived Neuronal Cells from an ALS Patient


Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-onset motor neuron disease causing a progressive, rapid and irreversible degeneration of motor neurons in the cortex, brain stem and spinal cord. No effective treatment is available and cell therapy clinical trials are currently being tested in ALS affected patients. It is well known that in ALS patients, approximately 50% of pericytes from the spinal cord barrier are lost. In the central nervous system, pericytes act in the formation and maintenance of the blood-brain barrier, a natural defense that slows the progression of symptoms in neurodegenerative diseases. Here we evaluated, for the first time, the therapeutic effect of human pericytes in vivo in SOD1 mice and in vitro in motor neurons and other neuronal cells derived from one ALS patient. Pericytes and mesenchymal stromal cells (MSCs) were derived from the same adipose tissue sample and were administered to SOD1 mice intraperitoneally. The effect of the two treatments was compared. Treatment with pericytes extended significantly animals survival in SOD1 males, but not in females that usually have a milder phenotype with higher survival rates. No significant differences were observed in the survival of mice treated with MSCs. Gene expression analysis in brain and spinal cord of end-stage animals showed that treatment with pericytes can stimulate the host antioxidant system. Additionally, pericytes induced the expression of SOD1 and CAT in motor neurons and other neuronal cells derived from one ALS patient carrying a mutation in FUS. Overall, treatment with pericytes was more effective than treatment with MSCs. Our results encourage further investigations and suggest that pericytes may be a good option for ALS treatment in the future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2



Beta Actin


Amyotrophic Lateral Sclerosis

basic FGF:

Basic fibroblast; growth factor


Blood Brain Barrier


Brain-derived Neurotrophic Factor


Bovine serum albumin




cluster of differentiation; molecule 11B


carboxyfluorescein diacetate succinimidyl ester


Choline acetyltransferase


Proto-oncogene c-Myc


4′,6-Diamidino-2-phenylindole dihydrochloride


Dulbecco’s Modified Eagle Medium


Embryoid bodies


Endothelial Cell Growth Medium


Epidermal growth factor


Fetal Bovine Serum


Food and Drug Administration


Fibroblast growth factors


Glyceraldehyde 3-phosphate dehydrogenase


Granulocyte colony-stimulating factor


glial cell derived neurotrophic factor


Glial fibrillary acidic protein


Glucagon-like Peptide 1


Granulocyte-macrophage colony-stimulating factor


glutathione peroxidase


Glutathione reductase


Hanks’ Balanced Salt Solution


Interferon gamma


Insulin-like growth factor 1


Interleukin 10


Interleukin 12p70


Interleukin 13


Interleukin 15


Interleukin 17A


Interleukin 1ra


Interleukin 1β




Interleukin 4


Interleukin 5


Interleukin 6


Interleukin 7


Interleukin 8


Interleukin 9


C-X-C motif chemokine 10


Induced Pluripotent Stem Cells


Kruppel-like factor 4


Monocyte chemoattractant protein-1


Macrophage Inflammatory Proteins −1α


Macrophage Inflammatory Proteins -1 β


Motor neuron diseases


Motor neuron and pancreas homeobox 1/Homeobox HB9


Mesenchymal stromal cells

NB media:

Neuro Basal Media


factor nuclear kappa B


Nerve Growth Factor


neural progenitor cells


Neural Stem Cells


octamer-binding transcription factor 4


paw grip endurance


Phosphate-buffered saline


Platelet-derived growth factor C


Regulated on Activation, Normal T Cell Expressed and Secreted


ROCK inhibitor


Real Time Quantitative Polymerase Chain Reaction


Sonic Hedgehog


superoxide dismutase 1


SRY (sex determining region Y)-box 2


Tumor necrosis fator α


Vascular endothelial growth factor


  1. 1.

    Goodall, E. F., & Morrison, K. E. (2006). Amyotrophic lateral sclerosis (motor neuron disease): Proposed mechanisms and pathways to treatment. Expert Reviews in Molecular Medicine. doi:10.1111/j.1467-9639.2006.00001.x.

