Skip to main content

Advertisement

Log in

Epigenetic Programming and Risk: The Birthplace of Cardiovascular Disease?

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Epigenetics, through control of gene expression circuitries, plays important roles in various physiological processes such as stem cell differentiation and self renewal. This occurs during embryonic development, in different tissues, and in response to environmental stimuli. The language of epigenetic program is based on specific covalent modifications of DNA and chromatin. Thus, in addition to the individual identity, encoded by sequence of the four bases of the DNA, there is a cell type identity characterized by its positioning in the epigenetic “landscape”. Aberrant changes in epigenetic marks induced by environmental cues may contribute to the development of abnormal phenotypes associated with different human diseases such as cancer, neurological disorders and inflammation. Most of the epigenetic studies have focused on embryonic development and cancer biology, while little has been done to explore the role of epigenetic mechanisms in the pathogenesis of cardiovascular disease. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodeling and histone modifications play key roles in the pathogenesis of cardiovascular disease through (re)programming of cardiovascular (stem) cells commitment, identity and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waddington, C. H. (2012). The epigenotype. 1942. International Journal of Epidemiology, 41, 10–13.

    Article  CAS  PubMed  Google Scholar 

  2. Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396–398.

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell, 128, 635–638.

    Article  CAS  PubMed  Google Scholar 

  4. Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl), 245–254.

    Article  CAS  PubMed  Google Scholar 

  5. Hochberg, Z., Feil, R., Constancia, M., et al. (2011). Child health, developmental plasticity, and epigenetic programming. Endocrine Reviews, 32, 159–224.

    Article  CAS  PubMed  Google Scholar 

  6. Medzhitov, R., & Horng, T. (2009). Transcriptional control of the inflammatory response. Nature Reviews Immunology, 9, 692–703.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma, S., Kelly, T. K., & Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis, 31, 27–36.

    Article  CAS  PubMed  Google Scholar 

  8. Urdinguio, R. G., Sanchez-Mut, J. V., & Esteller, M. (2009). Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurology, 8, 1056–1072.

    Article  CAS  PubMed  Google Scholar 

  9. Barker, D. J. (2002). Fetal programming of coronary heart disease. Trends in Endocrinology and Metabolism, 13, 364–368.

    Article  CAS  PubMed  Google Scholar 

  10. Alkemade, F. E., Gittenberger-de Groot, A. C., Schiel, A. E., et al. (2007). Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2228–2235.

    Article  CAS  PubMed  Google Scholar 

  11. Vincent, A., & Van Seuningen, I. (2009). Epigenetics, stem cells and epithelial cell fate. Differentiation, 78, 99–107.

    Article  CAS  PubMed  Google Scholar 

  12. Robertson, K. D. (2005). DNA methylation and human disease. Nature Reviews Genetics, 6, 597–610.

    Article  CAS  PubMed  Google Scholar 

  13. Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.

    Article  CAS  PubMed  Google Scholar 

  14. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16, 6–21.

    Article  CAS  Google Scholar 

  15. Prokhortchouk, E., & Defossez, P. A. (2008). The cell biology of DNA methylation in mammals. Biochimica et Biophysica Acta, 1783, 2167–2173.

    Article  CAS  PubMed  Google Scholar 

  16. Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11, 204–220.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, X., & Roberts, R. J. (2001). AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Research, 29, 3784–3795.

    Article  CAS  PubMed  Google Scholar 

  18. Klimasauskas, S., Kumar, S., Roberts, R. J., et al. (1994). HhaI methyltransferase flips its target base out of the DNA helix. Cell, 76, 357–369.

    Article  CAS  PubMed  Google Scholar 

  19. Robertson, K. D. (2002). DNA methylation and chromatin - unraveling the tangled web. Oncogene, 21, 5361–5379.

    Article  CAS  PubMed  Google Scholar 

  20. Hata, K., Okano, M., Lei, H., et al. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129, 1983–1993.

    CAS  PubMed  Google Scholar 

  21. Kareta, M. S., Botello, Z. M., Ennis, J. J., et al. (2006). Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. Journal of Biological Chemistry, 281, 25893–25902.

