Skip to main content
Log in

Human Endometrial-Derived Mesenchymal Stem Cells Suppress Inflammation in the Central Nervous System of EAE Mice

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. J., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  PubMed  CAS  Google Scholar 

  2. Jazedje, T., Perin, P., Czeresnia, C. E., Maluf, M., Halpern, S., Secco, M., Bueno, D. F., Vieira, N. M., Zucconi, E., & Zatz, M. (2009). Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. Journal of Translational Medicine, 7, 46.

    Article  PubMed  Google Scholar 

  3. Garjett, C. E. (2007). Review article: stem cells in human reproduction. Reproductive Sciences, 14(5), 405–424.

    Article  Google Scholar 

  4. Rodriguez, M. (2007). Effectors of demyelination and remyelination in the CNS: implications for multiple sclerosis. Brain Pathology, 17, 219–229.

    Article  PubMed  CAS  Google Scholar 

  5. Oksenberg, J. R., & Hauser, S. L. (2005). Genetics of multiple sclerosis. Neurologic Clinics, 1(23), 61–75.

    Article  Google Scholar 

  6. Friese, M. A., Montalban, X., Willcox, N., Bell, J. I., Martin, R., & Fuger, L. (2006). The value of animal models for drug development in multiple sclerosis. Brain, 129(8), 1940–1952.

    Article  PubMed  Google Scholar 

  7. Tennakoon, D. K., Mehta, R. S., Ortega, S. B., Bhoj, V., Racke, M. K., & Karandikar, N. J. (2006). Therapeutic induction of regulatory cytotoxic CD8+ T cells in multiple sclerosis. Journal of Immunology, 176, 7119–7129.

    CAS  Google Scholar 

  8. Weiner, H. L., Mackin, G. A., Matsui, M., Orav, E. J., Khoury, S. J., Dawson, D. M., & Hafler, D. A. (1993). Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science, 259(5099), 1321–1324.

    Article  PubMed  CAS  Google Scholar 

  9. Baxter, A. G. (2007). The origin and application of experimental autoimmune encephalomyelitis. Nature Medicine, 7(11), 904.

    CAS  Google Scholar 

  10. Dardalhon, V., Korn, T., Kuchroo, V. K., & Anderson, A. C. (2008). Role of Th1 and Th17 cells in organ-specific autoimmunity. Journal of Autoimmunity, 31(3), 252–256.

    Article  PubMed  CAS  Google Scholar 

  11. Jäger, A., Dardalhon, V., Sobel, R. A., Bettelli, E., & Kuchroo, V. K. (2009). Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. Journal of Immunology, 183(11), 7169–7177.

    Article  Google Scholar 

  12. Kroenke, M. A., & Segal, B. M. (2007). Th17 and Th1 responses directed against the immunizing epitope, as opposed to secondary epitopes, dominate the autoimmune repertoire during relapses of experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 85, 1685–1693.

    Article  PubMed  CAS  Google Scholar 

  13. Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., Sudo, K., & Iwakura, Y. (2006). IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. Journal of Immunology, 177(1), 566–573.

    Google Scholar 

  14. Ivanov, I., Mackenzie, B. S., Zhou, B., Tadokoro, C. E., Leppeley, A., Lafaille, J. J., Cua, D. J., & Littman, D. R. (2006). The orphan nuclear receptor RORgt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 126, 1121–1133.

    Article  PubMed  CAS  Google Scholar 

  15. Kreimborg, K., Etzensperger, R., Dumoutier, L., Haak, L., Rebollo, A., Buch, T., Heppner, F. L., Renauld, J. C., & Becher, B. (2007). IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. Journal of Immunology, 179, 8098–8104.

    Google Scholar 

  16. Zhou, L., Ivanov, I., Spolski, R., Sherendoz, K., Egawa, T., Levy, D. E., Leonard, W. J., & Littmann, D. R. (2007). IL-6 programs Th17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunology, 8(9), 1–8.

    Article  CAS  Google Scholar 

  17. Yang, K., Vega, J., Hadzipasic, M., Schatzmann Peron, J. P., Zhu, B., Carrier, Y., Masli, S., Rizzo, L. V., & Weiner, H. L. (2009). Deficiency of thrombospondin-1 reduces Th17 differentiation and attenuates experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 32(2), 94–103.

    Article  PubMed  CAS  Google Scholar 

  18. Matusevicius, D., Kivisäkk, P., He, B., Kostulas, N., Ozenci, V., Fredrikson, S., & Link, H. (1999). Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Multiple Sclerosis, 5, 101–104.

