Skip to main content
Log in

Thermoresponsive Substrates used for the Expansion of Human Mesenchymal Stem Cells and the Preservation of Immunophenotype

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The facile regeneration of undifferentiated human mesenchymal stem cells (hMSCs) from thermoresponsive surfaces facilitates the collection of stem cells avoiding the use of animal derived cell detachment agents commonly used in cell culture. This communication proposes a procedure to fabricate coatings from commercially available pNIPAm which is both affordable and a significant simplification on alternative approaches used elsewhere. Solvent casting was used to produce films in the micrometer range and successful cell adhesion and proliferation was highly dependent on the thickness of the coating produced with 1 μm thick coatings supporting cells to confluence. 3T3 cell sheets and hMSCs were successfully detached from the cast coatings upon temperature reduction. Furthermore, results indicate that the hMSCs remained undifferentiated as the surface receptor profile of hMSCs was not altered when cells were detached in this manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Re'em, T., Kaminer-Israeli, Y., Ruvinov, E., & Cohen, S. (2012). Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials, 33, 751–761.

    Article  PubMed  Google Scholar 

  2. Curran, J. M., Chen, R., & Hunt, J. A. (2006). The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials, 27, 4783–4793.

    Article  PubMed  CAS  Google Scholar 

  3. Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008). Biomaterials for stem cell differentiation. Advanced Drug Delivery Reviews, 60, 215–228.

    Article  PubMed  CAS  Google Scholar 

  4. Bratt-Leal, A. M., Carpenedo, R. L., Ungrin, M. D., Zandstra, P. W., & McDevitt, T. C. (2011). Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials, 32, 48–56.

    Article  PubMed  CAS  Google Scholar 

  5. Singh, A., & Elisseeff, J. (2010). Biomaterials for stem cell differentiation. Journal of Materials Chemistry, 20, 8832–8847.

    Article  CAS  Google Scholar 

  6. Liao, T. Q., Moussallem, M. D., Kim, J., Schlenoff, J. B., & Ma, T. (2010). N-isopropylacrylamide-based thermoresponsive polyelectrolyte multilayer films for human mesenchymal stem cell expansion. Biotechnology Progress, 26, 1705–1713.

    Article  PubMed  CAS  Google Scholar 

  7. Shi, D. Y., Ma, D., Dong, F. Q., et al. (2010). Proliferation and multi-differentiation potentials of human mesenchymal stem cells on thermo-responsive PDMS surfaces grafted with PNIPAAm. Bioscience Reports, 30, 149–158.

    Article  CAS  Google Scholar 

  8. Yang, L., Cheng, F., Liu, T., et al. (2012). Comparison of mesenchymal stem cells released from poly(N-isopropylacrylamide) copolymer film and by trypsinization. Biomedical Materials, 7, 035003.

    Article  PubMed  Google Scholar 

  9. Nash, M. E., Carroll, W. M., Velasco, D., et al. (2012). Synthesis and Characterization of a Novel Thermoresponsive Copolymer Series and their Application in Cell and Cell Sheet Regeneration. Journal of Biomaterials Science, Polymer Edition.

  10. Nash, M. E., Carroll, W. M., Nikolskaya, N., et al. (2011). Straightforward, One step fabrication of ultra-thin thermoresponsive films from commercially available pNIPAm for cell culture. ACS Applied Materials & Interfaces, 3, 1980–1990.

    Article  CAS  Google Scholar 

  11. Nash, M. E., Carroll, W. M., Foley, P., et al. (2012). Ultra-thin spin coated hydrogels for use in cell sheet recovery—synthesis, characterization to application. Soft Matter, 8, 3889–3899.

    Article  CAS  Google Scholar 

  12. Kumar, A., Srivatava, A., Galaev, I. Y., & Mattiasson, B. (2007). Smart polymers: physical forms and bioengineering applications. Progress in Polymer Science, 32, 1205–1237.

    Article  CAS  Google Scholar 

  13. Matsuda, N., Shimizu, T., Yamato, M., & Okano, T. (2007). Tissue engineering based on cell sheet technology. Advanced Materials, 19, 3089–3099.

    Article  CAS  Google Scholar 

  14. Takahashi, H., Nakayama, M., Yamato, M., Okano, T. (2010). Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules, 1991–9.

