Skip to main content

Mesenchymal Stem Cells: Prospects for Cancer Therapy

  • Chapter
  • First Online:
Emerging Trends in Cell and Gene Therapy

Abstract

Cancer remains one of the leading causes of mortality and morbidity throughout the world. To a significant extent, current conventional cancer therapies are symptomatic and passive in nature. The major obstacle for the development of effective cancer therapy is believed to be the lack of sufficient specificity. Since the discovery of tumor-oriented homing capacity of mesenchymal stem cells (MSCs), the application of specific anticancer gene-engineered MSCs has held great potential for cancer therapies. The MSC-based multiple-targeted anticancer strategy is based on MSCs’ capacity of tumor-directed migration and incorporation and in situ expression of tumor-specific anticancer genes. Aimed at translating the benchwork to meaningful clinical applications, we will describe MSCs’ tumor tropism and their use as therapeutic vehicles, the multiple-targeted anticancer potential of engineered MSCs and a personalized strategy for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brawley OW (2011) Avoidable cancer deaths globally. CA Cancer J Clin 61:67–68

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  3. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    Article  PubMed  CAS  Google Scholar 

  4. Sun XY, Nong J, Qin K, Warnock GL, Dai LJ (2011) Mesenchymal stem cell-mediated cancer therapy: a dual-targeted strategy of personalized medicine. World J Stem Cells 3:96–103

    Article  PubMed  Google Scholar 

  5. Lippert TH, Ruoff HJ, Volm M (2011) Current status of methods to assess cancer drug resistance. Int J Med Sci 8:245–253

    Article  PubMed  Google Scholar 

  6. Lippert TH, Ruoff HJ, Volm M (2008) Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung 58:261–264

    PubMed  CAS  Google Scholar 

  7. Bertos NR, Park M (2011) Breast cancer – one term, many entities? J Clin Invest 121:3789–3796

    Article  PubMed  CAS  Google Scholar 

  8. Russnes HG, Navin N, Hicks J, Borresen-Dale AL (2011) Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest 121:3810–3818

    Article  PubMed  CAS  Google Scholar 

  9. Cao Y, DePinho RA, Ernst M, Vousden K (2011) Cancer research: past, present and future. Nat Rev Cancer 11:749–754

    Article  PubMed  CAS  Google Scholar 

  10. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    PubMed  CAS  Google Scholar 

  11. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  PubMed  CAS  Google Scholar 

  12. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  PubMed  CAS  Google Scholar 

  13. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  14. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  15. Vaananen HK (2005) Mesenchymal stem cells. Ann Med 37:469–479

    Article  PubMed  Google Scholar 

  16. Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ (2003) Mesenchymal stem cells. Arch Med Res 34:565–571

    Article  PubMed  CAS  Google Scholar 

  17. Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217:318–324

    Article  PubMed  CAS  Google Scholar 

  18. Pevsner-Fischer M, Levin S, Zipori D (2011) The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev 7:560–568

    Article  PubMed  CAS  Google Scholar 

  19. Wong RS (2011) Mesenchymal stem cells: angels or demons? J Biomed Biotechnol 2011:459510

    PubMed  Google Scholar 

  20. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  21. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  PubMed  CAS  Google Scholar 

  22. Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–425

    Article  PubMed  CAS  Google Scholar 

  23. Loebinger MR, Janes SM (2010) Stem cells as vectors for antitumour therapy. Thorax 65:362–369

    Article  PubMed  Google Scholar 

  24. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164

    Article  PubMed  CAS  Google Scholar 

  25. Loebinger MR, Kyrtatos PG, Turmaine M, Price AN, Pankhurst Q, Lythgoe MF et al (2009) Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 69:8862–8867

    Article  PubMed  CAS  Google Scholar 

  26. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 106:4822–4827

    Article  PubMed  CAS  Google Scholar 

  27. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26:831–841

    Article  PubMed  CAS  Google Scholar 

  28. Yang B, Wu X, Mao Y, Bao W, Gao L, Zhou P et al (2009) Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells. Neurosurgery 65:610–624; ­discussion 24

    Article  PubMed  Google Scholar 

  29. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203:1235–1247

    Article  PubMed  CAS  Google Scholar 

  30. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A et al (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27:2614–2623

    Article  PubMed  CAS  Google Scholar 

  31. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 184:5885–5894

    Article  PubMed  CAS  Google Scholar 

  32. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M et al (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25:520–528

    Article  PubMed  CAS  Google Scholar 

  33. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    PubMed  CAS  Google Scholar 

  34. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K et al (2010) Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 12:615–625

    Article  PubMed  CAS  Google Scholar 

  35. Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch KW et al (2009) Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 250:747–753

    Article  PubMed  Google Scholar 

  36. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596

    PubMed  CAS  Google Scholar 

  37. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  38. Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL (2011) Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett 305:8–20

    Article  PubMed  CAS  Google Scholar 

  39. Maestroni GJ, Hertens E, Galli P (1999) Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 55:663–667

    Article  PubMed  CAS  Google Scholar 

  40. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M (2003) Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 75:248–255

    Article  PubMed  CAS  Google Scholar 

  41. Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD (2008) NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin 29:333–340

    Article  PubMed  CAS  Google Scholar 

  42. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  43. Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL et al (2009) The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 106:3806–3811