    PubMed  CAS  Google Scholar 

  19. Das Sarma, J., Ciric, B., Marek, R., Sadhukhan, S., Caruso, M. L., Shafagh, J., Fitzgerald, D. C., Shindler, K. S., & Rostami, A. (2009). Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 28(6).

  20. Kawanokuchi, J., Shimizu, K., Nitta, A., Yamada, K., Mizuno, T., Takeuchi, H., & Suzumura, A. (2008). Production and functions of IL-17 in microglia. Journal of Neuroimmunology, 194, 54–61.

    Article  PubMed  CAS  Google Scholar 

  21. Kang, Z., Altuntas, C. Z., Gulen, M. F., Liu, C., Giltiay, N., Qin, H., Liu, L., Qian, W., Ransohoff, R. M., Bergmann, C., Stohlman, S., Tuohy, V. K., & Li, X. (2010). Astrocyte-restricted ablation of Interleukin-17-induced act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity, 32, 415–422.

    Article  Google Scholar 

  22. Peron, J. P., Ligeiro-de-Oliveira, A. P., & Rizzo, L. V. (2009). It takes guts for tolerance: the phenomenon of oral tolerance and the regulation of autoimmune response. Autoimmunity Reviews, 9(1), 1–4.

    Article  PubMed  Google Scholar 

  23. Peron, J. P., Yang, K., Chen, M. L., Brandao, W. N., Basso, A. S., Commodaro, A. G., Weiner, H. L., & Rizzo, L. V. (2010). Oral tolerance reduces Th17 cells as well as the overall inflammation in the central nervous system of EAE mice. Journal of Neuroimmunology, 227(1–2), 10–17.

    Article  PubMed  CAS  Google Scholar 

  24. Kelly, C., Flatt, C., & McClenaghan, N. H. (2011). Stem cell-based approaches for the treatment of diabetes. Stem Cells International, 424986, 1–8.

    Article  Google Scholar 

  25. Yang, J., Jiang, Z., Fitzgerald, D. C., Ma, C., Yu, S., Li, H., Zhao, Z., Li, Y., Ciric, B., Curtis, M., Rostami, A., & Zhang, G. X. (2009). Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. The Journal of Clinical Investigation, 119(12), 3678–3691.

    Article  PubMed  CAS  Google Scholar 

  26. Pluchino, S., Cusimano, M., Bacigaluppi, M., & Martino, G. (2010). Remodelling the injured CNS through the establishment of atypical ectopic perivascular neural stem cell niches. Archives Italiennes de Biologie, 148, 173–183.

    PubMed  CAS  Google Scholar 

  27. Macdonald, G. I., Augello, A., & De Bari, C. (2011). Mesenchymal stem cells: re-establishing immunological tolerance in autoimmune rheumatic diseases. Arthritis and Rheumatism. doi:10.1002/art.30474.

  28. Vieira, N. M., Zuconni, E., Bueno, C. R., Jr., Secco, M., Suzuki, M. F., Bartolini, P., Vainzof, M., & Zatz, M. (2010). Human multipotent mesenchymal stromal cells from distinct sources show different in vivo potential to differentiate into muscle cells when injected in dystrophic mice. Stem Cell Reviews, 6(4), 560–566.

    Article  PubMed  CAS  Google Scholar 

  29. Chen, Y., Inobe, J., & Weiner, H. L. (1995). Induction of oral tolerance to myelin basic protein in CD8 depleted mice: both CD4 and CD8 cells mediate suppression. Journal of Immunology, 155, 910–916.

    CAS  Google Scholar 

  30. Bassi, E. J., Aita, C. A., & Câmara, N. O. (2011). Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand? World Journal of Stem Cells, 3(1), 1–8.

    Article  PubMed  Google Scholar 

  31. Matysiak, M., Orlowski, W., Fortak-Michalska, M., Jurewicz, A., & Selmaj, K. (2011). Immunoregulatory function of bone marrow mesenchymal stem cells in EAE depends on their differentiation state and secretion of PGE2. Journal of Neuroimmunology, 233(1–2), 106–111.

    Article  PubMed  CAS  Google Scholar 

  32. Almolda, B., Gonzalez, B., & Castellano, B. (2011). Antigen presentation in EAE: role of microglia, macrophages and dendritic cells. Frontiers in Bioscience, 16, 1157–1171.

    Article  PubMed  CAS  Google Scholar 

  33. Park, M. J., Park, H. S., Cho, M. L., Oh, H. J., Cho, Y. G., Min, S. Y., Chung, B. H., Lee, J. W., Kim, H. Y., & Cho, S. G. (2011). Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis and Rheumatism, 63(6), 1668–1680.

