Skip to main content

Advertisement

Log in

Practical Issues with the Use of Stem Cells for Cancer Gene Therapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cell-based drug delivery for cancer therapy has steadily gained momentum in the past decade as several studies have reported stem cells’ inherent tropism towards tumors. Since this science is still in its early stages and there are many factors that could significantly impact tumor tropism of stem cells, some contradictory results have been observed. This review starts by examining a number of proof-of-concept studies that demonstrate the potential application of stem cells in cancer therapy. Studies that illustrate stem cells’ tumor tropism and discuss the technical difficulties that could impact the therapeutic outcome are also highlighted. The discussion also emphasizes stem cell imaging/tracking, as it plays a crucial role in performing reliable dose–response studies and evaluating the therapeutic outcome of treatment protocols. In each section, the pros and cons associated with each method are highlighted, limitations are underlined, and potential solutions are discussed. The overall intention is to familiarize the reader with important practical issues related to stem cell cancer tropism and in vivo tracking, underline the shortcomings, and emphasize critical factors that need to be considered for effective translation of this science into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altaner, C., Altanerova, V., Cihova, M., et al. (2014). Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. International Journal of Cancer, 134, 1458–1465.

    Article  CAS  Google Scholar 

  2. Matuskova, M., Hlubinova, K., Pastorakova, A., et al. (2010). HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Letters, 290, 58–67.

    Article  CAS  PubMed  Google Scholar 

  3. Song, C., Xiang, J., Tang, J., et al. (2011). Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Human Gene Therapy, 22, 439–449.

    Article  CAS  PubMed  Google Scholar 

  4. Kucerova, L., Matuskova, M., Pastorakova, A., et al. (2008). Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. The Journal of Gene Medicine, 10, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  5. Amara, I., Touati, W., Beaune, P., & de Waziers, I. (2014). Mesenchymal stem cells as cellular vehicles for prodrug gene therapy against tumors. Biochimie, 105, 4–11.

    Article  CAS  PubMed  Google Scholar 

  6. Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: entering the mainstream. Science, 303, 1818–1822.

    Article  CAS  PubMed  Google Scholar 

  7. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2, 751–760.

    Article  CAS  PubMed  Google Scholar 

  8. Yao, X., Yoshioka, Y., Morishige, T., et al. (2009). Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis. Gene Therapy, 16, 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  9. Yao, X. L., Yoshioka, Y., Ruan, G. X., et al. (2012). Optimization and internalization mechanisms of PEGylated adenovirus vector with targeting peptide for cancer gene therapy. Biomacromolecules, 13, 2402–2409.

    Article  CAS  PubMed  Google Scholar 

  10. Reddy, L. H. (2005). Drug delivery to tumours: recent strategies. Journal of Pharmacy and Pharmacology, 57, 1231–1242.

    Article  CAS  PubMed  Google Scholar 

  11. Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387–6392.

    CAS  PubMed  Google Scholar 

  12. Lammers, T., Kiessling, F., Hennink, W. E., & Storm, G. (2012). Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. Journal of Controlled Release, 161, 175–187.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, D., Najbauer, J., Garcia, E., et al. (2008). Neural stem cell tropism to glioma: critical role of tumor hypoxia. Molecular Cancer Research, 6, 1819–1829.

    Article  CAS  PubMed  Google Scholar 

  14. Teo, G. S., Ankrum, J. A., Martinelli, R., et al. (2012). Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-alpha-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem Cells, 30, 2472–2486.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Studeny, M., Marini, F. C., Dembinski, J. L., et al. (2004). Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute, 96, 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  16. Ren, C., Kumar, S., Chanda, D., et al. (2008). Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Therapy, 15, 1446–1453.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ahn, J., Lee, H., Seo, K., Kang, S., Ra, J., & Youn, H. (2013). Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-beta and treatment with cisplatin in a xenograft mouse model for canine melanoma. PLoS ONE, 8, e74897.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nakamizo, A., Marini, F., Amano, T., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65, 3307–3318.

    CAS  PubMed  Google Scholar 

  19. Nakamura, K., Ito, Y., Kawano, Y., et al. (2004). Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy, 11, 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  20. Stagg, J., Lejeune, L., Paquin, A., & Galipeau, J. (2004). Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Human Gene Therapy, 15, 597–608.

    Article  CAS  PubMed  Google Scholar 

  21. Moniri, M. R., Sun, X. Y., Rayat, J., et al. (2012). TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells. Cancer Gene Therapy, 19, 652–658.