  2. 2.

    Guégan, C., & Przedborski, S. (2003). Programmed cell death in amyotrophic lateral sclerosis. Journal of Clinical Investigation. doi:10.1172/JCI200317610.

  3. 3.

    Pasinelli, P., & Brown, R. H. (2006). Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nature Reviews. Neuroscience, 7, 710–723. doi:10.1038/nrn1971.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Proctor, E. A., Fee, L., Tao, Y., Redler, R. L., Fay, J. M., Zhang, Y., et al. (2015). Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 614–619. doi:10.1073/pnas.1516725113.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bensimon, G., Lacomblez, L., & Meininger, V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. The New England journal of medicine, 330. doi:10.1056/NEJM199403033300901.

  6. 6.

    Miller, R. G., Mitchell, J. D., Lyon, M., & Moore, D. H. (2007). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD001447.pub2.

  7. 7.

    Mitchell, J. D., & Borasio, G. D. (2007). Amyotrophic lateral sclerosis. Lancet, 369, 2031–2041. doi:10.1016/S0140-6736(07)60944-1.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Coatti, G. C., Beccari, M. S., Olávio, T. R., Mitne-Neto, M., Okamoto, O. K., & Zatz, M. (2015). Stem cells for amyotrophic lateral sclerosis modeling and therapy: Myth or fact? Cytometry Part A, 87(3), 197–211. doi:10.1002/cyto.a.22630.

    CAS  Article  Google Scholar 

  9. 9.

    Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9(3), 255–267. doi:10.1038/ncb1542.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Valadares, M. C., Gomes, J. P., Castello, G., Assoni, A., Pellati, M., Bueno, C., et al. (2014). Human adipose tissue derived Pericytes increase life span in Utrn (tm1Ked) Dmd (mdx) /J mice. Stem cell reviews. doi:10.1007/s12015-014-9537-9.

  11. 11.

    Chen, C.-W., Okada, M., Proto, J. D., Gao, X., Sekiya, N., Beckman, S. A., et al. (2013). Human pericytes for ischemic heart repair. Stem cells (Dayton, Ohio), 31(2), 305–316. doi:10.1002/stem.1285.

    CAS  Article  Google Scholar 

  12. 12.

    Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M. L., Mintz, A., & Delbono, O. (2014). Pericytes: Multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Frontiers in Aging Neuroscience, 6, 245. doi:10.3389/fnagi.2014.00245.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Corselli, M., Chen, C.-W., Crisan, M., Lazzari, L., & Péault, B. (2010). Perivascular ancestors of adult multipotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(6), 1104–1109. doi:10.1161/ATVBAHA.109.191643.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Crisan, M., Yap, S., Casteilla, L., Chen, C.-W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313. doi:10.1016/j.stem.2008.07.003.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Caplan, A. I., & Sorrell, J. M. (2015). The MSC curtain that stops the immune system. Immunology Letters, 168(2), 136–139. doi:10.1016/j.imlet.2015.06.005.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Winkler, E. A, Bell, R. D., & Zlokovic, B. V. (2011). Central nervous system pericytes in health and disease. Nature Neuroscience, 14(11), 1398–1405. doi:10.1038/nn.2946.

  17. 17.

    Winkler, E. A., Sengillo, J. D., Sagare, A. P., Zhao, Z., Ma, Q., Zuniga, E., et al. (2014). Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proceedings of the National Academy of Sciences of the United States of America, 111(11), E1035–E1042. doi:10.1073/pnas.1401595111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Winkler, E. A., Sengillo, J. D., Sullivan, J. S., Henkel, J. S., Appel, S. H., & Zlokovic, B. V. (2013). Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathologica, 125(1), 111–120. doi:10.1007/s00401-012-1039-8.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Assoni, A., Coatti, G., Valadares, M. C., Beccari, M., Gomes, J., Pelatti, M., … Zatz, M. (2016). Different donors mesenchymal stromal cells Secretomes reveal heterogeneous profile of relevance for therapeutic use. Stem Cells and Development, scd.2016.0218. doi:10.1089/scd.2016.0218.