    Article  CAS  PubMed  Google Scholar 

  22. Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19, 219–220.

    Article  CAS  PubMed  Google Scholar 

  23. Weber, M., Hellmann, I., Stadler, M. B., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39, 457–466.

    Article  CAS  PubMed  Google Scholar 

  24. Appanah, R., Dickerson, D. R., Goyal, P., et al. (2007). An unmethylated 3′ promoter-proximal region is required for efficient transcription initiation. PLoS Genetics, 3, e27.

    Article  PubMed  CAS  Google Scholar 

  25. Ciccone, D. N., Su, H., Hevi, S., et al. (2009). KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature, 461, 415–418.

    Article  CAS  PubMed  Google Scholar 

  26. Ooi, S. K., Qiu, C., Bernstein, E., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 448, 714–717.

    Article  CAS  PubMed  Google Scholar 

  27. Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences, 31, 89–97.

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman, A. R., & Hu, J. F. (2006). Directing DNA methylation to inhibit gene expression. Cellular and Molecular Neurobiology, 26, 425–438.

    Article  CAS  PubMed  Google Scholar 

  29. Hellman, A., & Chess, A. (2007). Gene body-specific methylation on the active X chromosome. Science, 315, 1141–1143.

    Article  CAS  PubMed  Google Scholar 

  30. Sapienza, C., Peterson, A. C., Rossant, J., et al. (1987). Degree of methylation of transgenes is dependent on gamete of origin. Nature, 328, 251–254.

    Article  CAS  PubMed  Google Scholar 

  31. Reik, W., Collick, A., Norris, M. L., et al. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 328, 248–251.

    Article  CAS  PubMed  Google Scholar 

  32. Reik, W., Howlett, S. K., Surani, M. A. (1990). Imprinting by DNA methylation: from transgenes to endogenous gene sequences. Dev Suppl, 99–106.

  33. Pesce, M., Gross, M. K., & Scholer, H. R. (1998). In line with our ancestors: Oct-4 and the mammalian germ. Bioessays, 20, 722–732.

    Article  CAS  PubMed  Google Scholar 

  34. Ito, S., D’Alessio, A. C., Taranova, O. V., et al. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466, 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  35. Popp, C., Dean, W., Feng, S., et al. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature, 463, 1101–1105.

    Article  CAS  PubMed  Google Scholar 

  36. Hajkova, P., Jeffries, S. J., Lee, C., et al. (2010). Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science, 329, 78–82.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, M. S., Kondo, T., Takada, I., et al. (2009). DNA demethylation in hormone-induced transcriptional derepression. Nature, 461, 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  38. Morgan, H. D., Dean, W., Coker, H. A., et al. (2004). Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. Journal of Biological Chemistry, 279, 52353–52360.

    Article  CAS  PubMed  Google Scholar 

  39. Kangaspeska, S., Stride, B., Metivier, R., et al. (2008). Transient cyclical methylation of promoter DNA. Nature, 452, 112–U114.

    Article  CAS  PubMed  Google Scholar 

  40. Wu, H., & Zhang, Y. (2011). Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes & Development, 25, 2436–2452.

    Article  CAS  Google Scholar 

  41. Bhutani, N., Burns, D. M., & Blau, H. M. (2011). DNA demethylation dynamics. Cell, 146, 866–872.

    Article  CAS  PubMed  Google Scholar 

  42. Williams, K., Christensen, J., & Helin, K. (2012). DNA methylation: TET proteins-guardians of CpG islands? EMBO Reports, 13, 28–35.

    Article  CAS  Google Scholar 

  43. Luger, K., Mader, A. W., Richmond, R. K., et al. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251–260.

    Article  CAS  PubMed  Google Scholar 

  44. Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6, 838–849.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y., Fang, H., Jiao, J., et al. (2008). The structure and function of histone deacetylases: the target for anti-cancer therapy. Current Medicinal Chemistry, 15, 2840–2849.

    Article  CAS  PubMed  Google Scholar 

  46. Yang, X. J., & Seto, E. (2008). The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Reviews Molecular Cell Biology, 9, 206–218.