    Article  CAS  PubMed  Google Scholar 

  22. Ciavarella, S., Grisendi, G., Dominici, M., et al. (2012). In vitro anti-myeloma activity of TRAIL-expressing adipose-derived mesenchymal stem cells. British Journal of Haematology, 157, 586–598.

    Article  CAS  PubMed  Google Scholar 

  23. Khan, Z., Knecht, W., Willer, M., et al. (2010). Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy. Neuro-Oncology, 12, 549–558.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gu, C., Li, S., Tokuyama, T., Yokota, N., & Namba, H. (2010). Therapeutic effect of genetically engineered mesenchymal stem cells in rat experimental leptomeningeal glioma model. Cancer Letters, 291, 256–262.

    Article  CAS  PubMed  Google Scholar 

  25. Kosaka, H., Ichikawa, T., Kurozumi, K., et al. (2012). Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Therapy, 19, 572–578.

    Article  CAS  PubMed  Google Scholar 

  26. Kucerova, L., Matuskova, M., Hlubinova, K., et al. (2011). Bystander cytotoxicity in human medullary thyroid carcinoma cells mediated by fusion yeast cytosine deaminase and 5-fluorocytosine. Cancer Letters, 311, 101–112.

    Article  CAS  PubMed  Google Scholar 

  27. Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., & Andreeff, M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Research, 62, 3603–3608.

    CAS  PubMed  Google Scholar 

  28. Uhl, M., Weiler, M., Wick, W., Jacobs, A. H., Weller, M., & Herrlinger, U. (2005). Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas. Biochemical and Biophysical Research Communications, 328, 125–129.

    Article  CAS  PubMed  Google Scholar 

  29. Nouri, F. S., Wang, X., & Hatefi, A. (2015). Genetically engineered theranostic mesenchymal stem cells for the evaluation of the anticancer efficacy of enzyme/prodrug systems. Journal of Controlled Release, 200, 179–187.

    Article  CAS  PubMed  Google Scholar 

  30. Benedetti, S., Pirola, B., Pollo, B., et al. (2000). Gene therapy of experimental brain tumors using neural progenitor cells. Nature Medicine, 6, 447–450.

    Article  CAS  PubMed  Google Scholar 

  31. Kyriakou, C. A., Yong, K. L., Benjamin, R., et al. (2006). Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt’s lymphoma in a murine model. The Journal of Gene Medicine, 8, 253–264.

    Article  CAS  PubMed  Google Scholar 

  32. Loebinger, M. R., Eddaoudi, A., Davies, D., & Janes, S. M. (2009). Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Research, 69, 4134–4142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. van de Water, J. A., Bagci-Onder, T., Agarwal, A. S., et al. (2012). Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proceedings of the National Academy of Sciences of the United States of America, 109, 16642–16647.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Secchiero, P., Zorzet, S., Tripodo, C., et al. (2010). Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS ONE, 5, e11140.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Lu, Y. R., Yuan, Y., Wang, X. J., et al. (2008). The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biology & Therapy, 7, 245–251.

    Article  CAS  Google Scholar 

  36. Cousin, B., Ravet, E., Poglio, S., et al. (2009). Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS ONE, 4, e6278.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Sun, B., Roh, K. H., Park, J. R., et al. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy, 11, 289–298.

    Article  CAS  PubMed  Google Scholar 

  38. Keramidas, M., de Fraipont, F., Karageorgis, A., et al. (2013). The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Research & Therapy, 4, 41.

    Article  CAS  Google Scholar 

  39. Shinagawa, K., Kitadai, Y., Tanaka, M., et al. (2010). Mesenchymal stem cells enhance growth and metastasis of colon cancer. International Journal of Cancer, 127, 2323–2333.

    Article  CAS  Google Scholar 

  40. Prantl, L., Muehlberg, F., Navone, N. M., et al. (2010). Adipose tissue-derived stem cells promote prostate tumor growth. Prostate, 70, 1709–1715.

    Article  CAS  PubMed  Google Scholar 

  41. Galie, M., Konstantinidou, G., Peroni, D., et al. (2008). Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene, 27, 2542–2551.

    Article  CAS  PubMed  Google Scholar 

  42. Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini, F., 3rd. (2011). Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells, 29, 11–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28, 585–596.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Belmar-Lopez, C., Mendoza, G., Oberg, D., et al. (2013). Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth. BMC Medicine, 11, 139.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Ringe, J., Strassburg, S., Neumann, K., et al. (2007). Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. Journal of Cellular Biochemistry, 101, 135–146.