  20. 20.

    Ray, A., & Dittel, B. N. (2010). Isolation of mouse peritoneal cavity cells. Journal of visualized experiments : JoVE. doi:10.3791/1488.

  21. 21.

    Gurney, M. E., Pu, H., Chiu, A. Y., Canto, M. C. D., Polchow, C. Y., Alexander, D. D., et al. (1994). Motor neuron degeneration in mice that express a human cu, Zn superoxide dismutase mutation. Science, 264(18), 1–4.

    Google Scholar 

  22. 22.

    Barnéoud, P., Lolivier, J., Sanger, D. J., Scatton, B., & Moser, P. (1997). Quantitative motor assessment in FALS mice: A longitudinal study. Neuroreport, 8(13), 2861–5. Retrieved from

  23. 23.

    Doble, A., & Kennel, P. (2000). Animal models of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 1(5), 301–312. doi:10.1080/146608200300079545.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Pfohl, S. R., Halicek, M. T., & Mitchell, C. S. (2015). Characterization of the contribution of genetic background and gender to disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis: A meta-analysis. Journal of Neuromuscular Diseases, 2, 137–150. doi:10.3233/JND-140068.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Heiman-Patterson, T. D., Deitch, J. S., Blankenhorn, E. P., Erwin, K. L., Perreault, M. J., Alexander, B. K., et al. (2005). Background and gender effects on survival in the TgN(SOD1-G93A)1Gur mouse model of ALS. Journal of the Neurological Sciences, 236(1–2), 1–7. doi:10.1016/j.jns.2005.02.006.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    McCombe, P. A., & Henderson, R. D. (2010). Effects of gender in amyotrophic lateral sclerosis. Gender Medicine, 7(6), 557–570. doi:10.1016/j.genm.2010.11.010.

    Article  PubMed  Google Scholar 

  27. 27.

    Scott, S., Kranz, J. E., Cole, J., Lincecum, J. M., Thompson, K., Kelly, N., et al. (2008). Design, power, and interpretation of studies in the standard murine model of ALS. Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases, 9(1), 4–15. doi:10.1080/17482960701856300.

    CAS  Article  Google Scholar 

  28. 28.

    Weydt, P., Hong, S. Y., Kliot, M., & Möller, T. (2003). Assessing disease onset and progression in the SOD1 mouse model of ALS. Neuroreport, 14(7), 1051–1054. doi:10.1097/01.wnr.0000073685.00308.89.

    Article  PubMed  Google Scholar 

  29. 29.

    Liscic, R. M., & Breljak, D. (2011). Molecular basis of amyotrophic lateral sclerosis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(2), 370–372. doi:10.1016/j.pnpbp.2010.07.017.

    CAS  Article  Google Scholar 

  30. 30.

    Marchetto, M. C. N. N., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4), 527–539. doi:10.1016/j.cell.2010.10.016.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Melo, U. S., Macedo-Souza, L. I., Figueiredo, T., Muotri, A. R., Gleeson, J. G., Coux, G., … Santos, S. (2015). Overexpression of KLC2 due to a homozygous deletion in the non-coding region causes SPOAN syndrome. Human Molecular Genetics, 24(24), ddv388. doi:10.1093/hmg/ddv388.

  32. 32.

    Mitne-Neto, M., Machado-Costa, M., Marchetto, M. C. N. M., Bengtson, M. H. M., Joazeiro, C. C. A., Tsuda, H., et al. (2011). Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Human Molecular Genetics, 20(18), 3642–3652.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Aranda, P. S., LaJoie, D. M., & Jorcyk, C. L. (2013). Bleach gel: A simple agarose gel for analyzing RNA quality. Electrophoresis, 33(2), 366–369. doi:10.1002/elps.201100335.Bleach.

    Article  Google Scholar 

  34. 34.

    Pfaffl, M. (2006). Relative quantification. In T. Dorak (Ed.), Real-time PCR (1st ed., pp. 63–82). International University Line.