    Article  CAS  PubMed  Google Scholar 

  47. Schuettengruber, B., Chourrout, D., Vervoort, M., et al. (2007). Genome regulation by polycomb and trithorax proteins. Cell, 128, 735–745.

    Article  CAS  PubMed  Google Scholar 

  48. Tsukada, Y., Fang, J., Erdjument-Bromage, H., et al. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature, 439, 811–816.

    Article  CAS  PubMed  Google Scholar 

  49. Warner, M. J., & Ozanne, S. E. (2010). Mechanisms involved in the developmental programming of adulthood disease. Biochemical Journal, 427, 333–347.

    Article  CAS  PubMed  Google Scholar 

  50. Kawasaki, H., Taira, K., & Morris, K. V. (2005). siRNA induced transcriptional gene silencing in mammalian cells. Cell Cycle, 4, 442–448.

    Article  CAS  PubMed  Google Scholar 

  51. Thambirajah, A. A., Li, A., Ishibashi, T., et al. (2009). New developments in post-translational modifications and functions of histone H2A variants. Biochemistry and Cell Biology / Biochimie et Biologie Cellulaire, 87, 7–17.

    Article  CAS  Google Scholar 

  52. Ponting, C. P., Oliver, P. L., & Reik, W. (2009). Evolution and functions of long noncoding RNAs. Cell, 136, 629–641.

    Article  CAS  PubMed  Google Scholar 

  53. Fabian, M. R., Sonenberg, N., & Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 79, 351–379.

    Article  CAS  PubMed  Google Scholar 

  54. Siomi, H., & Siomi, M. C. (2009). On the road to reading the RNA-interference code. Nature, 457, 396–404.

    Article  CAS  PubMed  Google Scholar 

  55. Brennecke, J., Aravin, A. A., Stark, A., et al. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell, 128, 1089–1103.

    Article  CAS  PubMed  Google Scholar 

  56. Hutvagner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  57. Morris, K. V., Chan, S. W., Jacobsen, S. E., et al. (2004). Small interfering RNA-induced transcriptional gene silencing in human cells. Science, 305, 1289–1292.

    Article  CAS  PubMed  Google Scholar 

  58. Benetti, R., Gonzalo, S., Jaco, I., et al. (2008). A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Structural and Molecular Biology, 15, 998.

    CAS  PubMed  Google Scholar 

  59. Carninci, P., Kasukawa, T., Katayama, S., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.

    Article  CAS  PubMed  Google Scholar 

  60. Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: insights into functions. Nature Reviews Genetics, 10, 155–159.

    Article  CAS  PubMed  Google Scholar 

  61. Khalil, A. M., Guttman, M., Huarte, M., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667–11672.

    Article  CAS  PubMed  Google Scholar 

  62. Guttman, M., Amit, I., Garber, M., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223–227.

    Article  CAS  PubMed  Google Scholar 

  63. Ferguson, J. E., Kelley, R. W., & Patterson, C. (2005). Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2246–2254.

    Article  CAS  PubMed  Google Scholar 

  64. Jin, S. W., & Patterson, C. (2009). The opening act vasculogenesis and the origins of circulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 623–629.

    Article  CAS  PubMed  Google Scholar 

  65. Li, M., Marin-Muller, C., Bharadwaj, U., et al. (2009). MicroRNAs: control and loss of control in human physiology and disease. World Journal of Surgery, 33, 667–684.

    Article  PubMed  Google Scholar 

  66. Fujimoto, T., Ogawa, M., Minegishi, N., et al. (2001). Step-wise divergence of primitive and definitive haematopoietic and endothelial cell lineages during embryonic stem cell differentiation. Genes to Cells, 6, 1113–1127.

    Article  CAS  PubMed  Google Scholar 

  67. Lindsley, R. C., Gill, J. G., Kyba, M., et al. (2006). Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development, 133, 3787–3796.

    Article  CAS  PubMed  Google Scholar 

  68. Choi, K., Kennedy, M., Kazarov, A., et al. (1998). A common precursor for hematopoietic and endothelial cells. Development, 125, 725–732.

    CAS  PubMed  Google Scholar 

  69. Vodyanik, M. A., Bork, J. A., Thomson, J. A., et al. (2005). Human embryonic stem cell-derived CD34(+) cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105, 617–626.

