Stem Cell Reviews and Reports

, Volume 9, Issue 2, pp 148–157 | Cite as

Thermoresponsive Substrates used for the Expansion of Human Mesenchymal Stem Cells and the Preservation of Immunophenotype

  • Maria E. Nash
  • Xingliang Fan
  • William M. Carroll
  • Alexander V. Gorelov
  • Frank P. Barry
  • Georgina Shaw
  • Yury A. Rochev
Article

Abstract

The facile regeneration of undifferentiated human mesenchymal stem cells (hMSCs) from thermoresponsive surfaces facilitates the collection of stem cells avoiding the use of animal derived cell detachment agents commonly used in cell culture. This communication proposes a procedure to fabricate coatings from commercially available pNIPAm which is both affordable and a significant simplification on alternative approaches used elsewhere. Solvent casting was used to produce films in the micrometer range and successful cell adhesion and proliferation was highly dependent on the thickness of the coating produced with 1 μm thick coatings supporting cells to confluence. 3T3 cell sheets and hMSCs were successfully detached from the cast coatings upon temperature reduction. Furthermore, results indicate that the hMSCs remained undifferentiated as the surface receptor profile of hMSCs was not altered when cells were detached in this manner.

Keywords

Thermoresponsive polymers Human mesenchymal stem cells Cell expansion and regeneration Flow cytometry Stem cell differentiation 