  35. 35.

    Collett, D. (2003). Modelling survival data in medical research.

    Google Scholar 

  36. 36.

    Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2), 187–220.

    Google Scholar 

  37. 37.

    Singer, J. M., & Andrade, D. F. (2000). Analysis of longitudinal data. In P. K. Sen & C. R. Rao (Eds.), Handbook of statistics, volume 18: Bio-environmental and public health statistics (pp. 115–160). Amsterdam: North Holland.

    Google Scholar 

  38. 38.

    Muggeo, V. M. R. (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22(19), 3055–3071. doi:10.1002/sim.1545.

    Article  PubMed  Google Scholar 

  39. 39.

    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. doi:10.1080/14653240600855905.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Alves, C. J., de Santana, L. P., dos Santos, A. J. D., de Oliveira, G. P., Duobles, T., Scorisa, J. M., et al. (2011). Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome. Brain Research, 1394, 90–104. doi:10.1016/j.brainres.2011.02.060.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Peron, J. P. S., Jazedje, T., Brandão, W. N., Perin, P. M., Maluf, M., Evangelista, L. P., et al. (2012). Human endometrial-derived mesenchymal stem cells suppress inflammation in the central nervous system of EAE mice. Stem Cell Reviews, 8(3), 940–952. doi:10.1007/s12015-011-9338-3.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Ohshima, M., Taguchi, A., Tsuda, H., Sato, Y., Yamahara, K., Harada-Shiba, M., et al. (2014). Intraperitoneal and intravenous deliveries are not comparable in terms of drug efficacy and cell distribution in neonatal mice with hypoxia-ischemia. Brain & Development, 5–7. doi:10.1016/j.braindev.2014.06.010.

  43. 43.

    James, A. W., Zara, J. N., Zhang, X., Askarinam, A., Goyal, R., Chiang, M., et al. (2012). Perivascular stem cells: A prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Translational Medicine, 1(6), 510–519. doi:10.5966/sctm.2012-0002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells and Development, 22(16), 2298–2314. doi:10.1089/scd.2012.0647.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Starling, A., Rocco, P., Passos-Bueno, M. R., Hazan, J., Marie, S. K., & Zatz, M. (2002). Autosomal dominant (AD) pure spastic paraplegia (HSP) linked to locus SPG4 affects almost exclusively males in a large pedigree. Journal of medical genetics. doi:10.1136/jmg.39.12.e77.

  46. 46.

    Tonini, M. M. O., Pavanello, R. C. M., Gurgel-Giannetti, J., Lemmers, R. J., van der Maarel, S. M., Frants, R. R., & Zatz, M. (2004). Homozygosity for autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) does not result in a more severe phenotype. Journal of Medical Genetics, 41(2), e17 Retrieved from

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    de Paula, F., Vainzof, M., Passos-Bueno, M. R., de Cássia, M., Pavanello, R., Matioli, S. R., VB Anderson, L., et al. (2002). Clinical variability in calpainopathy: What makes the difference? European journal of human genetics : EJHG, 10(12), 825–832. doi:10.1038/sj.ejhg.5200888.

    Article  PubMed  Google Scholar 

  48. 48.