    Article  CAS  PubMed  Google Scholar 

  70. Hanze, J., Weissmann, N., Grimminger, F., et al. (2007). Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling. Thrombosis and Haemostasis, 97, 774–787.

    PubMed  Google Scholar 

  71. Ramirez-Bergeron, D. L., Runge, A., Adelman, D. M., et al. (2006). HIF-dependent hematopoietic factors regulate the development of the embryonic vasculature. Developmental Cell, 11, 81–92.

    Article  CAS  PubMed  Google Scholar 

  72. Hosseinkhani, M., Hasegawa, K., Ono, K., et al. (2007). Trichostatin A induces myocardial differentiation of monkey ES cells. Biochemical and Biophysical Research Communications, 356, 386–391.

    Article  CAS  PubMed  Google Scholar 

  73. Bendinelli, P., Matteucci, E., Maroni, P., et al. (2009). NF-kappaB activation, dependent on acetylation/deacetylation, contributes to HIF-1 activity and migration of bone metastatic breast carcinoma cells. Molecular Cancer Research, 7, 1328–1341.

    Article  CAS  PubMed  Google Scholar 

  74. Maltepe, E., Krampitz, G. W., Okazaki, K. M., et al. (2005). Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta. Development, 132, 3393–3403.

    Article  CAS  PubMed  Google Scholar 

  75. Rossig, L., Urbich, C., Bruhl, T., et al. (2005). Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. The Journal of Experimental Medicine, 201, 1825–1835.

    Article  PubMed  CAS  Google Scholar 

  76. Rossig, L., Huige, L., Fisslthaler, B., et al. (2002). Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circulation Research, 91, 837–844.

    Article  PubMed  Google Scholar 

  77. Michaelis, M., Michaelis, U. R., Fleming, I., et al. (2004). Valproic acid inhibits angiogenesis in vitro and in vivo. Molecular Pharmacology, 65, 520–527.

    Article  CAS  PubMed  Google Scholar 

  78. Gan, Y., Shen, Y. H., Utama, B., et al. (2006). Dual effects of histone deacetylase inhibition by trichostatin A on endothelial nitric oxide synthase expression in endothelial cells. Biochemical and Biophysical Research Communications, 340, 29–34.

    Article  CAS  PubMed  Google Scholar 

  79. Fish, J. E., Matouk, C. C., Rachlis, A., et al. (2005). The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. Journal of Biological Chemistry, 280, 24824–24838.

    Article  CAS  PubMed  Google Scholar 

  80. Banerjee, S., & Bacanamwo, M. (2010). DNA methyltransferase inhibition induces mouse embryonic stem cell differentiation into endothelial cells. Experimental Cell Research, 316, 172–180.

    Article  CAS  PubMed  Google Scholar 

  81. Spallotta, F., Rosati, J., Straino, S., et al. (2010). Nitric oxide determines mesodermic differentiation of mouse embryonic stem cells by activating class IIa histone deacetylases: potential therapeutic implications in a mouse model of hindlimb ischemia. Stem Cells, 28, 431–442.

    CAS  PubMed  Google Scholar 

  82. Pesce, M., Burba, I., Gambini, E., et al. (2011). Endothelial and cardiac progenitors: boosting, conditioning and (re)programming for cardiovascular repair. Pharmacology and Therapeutics, 129, 50–61.

    Article  CAS  PubMed  Google Scholar 

  83. Burba, I., Colombo, G. I., Staszewsky, L. I., et al. (2011). Histone deacetylase inhibition enhances self renewal and cardioprotection by human cord blood-derived CD34 cells. PLoS One, 6, e22158.

    Article  CAS  PubMed  Google Scholar 

  84. Mottet, D., Bellahcene, A., Pirotte, S., et al. (2007). Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circulation Research, 101, 1237–1246.

    Article  CAS  PubMed  Google Scholar 

  85. Margariti, A., Zampetaki, A., Xiao, Q. Z., et al. (2010). Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin. Circulation Research, 106, 1202–U1275.