    Article  PubMed  CAS  Google Scholar 

  44. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844

    Article  PubMed  CAS  Google Scholar 

  45. Luetzkendorf J, Mueller LP, Mueller T, Caysa H, Nerger K, Schmoll HJ (2010) Growth inhibition of colorectal carcinoma by lentiviral TRAIL-transgenic human mesenchymal stem cells requires their substantial intratumoral presence. J Cell Mol Med 14:2292–2304

    Article  PubMed  CAS  Google Scholar 

  46. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62:5657–5663

    PubMed  CAS  Google Scholar 

  47. Pisati F, Belicchi M, Acerbi F, Marchesi C, Giussani C, Gavina M et al (2007) Effect of human skin-derived stem cells on vessel architecture, tumor growth, and tumor invasion in brain tumor animal models. Cancer Res 67:3054–3063

    Article  PubMed  CAS  Google Scholar 

  48. Moore XL, Lu J, Sun L, Zhu CJ, Tan P, Wong MC (2004) Endothelial progenitor cells’ “homing” specificity to brain tumors. Gene Ther 11:811–818

    Article  PubMed  CAS  Google Scholar 

  49. Uchibori R, Okada T, Ito T, Urabe M, Mizukami H, Kume A et al (2009) Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med 11:373–381

    Article  PubMed  CAS  Google Scholar 

  50. Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R et al (2008) Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 10:1071–1082

    Article  PubMed  CAS  Google Scholar 

  51. Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67:6304–6313

    Article  PubMed  CAS  Google Scholar 

  52. Cavarretta IT, Altanerova V, Matuskova M, Kucerova L, Culig Z, Altaner C (2010) Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 18:223–231

    Article  PubMed  CAS  Google Scholar 

  53. Zhang ZX, Guan LX, Zhang K, Zhang Q, Dai LJ (2008) A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy 10:134–139

    Article  PubMed  CAS  Google Scholar 

  54. Wu GS (2009) TRAIL as a target in anti-cancer therapy. Cancer Lett 285:1–5

    Article  PubMed  CAS  Google Scholar 

  55. Zhu DM, Shi J, Liu S, Liu Y, Zheng D (2011) HIV infection enhances TRAIL-induced cell death in macrophage by down-regulating decoy receptor expression and generation of reactive oxygen species. PLoS One 6:e18291

    Article  PubMed  CAS  Google Scholar 

  56. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113

    Article  PubMed  CAS  Google Scholar 

  57. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821

    Article  PubMed  CAS  Google Scholar 

  58. Sun XY, Nong J, Qin K, Lu H, Moniri MR, Dai LJ et al (2011) MSC(TRAIL)-mediated HepG2 cell death in direct and indirect co-cultures. Anticancer Res 31:3705–3712

    PubMed  CAS  Google Scholar 

  59. Liu W, Zhou Y, Reske SN, Shen C (2008) PTEN mutation: many birds with one stone in tumorigenesis. Anticancer Res 28:3613–3619

    PubMed  CAS  Google Scholar 

  60. Fine B, Hodakoski C, Koujak S, Su T, Saal LH, Maurer M et al (2009) Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 325:1261–1265

    Article  PubMed  CAS  Google Scholar 

  61. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150

    Article  PubMed  CAS  Google Scholar 

  62. Peyrou M, Bourgoin L, Foti M (2010) PTEN in liver diseases and cancer. World J Gastroenterol 16:4627–4633

    Article  PubMed  CAS  Google Scholar 

  63. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782–798

    Article  PubMed  CAS  Google Scholar 

  64. Yuan XJ, Whang YE (2002) PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 21:319–327

    Article  PubMed  CAS  Google Scholar 

  65. Opel D, Westhoff MA, Bender A, Braun V, Debatin KM, Fulda S (2008) Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 68:6271–6280

    Article  PubMed  CAS  Google Scholar 

  66. Shankar S, Singh TR, Srivastava RK (2004) Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: intracellular mechanisms. Prostate 61:35–49

    Article  PubMed  CAS  Google Scholar 

  67. Shankar S, Chen X, Srivastava RK (2005) Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 62:165–186

    Article  PubMed  CAS  Google Scholar 

  68. Dumitru CA, Carpinteiro A, Trarbach T, Hengge UR, Gulbins E (2007) Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis 12:1533–1541

    Article  PubMed  CAS  Google Scholar 

  69. El-Zawahry A, McKillop J, Voelkel-Johnson C (2005) Doxorubicin increases the effectiveness of Apo2L/TRAIL for tumor growth inhibition of prostate cancer xenografts. BMC Cancer 5:2

    Article  PubMed  Google Scholar 

  70. Belyanskaya LL, Marti TM, Hopkins-Donaldson S, Kurtz S, Felley-Bosco E, Stahel RA (2007) Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin. Mol Cancer 6:66

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by VGH and UBC Hospital Foundation and Guangxi Ministry of Science and Technology. The authors are grateful to Crystal Robertson for her assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Jun Dai Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dai, LJ., Sun, XY., Luo, J., Warnock, G.L. (2013). Mesenchymal Stem Cells: Prospects for Cancer Therapy. In: Danquah, M., Mahato, R. (eds) Emerging Trends in Cell and Gene Therapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-417-3_12

Download citation

Publish with us

Policies and ethics