    Prockop, D. J., & Youn Oh, J. (2012). Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Molecular Therapy, 20(1), 14–20. doi:10.1038/mt.2011.211.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kota, D. J., DiCarlo, B., Hetz, R. A., Smith, P., Cox, C. S., & Olson, S. D. (2014). Differential MSC activation leads to distinct mononuclear leukocyte binding mechanisms. Scientific Reports, 4, 4565. doi:10.1038/srep04565.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Waterman, R. S., Henkle, S. L., & Betancourt, A. M. (2012). Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PloS One, 7(9), e45590. doi:10.1371/journal.pone.0045590.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PloS One, 5(4), e10088. doi:10.1371/journal.pone.0010088.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., & Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World journal of stem cells, 6(5), 552–570. doi:10.4252/wjsc.v6.i5.552.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Admyre, C., Axelsson, L.-G., von Stein, O., & Zargari, A. (2015). Immunomodulatory oligonucleotides inhibit neutrophil migration by decreasing the surface expression of interleukin-8 and leukotriene B 4 receptors. Immunology, 144(2), 206–217. doi:10.1111/imm.12368.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Shibata, N., Nagai, R., Uchida, K., Horiuchi, S., Yamada, S., Hirano, A., et al. (2001). Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Research, 917(1), 97–104. doi:10.1016/S0006-8993(01)02926-2.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Shaw, P. J., Ince, P. G., Falkous, G., & Mantle, D. (1995). Oxidative damage to protein in sporadic motor neuron disease spinal cord. Annals of Neurology, 38(4), 691–695. doi:10.1002/ana.410380424.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ferrante, R. J., Browne, S. E., Shinobu, L. A., Bowling, A. C., Baik, M. J., MacGarvey, U., … Beal, M. F. (1997). Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. Journal of neurochemistry.

  57. 57.

    Robelin, L., & Gonzalez De Aguilar, J. L. (2014). Blood biomarkers for amyotrophic lateral sclerosis: Myth or reality? BioMed Research International, 2014. doi:10.1155/2014/525097.

  58. 58.

    Patel, B. P., & Hamadeh, M. J. (2009). Nutritional and exercise-based interventions in the treatment of amyotrophic lateral sclerosis. Clinical nutrition (Edinburgh, Scotland), 28(6), 604–617. doi:10.1016/j.clnu.2009.06.002.

    CAS  Article  Google Scholar 

  59. 59.

    Reinholz, M. M., Merkle, C. M., & Poduslo, J. F. (1999). Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Experimental Neurology, 159(1), 204–216. doi:10.1006/exnr.1999.7142.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Williams, J. R., Trias, E., Beilby, P. R., Lopez, N. I., Labut, E. M., Samuel Bradford, C., et al. (2016). Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SODG93A mice co-expressing the copper-chaperone-for-SOD. Neurobiology of Disease. doi:10.1016/j.nbd.2016.01.020.

  61. 61.

    Egawa, N., Kitaoka, S., Tsukita, K., Naitoh, M., Takahashi, K., Yamamoto, T., et al. (2012). Drug screening for ALS using patient-specific induced pluripotent stem cells. Science Translational Medicine, 4(145). doi:10.1126/scitranslmed.3004052.

  62. 62.

    Wainger, B. J., Kiskinis, E., Mellin, C., Wiskow, O., Han, S. S. W., Sandoe, J., et al. (2014). Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Reports, 7(1), 1–11. doi:10.1016/j.celrep.2014.03.019.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kemp, K., Mallam, E., Hares, K., Witherick, J., Scolding, N., & Wilkins, A. (2011). Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts. PloS One, 6(10), e26098. doi:10.1371/journal.pone.0026098.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Dey, R., Kemp, K., Gray, E., Rice, C., Scolding, N., & Wilkins, A. (2012). Human mesenchymal stem cells increase anti-oxidant Defences in cells derived from patients with Friedreich’s ataxia. The Cerebellum, 861–871. doi:10.1007/s12311-012-0406-2.

  65. 65.

    Levy, O., Mortensen, L. J., Boquet, G., Tong, Z., Perrault, C., Benhamou, B., … Karp, J. M. (2015). A small-molecule screen for enhanced homing of systemically infused cells. Cell Reports, 1–8. doi:10.1016/j.celrep.2015.01.057.

  66. 66.

    Zeng, W., Xiao, J., Zheng, G., Xing, F., Tipoe, G. L., & Wang, X. (2015). Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model. Nature Publishing Group, 1–17. doi:10.1038/srep11100.

Download references


This work was supported by CEPID/FAPESP, INCT and CNPq.

Author information



Corresponding author

Correspondence to Mayana Zatz.

Ethics declarations

Disclosure of Interest

The authors indicate no potential conflicts of interest.