    Article  CAS  PubMed  Google Scholar 

  86. Zeng, L., Xiao, Q., Margariti, A., et al. (2006). HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. The Journal of Cell Biology, 174, 1059–1069.

    Article  CAS  PubMed  Google Scholar 

  87. Yamamoto, K., Takahashi, T., Asahara, T., et al. (2003). Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. Journal of Applied Physiology, 95, 2081–2088.

    PubMed  Google Scholar 

  88. Illi, B., Scopece, A., Nanni, S., et al. (2005). Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circulation Research, 96, 501–508.

    Article  CAS  PubMed  Google Scholar 

  89. Ohtani, K., Vlachojannis, G. J., Koyanagi, M., et al. (2011). Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circulation Research, 109, 1219–U1271.

    Article  CAS  PubMed  Google Scholar 

  90. Collas, P., Noer, A., & Timoskainen, S. (2007). Programming the genome in embryonic and somatic stem cells. Journal of Cellular and Molecular Medicine, 11, 602–620.

    Article  CAS  PubMed  Google Scholar 

  91. Napoli, C., Glass, C. K., Witztum, J. L., et al. (1999). Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. The Lancet, 354, 1234–1241.

    Article  CAS  Google Scholar 

  92. Weaver, I. C. G., Champagne, F. A., Brown, S. E., et al. (2005). Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. Journal of Neuroscience, 25, 11045–11054.

    Article  CAS  PubMed  Google Scholar 

  93. Bannister, A. J., & Kouzarides, T. (2005). Reversing histone methylation. Nature, 436, 1103–1106.

    Article  CAS  PubMed  Google Scholar 

  94. Weaver, I. C., Meaney, M. J., & Szyf, M. (2006). Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proceedings of the National Academy of Sciences of the United States of America, 103, 3480–3485.

    Article  CAS  PubMed  Google Scholar 

  95. Castro, R., Rivera, I., Struys, E. A., et al. (2003). Increased, homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clinical Chemistry, 49, 1292–1296.

    Article  CAS  PubMed  Google Scholar 

  96. Jiang, Y., Zhang, J., Xiong, J., et al. (2007). Ligands of peroxisome proliferator-activated receptor inhibit homocysteine-induced DNA methylation of inducible nitric oxide synthase gene. Acta Biochim Biophys Sin (Shanghai), 39, 366–376.

    Article  CAS  Google Scholar 

  97. Chang, P. Y., Lu, S. C., Lee, C. M., et al. (2008). Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circulation Research, 102, 933–941.

    Article  CAS  PubMed  Google Scholar 

  98. Post, W. S., Goldschmidt-Clermont, P. J., Wilhide, C. C., et al. (1999). Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovascular Research, 43, 985–991.

    Article  CAS  PubMed  Google Scholar 

  99. Ying, A. K., Hassanain, H. H., Roos, C. M., et al. (2000). Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovascular Research, 46, 172–179.

    Article  CAS  PubMed  Google Scholar 

  100. Kim, J., Kim, J. Y., Song, K. S., et al. (2007). Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1772, 72–80.

    Article  CAS  Google Scholar 

  101. Issa, J. P. (2000). CpG-island methylation in aging and cancer. DNA Methylation and Cancer, 249, 101–118.

    Article  CAS  Google Scholar 

  102. Hiltunen, M. O., Turunen, M. P., Hakkinen, T. P., et al. (2002). DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vascular Medicine, 7, 5–11.

    Article  PubMed  Google Scholar 

  103. Laukkanen, M. O., Mannermaa, S., Hiltunen, M. O., et al. (1999). Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2171–2178.

    Article  CAS  PubMed  Google Scholar 

  104. Hiltunen, M. O., & Yla-Herttuala, S. (2003). DNA methylation, smooth muscle cells, and atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1750–1753.

    Article  CAS  PubMed  Google Scholar 

  105. Miranda, T. B., & Jones, P. A. (2007). DNA methylation: the nuts and bolts of repression. Journal of Cellular Physiology, 213, 384–390.

    Article  CAS  PubMed  Google Scholar 

  106. Lund, G., Andersson, L., Lauria, M., et al. (2004). DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. Journal of Biological Chemistry, 279, 29147–29154.