    Article  CAS  PubMed  Google Scholar 

  46. Ponte, A. L., Marais, E., Gallay, N., et al. (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 25, 1737–1745.

    Article  CAS  PubMed  Google Scholar 

  47. Pendleton, C., Li, Q., Chesler, D. A., Yuan, K., Guerrero-Cazares, H., & Quinones-Hinojosa, A. (2013). Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS ONE, 8, e58198.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Frank, R. T., Edmiston, M., Kendall, S. E., et al. (2009). Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS ONE, 4, e8314.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Sasportas, L. S., Kasmieh, R., Wakimoto, H., et al. (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 4822–4827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Mercapide, J., Rappa, G., Anzanello, F., King, J., Fodstad, O., & Lorico, A. (2010). Primary gene-engineered neural stem/progenitor cells demonstrate tumor-selective migration and antitumor effects in glioma. International Journal of Cancer, 126, 1206–1215.

    CAS  Google Scholar 

  51. Kim, J. H., Kim, J. Y., Kim, S. U., & Cho, K. G. (2012). Therapeutic effect of genetically modified human neural stem cells encoding cytosine deaminase on experimental glioma. Biochemical and Biophysical Research Communications, 417, 534–540.

    Article  CAS  PubMed  Google Scholar 

  52. Li, S., Gao, Y., Tokuyama, T., et al. (2007). Genetically engineered neural stem cells migrate and suppress glioma cell growth at distant intracranial sites. Cancer Letters, 251, 220–227.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, Y., Lam, D. H., Yang, J., et al. (2012). Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Therapy, 19, 189–200.

    Article  CAS  PubMed  Google Scholar 

  54. Lee, D. H., Ahn, Y., Kim, S. U., et al. (2009). Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clinical Cancer Research, 15, 4925–4934.

    Article  CAS  PubMed  Google Scholar 

  55. Kidd, S., Spaeth, E., Dembinski, J. L., et al. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27, 2614–2623.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Dwyer, R. M., Potter-Beirne, S. M., Harrington, K. A., et al. (2007). Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clinical Cancer Research, 13, 5020–5027.

    Article  CAS  PubMed  Google Scholar 

  57. Komarova, S., Kawakami, Y., Stoff-Khalili, M. A., Curiel, D. T., & Pereboeva, L. (2006). Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Molecular Cancer Therapeutics, 5, 755–766.

    Article  CAS  PubMed  Google Scholar 

  58. Bexell, D., Gunnarsson, S., Svensson, A., et al. (2012). Rat multipotent mesenchymal stromal cells lack long-distance tropism to 3 different rat glioma models. Neurosurgery, 70, 731–739.

    Article  PubMed  Google Scholar 

  59. Kim, S. W., Kim, S. J., Park, S. H., et al. (2013). Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clinical Cancer Research, 19, 415–427.

    Article  CAS  PubMed  Google Scholar 

  60. Chao, P., Deshmukh, M., Kutscher, H. L., et al. (2010). Pulmonary targeting microparticulate camptothecin delivery system: anticancer evaluation in a rat orthotopic lung cancer model. Anti-Cancer Drugs, 21, 65–76.

    Article  CAS  PubMed  Google Scholar 

  61. Xia, X., Ji, T., Chen, P., et al. (2011). Mesenchymal stem cells as carriers and amplifiers in CRAd delivery to tumors. Molecular Cancer, 10, 134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kucerova, L., Altanerova, V., Matuskova, M., Tyciakova, S., & Altaner, C. (2007). Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Research, 67, 6304–6313.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, D., Najbauer, J., Annala, A. J., et al. (2012). Human neural stem cell tropism to metastatic breast cancer. Stem Cells, 30, 314–325.

    Article  CAS  PubMed  Google Scholar 

  64. Aboody, K. S., Bush, R. A., Garcia, E., et al. (2006). Development of a tumor-selective approach to treat metastatic cancer. PLoS ONE, 1, e23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Hung, S. C., Deng, W. P., Yang, W. K., et al. (2005). Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clinical Cancer Research, 11, 7749–7756.

    Article  CAS  PubMed  Google Scholar 

  66. Yang, J., Lam, D. H., Goh, S. S., et al. (2012). Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model. Stem Cells, 30, 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  67. Luetzkendorf, J., Mueller, L. P., Mueller, T., Caysa, H., Nerger, K., & Schmoll, H. J. (2010). Growth inhibition of colorectal carcinoma by lentiviral TRAIL-transgenic human mesenchymal stem cells requires their substantial intratumoral presence. Journal of Cellular and Molecular Medicine, 14, 2292–2304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Eggenhofer, E., Benseler, V., Kroemer, A., et al. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mukherjee, A., Tipnis, S., Sarma, H. D., et al. (2012). Radiolabeling of umbilical cord-derived mesenchymal stem cells for in vivo tracking. Cancer Biotherapy and Radiopharmaceuticals, 27, 614–619.