    Article  PubMed  CAS  Google Scholar 

  34. Pluchino, S., Quattrini, A., Brambilla, E., Gritti, A., Salani, G., Dina, G., Galli, R., Del Carro, U., Amadio, S., Bergami, A., Furlan, R., Comi, G., Vescovi, A. L., & Martino, G. (2003). Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 422(6933), 688–694.

    Article  PubMed  CAS  Google Scholar 

  35. Pluchino, S., Zanotti, L., Brambilla, E., Rovere-Querini, P., Capobianco, A., Alfaro-Cervello, C., Salani, G., Cossetti, C., Borsellino, G., Battistini, L., Ponzoni, M., Doglioni, C., Garcia-Verdugo, J. M., Comi, G., Manfredi, A. A., & Martino, G. (2009). Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One, 4(6), e5959.

    Article  PubMed  Google Scholar 

  36. Takeda, A., Hamano, S., Yamanaka, A., Hanada, T., Ishibashi, T., Mak, T. W., Yoshimura, A., & Yoshida, H. (2003). Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. Journal of Immunology, 170(4886–90).

    Google Scholar 

  37. Fitzgerald, D. C., Ciric, B., Touil, T., Harle, H., Grammatikopolou, J., Das Sarma, J., Gran, B., Zhang, G., & Rostami, A. (2007). Suppressive Effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. Journal of Immunology, 179, 3268–3275.

    CAS  Google Scholar 

  38. Awasthi, A., Carrier, Y., Peron, J. P. S., Bettelli, E., Kamanaka, M., Flavell, R. A., Kuchroo, V. K., Oukka, M., & Weiner, H. L. (2007). A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells. Nature Immunology, 8(12), 1380–1389.

    Article  PubMed  CAS  Google Scholar 

  39. Croitoru-Lamoury, J., Lamoury, F. M., Caristo, M., Suzuki, K., Walker, D., Takikawa, O., Taylor, R., & Brew, B. J. (2011). Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One, 16(6), 14698.

    Article  Google Scholar 

  40. Sioud, M. (2011). New insights into mesenchymal stromal cell-mediated T-cell suppression through galectins. Scandinavian Journal of Immunology, 73(2), 79–84.

    Article  PubMed  CAS  Google Scholar 

  41. Mellor, A. L., Chandler, P., Marshall, B., Jhaver, K., Hansen, A., Koni, P. A., Iwashima, M., & Munn, D. H. (2003). Induced Indoleamine −2,3- Dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. Journal of Immunology, 171, 1652–1655.

    CAS  Google Scholar 

  42. Wang, Y., Lawson, M. A., Dantzer, R., & Kelley, K. W. (2010). LPS-induced indoleamine 2,3-dioxygenase is regulated in an interferon-gamma-independent manner by a JNK signaling pathway in primary murine microglia. Brain, Behavior, and Immunity, 24(2), 201–209.

    Article  PubMed  Google Scholar 

  43. Huang, L., Baban, B., Johnson, B. A., & Mellor, A. L. (2010). Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. International Reviews of Immunology, 29(2), 133–155.

    Article  PubMed  CAS  Google Scholar 

  44. Munn, D., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D., & Mellor, A. L. (2005). GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 22(5), 633–642.

    Article  PubMed  CAS  Google Scholar 

  45. Fallarino, F., Gromann, U., Macgrath, B. C., Cavener, D. R., Vacca, C., Orabonna, C., Bianchi, R., Belladonna, M. L., Volpi, C., Santamaria, P., Fioretti, M. C., & Puccetti, P. (2006). The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. Journal of Immunology, 176, 6752–6761.

    CAS  Google Scholar 

  46. Curti, A., Pandolofi, S., Valzasina, B., Aluigi, M., Isidori, A., Ferri, E., Salvestrini, V., Bonanno, G., Rutella, S., Durelli, I., Horestein, A. L., Fiore, F., Massaia, M., Colombo, M. P., Baccaranni, M., & Lemoli, R. M. (2007). Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ reg ulatory cells. Blood, 109(7), 2871–2877.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Peron JPS is a recipient of CAPES (PNPD 0188085) and Brandao WN is a recipient of FAPESP fellowship (2009/13109-5).

Conflicts of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Rizzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peron, J.P.S., Jazedje, T., Brandão, W.N. et al. Human Endometrial-Derived Mesenchymal Stem Cells Suppress Inflammation in the Central Nervous System of EAE Mice. Stem Cell Rev and Rep 8, 940–952 (2012). https://doi.org/10.1007/s12015-011-9338-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9338-3

Keywords

Navigation