    Article  CAS  PubMed  Google Scholar 

  107. Zaina, S., Lindholm, M. W., & Lund, G. (2005). Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? Journal of Nutrition, 135, 5–8.

    CAS  PubMed  Google Scholar 

  108. Stenvinkel, P., Karimi, M., Johansson, S., et al. (2007). Impact of inflammation on epigenetic DNA methylation - a novel risk factor for cardiovascular disease? Journal of Internal Medicine, 261, 488–499.

    Article  CAS  PubMed  Google Scholar 

  109. Kim, M., Long, T. I., Arakawa, K., et al. (2010). DNA Methylation as a biomarker for cardiovascular disease risk. Plos One, 5.

  110. Wilson, V. L., & Jones, P. A. (1983). DNA methylation decreases in aging but not in immortal cells. Science, 220, 1055–1057.

    Article  CAS  PubMed  Google Scholar 

  111. Villeneuve, L. M., Reddy, M. A., Lanting, L. L., et al. (2008). Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proceedings of the National Academy of Sciences of the United States of America, 105, 9047–9052.

    Article  CAS  PubMed  Google Scholar 

  112. Reddy, M. A., Villeneuve, L. M., Wang, M., et al. (2008). Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circulation Research, 103, 615–623.

    Article  CAS  PubMed  Google Scholar 

  113. Stolar, M. (2010). Glycemic control and complications in type 2 diabetes mellitus. American Journal of Medicine, 123, S3–S11.

    Article  CAS  PubMed  Google Scholar 

  114. Roy, S., Sala, R., Cagliero, E., et al. (1990). Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proceedings of the National Academy of Sciences of the United States of America, 87, 404–408.

    Article  CAS  PubMed  Google Scholar 

  115. Brasacchio, D., Okabe, J., Tikellis, C., et al. (2009). Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 58, 1229–1236.

    Article  CAS  PubMed  Google Scholar 

  116. El-Osta, A., Brasacchio, D., Yao, D., et al. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine, 205, 2409–2417.

    Article  CAS  PubMed  Google Scholar 

  117. Li, S. L., Reddy, M. A., Cai, Q., et al. (2006). Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes, 55, 2611–2619.

    Article  CAS  PubMed  Google Scholar 

  118. Hill, J. M., Zalos, G., Halcox, J. P., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England Journal of Medicine, 348, 593–600.

    Article  PubMed  Google Scholar 

  119. Vasa, M., Fichtlscherer, S., Aicher, A., et al. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research, 89, E1–E7.

    Article  CAS  PubMed  Google Scholar 

  120. Werner, N., Kosiol, S., Schiegl, T., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. The New England Journal of Medicine, 353, 999–1007.

    Article  CAS  PubMed  Google Scholar 

  121. De Falco, E., Avitabile, D., Totta, P., et al. (2009). Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 13, 3405–3414.

    Article  PubMed  Google Scholar 

  122. Loomans, C. J., van Haperen, R., Duijs, J. M., et al. (2009). Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Molecular Medicine, 15, 152–159.

    Article  CAS  PubMed  Google Scholar 

  123. Dimmeler, S., Aicher, A., Vasa, M., et al. (2001). HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. The Journal of Clinical Investigation, 108, 391–397.

    CAS  PubMed  Google Scholar 

  124. Bertram, C., Khan, O., Ohri, S., et al. (2008). Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic-pituitary-adrenal function. The Journal of Physiology, 586, 2217–2229.

    Article  CAS  PubMed  Google Scholar 

  125. Bygren, L. O., Kaati, G., & Edvinsson, S. (2001). Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheoretica, 49, 53–59.

    Article  CAS  PubMed  Google Scholar 

  126. Lumey, L. H. (1998). Reproductive outcomes in women prenatally exposed to undernutrition: a review of findings from the Dutch famine birth cohort. Proceedings of the Nutrition Society, 57, 129–135.

    Article  CAS  PubMed  Google Scholar 

  127. Forsen, T., Eriksson, J. G., Tuomilehto, J., et al. (1999). Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. British Medical Journal, 319, 1403–1407.