    Article  CAS  PubMed  Google Scholar 

  70. Doucette, T., Rao, G., Yang, Y., et al. (2011). Mesenchymal stem cells display tumor-specific tropism in an RCAS/Ntv-a glioma model. Neoplasia, 13, 716–725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Kim, S. M., Oh, J. H., Park, S. A., et al. (2010). Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells, 28, 2217–2228.

    Article  PubMed  Google Scholar 

  72. Ziadloo, A., Burks, S. R., Gold, E. M., et al. (2012). Enhanced homing permeability and retention of bone marrow stromal cells by noninvasive pulsed focused ultrasound. Stem Cells, 30, 1216–1227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Nystedt, J., Anderson, H., Tikkanen, J., et al. (2013). Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells, 31, 317–326.

    Article  CAS  PubMed  Google Scholar 

  74. Ruan, J., Song, H., Li, C., et al. (2012). DiR-labeled Embryonic Stem Cells for Targeted Imaging of in vivo Gastric Cancer Cells. Theranostics, 2, 618–628.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Lin, S., Xie, X., Patel, M. R., et al. (2007). Quantum dot imaging for embryonic stem cells. BMC Biotechnology, 7, 67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Muller-Borer, B. J., Collins, M. C., Gunst, P. R., Cascio, W. E., & Kypson, A. P. (2007). Quantum dot labeling of mesenchymal stem cells. Journal of Nanobiotechnology, 5, 9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Bouvet, M., Wang, J., Nardin, S. R., et al. (2002). Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Research, 62, 1534–1540.

    CAS  PubMed  Google Scholar 

  78. Jiguet-Jiglaire, C., Cayol, M., Mathieu, S., et al. (2014). Noninvasive near-infrared fluorescent protein-based imaging of tumor progression and metastases in deep organs and intraosseous tissues. Journal of Biomedical Optics, 19, 16019.

    Article  PubMed  CAS  Google Scholar 

  79. Togel, F., Yang, Y., Zhang, P., Hu, Z., & Westenfelder, C. (2008). Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury. American Journal of Physiology. Renal Physiology, 295, F315–F321.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Close, D. M., Xu, T., Sayler, G. S., & Ripp, S. (2011). In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel), 11, 180–206.

    Article  CAS  Google Scholar 

  81. Yan, C., Li, S., Li, Z., et al. (2013). Human umbilical cord mesenchymal stem cells as vehicles of CD20-specific TRAIL fusion protein delivery: a double-target therapy against non-Hodgkin’s lymphoma. Molecular Pharmaceutics, 10, 142–151.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, H., Cao, F., De, A., et al. (2009). Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells, 27, 1548–1558.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Collins, J.W., Meganck, J.A., Kuo, C., Francis, K.P., Frankel, G. (2013). 4D multimodality imaging of Citrobacter rodentium infections in mice. Journal of Visualized Experiments.

  84. Kuo, C., Coquoz, O., Troy, T. L., Xu, H., & Rice, B. W. (2007). Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. Journal of Biomedical Optics, 12, 024007.

    Article  PubMed  CAS  Google Scholar 

  85. Li, S. C., Tachiki, L. M., Luo, J., Dethlefs, B. A., Chen, Z., & Loudon, W. G. (2010). A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Reviews, 6, 317–333.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Aoki, I., Wu, Y. J. L., Silva, A. C., Lynch, R. M., & Koretsky, A. P. (2004). In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. NeuroImage, 22, 1046–1059.

    Article  PubMed  Google Scholar 

  87. Zhang, S. J., & Wu, J. C. (2007). Comparison of imaging techniques for tracking cardiac stem cell therapy. Journal of Nuclear Medicine, 48, 1916–1919.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Liu, J., Cheng, E. C., Long, R. C., et al. (2009). Noninvasive monitoring of embryonic stem cells in vivo with MRI transgene reporter. Tissue Engineering. Part C, Methods, 15, 739–747.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Li, Z., Suzuki, Y., Huang, M., et al. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells, 26, 864–873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Nohroudi, K., Arnhold, S., Berhorn, T., Addicks, K., Hoehn, M., & Himmelreich, U. (2010). In vivo MRI stem cell tracking requires balancing of detection limit and cell viability. Cell Transplantation, 19, 431–441.