References

  1. 1.
    Re'em, T., Kaminer-Israeli, Y., Ruvinov, E., & Cohen, S. (2012). Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials, 33, 751–761.PubMedCrossRefGoogle Scholar
  2. 2.
    Curran, J. M., Chen, R., & Hunt, J. A. (2006). The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials, 27, 4783–4793.PubMedCrossRefGoogle Scholar
  3. 3.
    Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008). Biomaterials for stem cell differentiation. Advanced Drug Delivery Reviews, 60, 215–228.PubMedCrossRefGoogle Scholar
  4. 4.
    Bratt-Leal, A. M., Carpenedo, R. L., Ungrin, M. D., Zandstra, P. W., & McDevitt, T. C. (2011). Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials, 32, 48–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Singh, A., & Elisseeff, J. (2010). Biomaterials for stem cell differentiation. Journal of Materials Chemistry, 20, 8832–8847.CrossRefGoogle Scholar
  6. 6.
    Liao, T. Q., Moussallem, M. D., Kim, J., Schlenoff, J. B., & Ma, T. (2010). N-isopropylacrylamide-based thermoresponsive polyelectrolyte multilayer films for human mesenchymal stem cell expansion. Biotechnology Progress, 26, 1705–1713.PubMedCrossRefGoogle Scholar
  7. 7.
    Shi, D. Y., Ma, D., Dong, F. Q., et al. (2010). Proliferation and multi-differentiation potentials of human mesenchymal stem cells on thermo-responsive PDMS surfaces grafted with PNIPAAm. Bioscience Reports, 30, 149–158.CrossRefGoogle Scholar
  8. 8.
    Yang, L., Cheng, F., Liu, T., et al. (2012). Comparison of mesenchymal stem cells released from poly(N-isopropylacrylamide) copolymer film and by trypsinization. Biomedical Materials, 7, 035003.PubMedCrossRefGoogle Scholar
  9. 9.
    Nash, M. E., Carroll, W. M., Velasco, D., et al. (2012). Synthesis and Characterization of a Novel Thermoresponsive Copolymer Series and their Application in Cell and Cell Sheet Regeneration. Journal of Biomaterials Science, Polymer Edition.Google Scholar
  10. 10.
    Nash, M. E., Carroll, W. M., Nikolskaya, N., et al. (2011). Straightforward, One step fabrication of ultra-thin thermoresponsive films from commercially available pNIPAm for cell culture. ACS Applied Materials & Interfaces, 3, 1980–1990.CrossRefGoogle Scholar
  11. 11.
    Nash, M. E., Carroll, W. M., Foley, P., et al. (2012). Ultra-thin spin coated hydrogels for use in cell sheet recovery—synthesis, characterization to application. Soft Matter, 8, 3889–3899.CrossRefGoogle Scholar
  12. 12.
    Kumar, A., Srivatava, A., Galaev, I. Y., & Mattiasson, B. (2007). Smart polymers: physical forms and bioengineering applications. Progress in Polymer Science, 32, 1205–1237.CrossRefGoogle Scholar
  13. 13.
    Matsuda, N., Shimizu, T., Yamato, M., & Okano, T. (2007). Tissue engineering based on cell sheet technology. Advanced Materials, 19, 3089–3099.CrossRefGoogle Scholar
  14. 14.
    Takahashi, H., Nakayama, M., Yamato, M., Okano, T. (2010). Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules, 1991–9.Google Scholar
  15. 15.
    Nash, M. E., Carroll, W., Healy, D., Elvira, C., Rochev, Y. (2012). Cell and Cell Sheet Recovery from pNIPAm coatings; Motivation and History to Present Day Approaches. Journal of Materials Chemistry.Google Scholar
  16. 16.
    Rayatpisheh, S., Li, P., & Chan-Park, M. B. (2012). Argon-plasma-induced ultrathin thermal grafting of thermoresponsive pNIPAm coating for contractile patterned human SMC sheet engineering. Macromolecular Bioscience, 12, 937–945.PubMedCrossRefGoogle Scholar
  17. 17.
    Canavan, H. E., Cheng, X., Graham, D. J., Ratner, B. D., & Castner, D. G. (2005). Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir, 21, 1949–1955.PubMedCrossRefGoogle Scholar
  18. 18.
    Kikuchi, A. O. T. (2005). Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release, 101, 69–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Kumashiro, Y., Yamato, M., & Okano, T. (2010). Cell attachment-detachment control on temperature-responsive thin surfaces for novel tissue engineering. Annals of Biomedical Engineering, 38, 1977–1988.PubMedCrossRefGoogle Scholar
  20. 20.
    Moran, M. T., Carroll, W. M., Selezneva, I., Gorelov, A., & Rochev, Y. (2006). Cell growth and detachment from protein-coated PNIPAAm-based polymers. Journal of Biomedical Materials Research. Part A, 81A, 870–876.CrossRefGoogle Scholar
  21. 21.
    Baldwin, S. P., Krewson, C. E., & Saltzman, W. (1996). PC12 cell aggregation and neurite growth in gels of collagen, laminin and fibronectin. International Journal of Developmental Neuroscience, 14, 351–364.PubMedCrossRefGoogle Scholar
  22. 22.
    Foldberg, S., Petersen, M., Fojan, P., et al. (2011). Patterned poly (lactic acid) films support growth and spontaneous multilineage gene expression of adipose-derived stem cells. Colloids and Surfaces B: Biointerfaces.Google Scholar
  23. 23.
    Shimizu, K., Fujita, H., & Nagamori, E. (2010). Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering. Biotechnology and Bioengineering, 106, 303–310.PubMedGoogle Scholar
  24. 24.
    Takezawa, T., Mori, Y., & Yoshizato, K. (1990). Cell culture on a thermo-responsive polymer surface. Biotechnology, 8, 854–856.PubMedCrossRefGoogle Scholar
  25. 25.
    Malonne, H., Eeckman, F., Fontaine, D., et al. (2005). Preparation of poly (N-isopropylacrylamide) copolymers and preliminary assessment of their acute and subacute toxicity in mice. European Journal of Pharmaceutics and Biopharmaceutics, 61, 188–194.PubMedCrossRefGoogle Scholar
  26. 26.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.PubMedCrossRefGoogle Scholar
  27. 27.
    Gilcreest, V. P., Carroll, W. M., Rochev, Y. A., Blute, I., Dawson, K. A., & Gorelov, A. V. (2004). Thermoresponsive poly(N-isopropylacrylamide) copolymers: contact angles and surface energies of polymer films. Langmuir, 20, 10138–10145.PubMedCrossRefGoogle Scholar
  28. 28.
    Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., & Hirvonen, J. (2005). Cytotoxicity of thermosensitive polymers poly (< i > N</i > -isopropylacrylamide), poly (< i > N</i > -vinylcaprolactam) and amphiphilically modified poly (< i > N</i > -vinylcaprolactam). Biomaterials, 26, 3055–3064.PubMedCrossRefGoogle Scholar
  29. 29.
    Wadajkar, A. S., Koppolu, B., Rahimi, M., & Nguyen, K. T. (2009). Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly (N-isopropylacrylamide) nanoparticles. Journal of Nanoparticle Research, 11, 1375–1382.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maria E. Nash
    • 1
    • 2
  • Xingliang Fan
    • 3
  • William M. Carroll
    • 2
  • Alexander V. Gorelov
    • 4
  • Frank P. Barry
    • 5
  • Georgina Shaw
    • 5
  • Yury A. Rochev
    • 2
    • 3
  1. 1.Department of Applied Macromolecular ChemistryInstituto de Ciencia y Tecnología de Polímeros, ICTP-CSICMadridSpain
  2. 2.School of ChemistryNational University of IrelandGalwayIreland
  3. 3.National Centre for Biomedical Engineering Science, National University of IrelandGalwayIreland
  4. 4.School of Chemistry and Chemical BiologyUniversity College DublinDublinIreland
  5. 5.Regenerative Medicine InstituteNational University of Ireland GalwayGalwayIreland

Personalised recommendations