    Article  CAS  PubMed  Google Scholar 

  128. Palinski, W., & Napoli, C. (2002). The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. The FASEB Journal, 16, 1348–1360.

    Article  CAS  Google Scholar 

  129. Zambrano, E., Bautista, C. J., Deas, M., et al. (2006). A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. The Journal of Physiology, 571, 221–230.

    Article  CAS  PubMed  Google Scholar 

  130. Torrens, C., Hanson, M. A., Gluckman, P. D., et al. (2009). Maternal undernutrition leads to endothelial dysfunction in adult male rat offspring independent of postnatal diet. British Journal of Nutrition, 101, 27–33.

    Article  CAS  PubMed  Google Scholar 

  131. Sathishkumar, K., Elkins, R., Yallampalli, U., et al. (2009). Protein restriction during pregnancy induces hypertension and impairs endothelium-dependent vascular function in adult female offspring. Journal of Vascular Research, 46, 229–239.

    Article  PubMed  Google Scholar 

  132. Bogdarina, I., Welham, S., King, P. J., et al. (2007). Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circulation Research, 100, 520–526.

    Article  CAS  PubMed  Google Scholar 

  133. Sherman, R. C., & Langley-Evans, S. C. (1998). Early administration of angiotensin converting enzyme inhibitor captopril, prevents the development of hypertension programmed by intrauterine exposure to a maternal low-protein diet in the rat. Clinical Science, 94, 373–381.

    CAS  PubMed  Google Scholar 

  134. Lillycrop, K. A., Phillips, E. S., Torrens, C., et al. (2008). Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. British Journal of Nutrition, 100, 278–282.

    Article  CAS  PubMed  Google Scholar 

  135. Lillycrop, K. A., Slater-Jefferies, J. L., Hanson, M. A., et al. (2007). Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. British Journal of Nutrition, 97, 1064–1073.

    Article  CAS  PubMed  Google Scholar 

  136. Das, S. K., & Chakrabarti, R. (2006). Role of PPAR in cardiovascular diseases. Recent Patents on Cardiovascular Drug Discovery, 1, 193–209.

    Article  CAS  PubMed  Google Scholar 

  137. Walker, B. R. (2007). Glucocorticoids and cardiovascular disease. European Journal of Endocrinology, 157, 545–559.

    Article  CAS  PubMed  Google Scholar 

  138. Lillycrop, K. A., Phillips, E. S., Jackson, A. A., et al. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. Journal of Nutrition, 135, 1382–1386.

    CAS  PubMed  Google Scholar 

  139. Terzolo, M., Allasino, B., Bosio, S., et al. (2004). Hyperhomocysteinemia in patients with Cushing’s syndrome. Journal of Clinical Endocrinology and Metabolism, 89, 3745–3751.

    Article  CAS  PubMed  Google Scholar 

  140. Armitage, J. A., Lakasing, L., Taylor, P. D., et al. (2005). Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. The Journal of Physiology, 565, 171–184.

    Article  CAS  PubMed  Google Scholar 

  141. Dunn, G. A., & Bale, T. L. (2009). Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology, 150, 4999–5009.

    Article  CAS  PubMed  Google Scholar 

  142. Khan, I. Y., Dekou, V., Douglas, G., et al. (2005). A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 288, R127–R133.

    Article  CAS  PubMed  Google Scholar 

  143. Kiel, D. W., Dodson, E. A., Artal, R., et al. (2007). Gestational weight gain and pregnancy outcomes in obese women: how much is enough? Obstetrics and Gynecology, 110, 752–758.

    Article  PubMed  Google Scholar 

  144. Simmons, R. (2011). Epigenetics and maternal nutrition: nature v. nurture. Proceedings of the Nutrition Society, 70, 73–81.

    Article  CAS  PubMed  Google Scholar 

  145. Heerwagen, M. J., Miller, M. R., Barbour, L. A., et al. (2010). Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 299, R711–R722.

    Article  CAS  PubMed  Google Scholar 

  146. Ainge, H., Thompson, C., Ozanne, S. E., et al. (2011). A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. International Journal of Obesity, 35, 325–335.