    Article  CAS  PubMed  Google Scholar 

  91. Diana, V., Bossolasco, P., Moscatelli, D., Silani, V., & Cova, L. (2013). Dose dependent side effect of superparamagnetic iron oxide nanoparticle labeling on cell motility in two fetal stem cell populations. PLoS ONE, 8, e78435.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Brekke, C., Williams, S. C., Price, J., Thorsen, F., & Modo, M. (2007). Cellular multiparametric MRI of neural stem cell therapy in a rat glioma model. NeuroImage, 37, 769–782.

    Article  CAS  PubMed  Google Scholar 

  93. Wu, X., Hu, J., Zhou, L., et al. (2008). In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation. Journal of Neurosurgery, 108, 320–329.

    Article  PubMed  Google Scholar 

  94. Thu, M. S., Najbauer, J., Kendall, S. E., et al. (2009). Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS ONE, 4, e7218.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Lee, H. J., Doo, S. W., Kim, D. H., et al. (2013). Cytosine deaminase-expressing human neural stem cells inhibit tumor growth in prostate cancer-bearing mice. Cancer Letters, 335, 58–65.

    Article  CAS  PubMed  Google Scholar 

  96. Boersma, H. H., Tromp, S. C., Hofstra, L., & Narula, J. (2005). Stem cell tracking: reversing the silence of the lambs. Journal of Nuclear Medicine, 46, 200–203.

    PubMed  Google Scholar 

  97. Daldrup-Link, H. E., Rudelius, M., Metz, S., et al. (2004). Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. European Journal of Nuclear Medicine and Molecular Imaging, 31, 1312–1321.

    Article  PubMed  Google Scholar 

  98. Love, Z., Wang, F., Dennis, J., et al. (2007). Imaging of mesenchymal stem cell transplant by bioluminescence and PET. Journal of Nuclear Medicine, 48, 2011–2020.

    Article  PubMed  Google Scholar 

  99. Gera, A., Steinberg, G. K., & Guzman, R. (2010). In vivo neural stem cell imaging: current modalities and future directions. Regenerative Medicine, 5, 73–86.

    Article  PubMed  Google Scholar 

  100. Jiang, H., Cheng, Z., Tian, M., & Zhang, H. (2011). In vivo imaging of embryonic stem cell therapy. European Journal of Nuclear Medicine and Molecular Imaging, 38, 774–784.

    Article  PubMed  Google Scholar 

  101. Hofmann, M., Wollert, K. C., Meyer, G. P., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111, 2198–2202.

    Article  PubMed  Google Scholar 

  102. Gu, E., Chen, W. Y., Gu, J., Burridge, P., & Wu, J. C. (2012). Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics, 2, 335–345.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Miletic, H., Fischer, Y., Litwak, S., et al. (2007). Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Molecular Therapy, 15, 1373–1381.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, G., Lan, X., Yen, T. C., et al. (2012). Therapeutic gene expression in transduced mesenchymal stem cells can be monitored using a reporter gene. Nuclear Medicine and Biology, 39, 1243–1250.

    Article  CAS  PubMed  Google Scholar 

  105. Dwyer, R. M., Ryan, J., Havelin, R. J., et al. (2011). Mesenchymal Stem Cell-mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancer. Stem Cells, 29, 1149–1157.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Frangioni, J. V., & Hajjar, R. J. (2004). In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation, 110, 3378–3383.

    Article  PubMed  Google Scholar 

  107. Stojanov, K., de Vries, E. F., Hoekstra, D., van Waarde, A., Dierckx, R. A., & Zuhorn, I. S. (2012). [18F] FDG labeling of neural stem cells for in vivo cell tracking with positron emission tomography: inhibition of tracer release by phloretin. Molecular Imaging, 11, 1–12.

    CAS  PubMed  Google Scholar 

  108. Wang, X. Y., Ju, S., Li, C., et al. (2012). Non-invasive imaging of endothelial progenitor cells in tumor neovascularization using a novel dual-modality paramagnetic/near-infrared fluorescence probe. PLoS ONE, 7, e50575.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institute of Biomedical Imaging and Bioengineering (R21EB016792) and National Cancer Institute (R01CA175318) to A. Hatefi.

Conflict of Interest

The authors declare no potential conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Hatefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, F.S., Banerjee, D. & Hatefi, A. Practical Issues with the Use of Stem Cells for Cancer Gene Therapy. Stem Cell Rev and Rep 11, 688–698 (2015). https://doi.org/10.1007/s12015-015-9605-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-015-9605-9

Keywords

Navigation