Electronic supplementary material

Figure S1

Cell lines characterization performed in the 8th passage, the same used for in vivo experiments. (A) In vitro differentiation potential of MSCs and pericytes into adipocytes, osteoblasts and chondroblasts. (B) Immunophenotypic profile of MSCs and pericytes after 8 passages in culture, assessed by flow cytometry. (C) Multiplex ligation-dependent probe amplification (MLPA) analysis using SALSA P070 and SALSA P036 subtelomeric probes, evaluated in MSCs and pericytes. (PDF 3905 kb)

Figure S2

Macrophage phagocytosis assay. (A, C) Anti-human lamin A/C (green) immunostaining of human cells (MSCs, or pericytes, respectively) co-cultured with macrophages (unlabeled, obtained from one SOD1 female). (B, D) Anti-human lamin A/C (green) immunostaining of human cells (MSCs, or pericytes, respectively) without macrophage co-culture. (E) DAPI nuclei staining in macrophages cultured alone. Magnification 200X. (F) positive control showing India Ink internalization by macrophages, 400X magnification. (H) Graphical representation of human MSCs and pericytes quantification with or without co-culture with macrophages (p = 0.3024 and p = 0.0906, respectively). The experiment was carried out in triplicate. (PDF 19208 kb)

Figure S3

Dose-dependent immunosuppressive potential of MSCs and pericytes in CFDA-labeled SOD1 mice PBMCs and lymphocytes, after 5 days of co-culture with increasing doses of MSCs and pericytes. Bars represent the mean fluorescence of peak area of CFDA-labeled activated PBMCs and lymphocytes (obtained from one SOD1 female), evaluated by flow cytometry after the co-culture period. Increasing concentrations of human cells and a fixed amount of 1.104 activated PBMCs and lymphocytes were used. Activated PBMCs and lymphocytes cultured alone were used as a control. No differences were found between MSCs and pericytes. ***p < 0.001. The experiment was carried out in triplicate. (PDF 475 kb)

Figure S4

Individual and average smoothed profiles (bold curve) of the longitudinal data relating to weight (A), motor score (B), rotarod (C) e PaGE (D). n = 22 mice per group, being 11 males and 11 females. (PDF 192 kb)

Figure S5

Cytokine quantification by the 27-human cytokine plex (luminex) in culture media of co-cultured ALS patient derived motor neurons and other neuronal cells (NMs) with MSCs or pericytes. Only differentially secreted cytokines were represented. IL-2 IL-4 IL-5, IL-7 IL-9 IL-10, MIP-1a, were not detected in this assay and levels of basic-FGF, Eotaxin, GM-CSF, IFN-γ, IL-1β, IL-12p70, IL-13, IL-17a, MP-1β and PDGF-bb were not altered in comparison to the control (MNNs alone). *p < 0.05 **p < 0.01. For neuronal differentiation, iPSCs from one ALS patient was used. The experiment was carried out in four replicas. (PDF 736 kb)

Figure S6

Validation of iPSC derived motor neurons and other neuronal cells. Amplification curves obtained after RT-qPCR, evaluating the expression of neuronal markers (ISL1, CHAT and MNX1) and the expression of the endogenous gene (BACT), with taqman probes. (PDF 1356 kb)

Table S1

Primers for qRT-PCR. (PDF 492 kb)

Table S2

Results of the mixed model analysis for physical performance tests assessed weekly in SOD1 treated mice (n = 22 mice per group, being 11 males and 11 females), for weight, PaGE, rotarod and motor score evaluations. (PDF 615 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coatti, G.C., Frangini, M., Valadares, M.C. et al. Pericytes Extend Survival of ALS SOD1 Mice and Induce the Expression of Antioxidant Enzymes in the Murine Model and in IPSCs Derived Neuronal Cells from an ALS Patient. Stem Cell Rev and Rep 13, 686–698 (2017).

Download citation


  • Amyotrophic lateral sclerosis
  • Pericytes
  • Mesenchymal stromal cells
  • SOD1 mice
  • IPSCs
  • Motor neurons