    Article  CAS  PubMed  Google Scholar 

  147. Wu, G., & Meininger, C. J. (2009). Nitric oxide and vascular insulin resistance. Biofactors, 35, 21–27.

    Article  PubMed  CAS  Google Scholar 

  148. Heijmans, B. T., Tobi, E. W., Stein, A. D., et al. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105, 17046–17049.

    Article  CAS  PubMed  Google Scholar 

  149. Tobi, E. W., Lumey, L. H., Talens, R. P., et al. (2009). DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Human Molecular Genetics, 18, 4046–4053.

    Article  CAS  PubMed  Google Scholar 

  150. Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447, 425–432.

    Article  CAS  PubMed  Google Scholar 

  151. Nafee, T. M., Farrell, W. E., Carroll, W. D., et al. (2008). Epigenetic control of fetal gene expression. BJOG: An International Journal of Obstetrics and Gynaecology, 115, 158–168.

    Article  CAS  Google Scholar 

  152. Branco, M. R., Oda, M., & Reik, W. (2008). Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis. Genes & Development, 22, 1567–1571.

    Article  CAS  Google Scholar 

  153. Waterland, R. A., & Jirtle, R. L. (2004). Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition, 20, 63–68.

    Article  CAS  PubMed  Google Scholar 

  154. Waterland, R. A., Travisano, M., Tahiliani, K. G., et al. (2008). Methyl donor supplementation prevents transgenerational amplification of obesity. International Journal of Obesity, 32, 1373–1379.

    Article  CAS  PubMed  Google Scholar 

  155. Dolinoy, D. C., Weidman, J. R., Waterland, R. A., et al. (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environmental Health Perspectives, 114, 567–572.

    Article  CAS  PubMed  Google Scholar 

  156. Farthing, C. R., Ficz, G., Ng, R. K., et al. (2008). Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genetics, 4, e1000116.

    Article  PubMed  CAS  Google Scholar 

  157. Kwong, W. Y., Miller, D. J., Ursell, E., et al. (2006). Imprinted gene expression in the rat embryo-fetal axis is altered in response to periconceptional maternal low protein diet. Reproduction, 132, 265–277.

    Article  CAS  PubMed  Google Scholar 

  158. Watkins, A. J., Wilkins, A., Cunningham, C., et al. (2008). Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. The Journal of Physiology, 586, 2231–2244.

    Article  CAS  PubMed  Google Scholar 

  159. Shao, W. J., Tao, L. Y., Gao, C., et al. (2008). Alterations in methylation and expression levels of imprinted genes H19 and Igf2 in the fetuses of diabetic mice. Comparative Medicine, 58, 341–346.

    CAS  PubMed  Google Scholar 

  160. Doherty, A. S., Mann, M. R., Tremblay, K. D., et al. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biology of Reproduction, 62, 1526–1535.

    Article  CAS  PubMed  Google Scholar 

  161. Khosla, S., Dean, W., Brown, D., et al. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biology of Reproduction, 64, 918–926.

    Article  CAS  PubMed  Google Scholar 

  162. Cox, G. F., Burger, J., Lip, V., et al. (2002). Intracytoplasmic sperm injection may increase the risk of imprinting defects. American Journal of Human Genetics, 71, 162–164.

    Article  CAS  PubMed  Google Scholar 

  163. DeBaun, M. R., Niemitz, E. L., & Feinberg, A. P. (2003). Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. American Journal of Human Genetics, 72, 156–160.

    Article  CAS  PubMed  Google Scholar 

  164. Lieb, J. D., Beck, S., Bulyk, M. L., et al. (2006). Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenetic and Genome Research, 114, 1–15.

    Article  CAS  PubMed  Google Scholar 

  165. Kim, T. H., Barrera, L. O., Zheng, M., et al. (2005). A high-resolution map of active promoters in the human genome. Nature, 436, 876–880.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No acknowledgements to disclose

Conflict of Interest Statement

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Vinci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinci, M.C., Polvani, G. & Pesce, M. Epigenetic Programming and Risk: The Birthplace of Cardiovascular Disease?. Stem Cell Rev and Rep 9, 241–253 (2013). https://doi.org/10.1007/s12015-012-9398-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9398-z

Keywords

Navigation