  15. Nash, M. E., Carroll, W., Healy, D., Elvira, C., Rochev, Y. (2012). Cell and Cell Sheet Recovery from pNIPAm coatings; Motivation and History to Present Day Approaches. Journal of Materials Chemistry.

  16. Rayatpisheh, S., Li, P., & Chan-Park, M. B. (2012). Argon-plasma-induced ultrathin thermal grafting of thermoresponsive pNIPAm coating for contractile patterned human SMC sheet engineering. Macromolecular Bioscience, 12, 937–945.

    Article  PubMed  CAS  Google Scholar 

  17. Canavan, H. E., Cheng, X., Graham, D. J., Ratner, B. D., & Castner, D. G. (2005). Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir, 21, 1949–1955.

    Article  PubMed  CAS  Google Scholar 

  18. Kikuchi, A. O. T. (2005). Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release, 101, 69–84.

    Article  PubMed  CAS  Google Scholar 

  19. Kumashiro, Y., Yamato, M., & Okano, T. (2010). Cell attachment-detachment control on temperature-responsive thin surfaces for novel tissue engineering. Annals of Biomedical Engineering, 38, 1977–1988.

    Article  PubMed  Google Scholar 

  20. Moran, M. T., Carroll, W. M., Selezneva, I., Gorelov, A., & Rochev, Y. (2006). Cell growth and detachment from protein-coated PNIPAAm-based polymers. Journal of Biomedical Materials Research. Part A, 81A, 870–876.

    Article  Google Scholar 

  21. Baldwin, S. P., Krewson, C. E., & Saltzman, W. (1996). PC12 cell aggregation and neurite growth in gels of collagen, laminin and fibronectin. International Journal of Developmental Neuroscience, 14, 351–364.

    Article  PubMed  CAS  Google Scholar 

  22. Foldberg, S., Petersen, M., Fojan, P., et al. (2011). Patterned poly (lactic acid) films support growth and spontaneous multilineage gene expression of adipose-derived stem cells. Colloids and Surfaces B: Biointerfaces.

  23. Shimizu, K., Fujita, H., & Nagamori, E. (2010). Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering. Biotechnology and Bioengineering, 106, 303–310.

    PubMed  CAS  Google Scholar 

  24. Takezawa, T., Mori, Y., & Yoshizato, K. (1990). Cell culture on a thermo-responsive polymer surface. Biotechnology, 8, 854–856.

    Article  PubMed  CAS  Google Scholar 

  25. Malonne, H., Eeckman, F., Fontaine, D., et al. (2005). Preparation of poly (N-isopropylacrylamide) copolymers and preliminary assessment of their acute and subacute toxicity in mice. European Journal of Pharmaceutics and Biopharmaceutics, 61, 188–194.

    Article  PubMed  CAS  Google Scholar 

  26. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  PubMed  CAS  Google Scholar 

  27. Gilcreest, V. P., Carroll, W. M., Rochev, Y. A., Blute, I., Dawson, K. A., & Gorelov, A. V. (2004). Thermoresponsive poly(N-isopropylacrylamide) copolymers: contact angles and surface energies of polymer films. Langmuir, 20, 10138–10145.

    Article  PubMed  CAS  Google Scholar 

  28. Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., & Hirvonen, J. (2005). Cytotoxicity of thermosensitive polymers poly (< i > N</i > -isopropylacrylamide), poly (< i > N</i > -vinylcaprolactam) and amphiphilically modified poly (< i > N</i > -vinylcaprolactam). Biomaterials, 26, 3055–3064.

    Article  PubMed  CAS  Google Scholar 

  29. Wadajkar, A. S., Koppolu, B., Rahimi, M., & Nguyen, K. T. (2009). Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly (N-isopropylacrylamide) nanoparticles. Journal of Nanoparticle Research, 11, 1375–1382.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received from The Irish Research Council under the Embark scheme (Grant No.: RS/2010/2807). Sincere thanks to Dr. Serguei Belochapkine, Materials and Surface Science Institute, University of Limerick, for the XPS analysis.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Nash.

Additional information

Maria E. Nash and Xingliang Fan, these authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nash, M.E., Fan, X., Carroll, W.M. et al. Thermoresponsive Substrates used for the Expansion of Human Mesenchymal Stem Cells and the Preservation of Immunophenotype. Stem Cell Rev and Rep 9, 148–157 (2013). https://doi.org/10.1007/s12015-013-9428-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9428-5

Keywords

Navigation