Skip to main content

Advertisement

Log in

The Convergence of Cochlear Implantation with Induced Pluripotent Stem Cell Therapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the auditory nerve in the absence of hair cells. Whilst the cochlear implant has been revolutionary in terms of providing hearing to the severe-to-profoundly deaf, there are variations in cochlear implant performance which may be related to the degree of degeneration of auditory neurons following hearing loss. Hence, numerous experimental studies have focused on enhancing the efficacy of cochlear implants by using neurotrophins to preserve the auditory neurons, and more recently, attempting to replace these dying cells with new neurons derived from stem cells. As a result, several groups are now investigating the potential for both embryonic and adult stem cells to replace the degenerating sensory elements in the deaf cochlea. Recent advances in our knowledge of stem cells and the development of induced pluripotency by Takahashi and Yamanaka in 2006, have opened a new realm of science focused on the use of induced pluripotent stem (iPS) cells for therapeutic purposes. This review will provide a broad overview of the potential benefits and challenges of using iPS cells in combination with a cochlear implant for the treatment of hearing loss, including differentiation of iPS cells into an auditory neural lineage and clinically relevant transplantation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Statistics about Hearing, Balance, Ear Infections, and Deafness. (2010). National Institute on Deafness and Other Communication Disorders 7/6/2010. Available at: http://www.nidcd.nih.gov/about/learn/mission.html.

  2. Werngren-Elgstrom, M., Dehlin, O., & Iwarsson, S. (2003). Aspects of quality of life in persons with pre-lingual deafness using sign language: subjective wellbeing, ill-health symptoms, depression and insomnia. Archives of Gerontology and Geriatrics, 37(1), 13–24.

    PubMed  Google Scholar 

  3. Van Oyen, H., Tafforeau, J., & Demarest, S. (2001). The impact of hearing disability on well-being and health. Sozial- und Präventivmedizin, 46(5), 335–343.

    PubMed  Google Scholar 

  4. de Graaf, R., & Bijl, R. V. (2002). Determinants of mental distress in adults with a severe auditory impairment: differences between prelingual and postlingual deafness. Psychosomatic Medicine, 64(1), 61–70.

    PubMed  Google Scholar 

  5. Brackmann, D. E. (1976). The cochlear implant; basic principles. Laryngoscope, 86(3), 373–388.

    PubMed  CAS  Google Scholar 

  6. Spoendlin, H., & Schrott, A. (1989). Analysis of the human auditory nerve. Hearing Research, 43(1), 25–38.

    PubMed  CAS  Google Scholar 

  7. Bichler, E., Spoendlin, H., & Rauchegger, H. (1983). Degeneration of cochlear neurons after amikacin intoxication in the rat. Archives of Oto-Rhino-Laryngology, 237(3), 201–208.

    PubMed  CAS  Google Scholar 

  8. Leake, P. A., & Hradek, G. T. (1988). Cochlear pathology of long term neomycin induced deafness in cats. Hearing Research, 33(1), 11–33.

    PubMed  CAS  Google Scholar 

  9. Webster, M., & Webster, D. B. (1981). Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Research, 212(1), 17–30.

    PubMed  CAS  Google Scholar 

  10. Otte, J., Schunknecht, H. F., & Kerr, A. G. (1978). Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope, 88(8 Pt 1), 1231–1246.

    PubMed  CAS  Google Scholar 

  11. Kileny, P. R., Zimmerman-Phillips, S., Kemink, J. L., & Schmaltz, S. P. (1991). Effects of preoperative electrical stimulability and historical factors on performance with multichannel cochlear implant. The Annals of Otology, Rhinology, and Laryngology, 100(7), 563–568.

    PubMed  CAS  Google Scholar 

  12. James, D., Rajput, K., Brinton, J., & Goswami, U. (2008). Phonological awareness, vocabulary, and word reading in children who use cochlear implants: does age of implantation explain individual variability in performance outcomes and growth? Journal of Deaf Studies and Deaf Education, 13(1), 117–137.

    PubMed  Google Scholar 

  13. Blamey, P., Arndt, P., Bergeron, F., Bredberg, G., Brimacombe, J., Facer, G., et al. (1996). Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiology & Neuro-Otology, 1(5), 293–306.

    CAS  Google Scholar 

  14. Staecker, H., Jolly, C., & Garnham, C. (2010). Cochlear implantation: an opportunity for drug development. Drug Discovery Today, 15(7–8), 314–321.

    PubMed  CAS  Google Scholar 

  15. Shepherd, R. K., Coco, A., & Epp, S. B. (2008). Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hearing Research, 242(1–2), 100–109.

    PubMed  CAS  Google Scholar 

  16. Coleman, B., de Silva, M. G., & Shepherd, R. K. (2007). Concise review: the potential of stem cells for auditory neuron generation and replacement. Stem Cells, 25(11), 2685–2694.

    PubMed  CAS  Google Scholar 

  17. Nayagam, B. A., Muniak, M. A., & Ryugo, D. K. (2011). The spiral ganglion: connecting the peripheral and central auditory systems. Hearing Research, 278(1–2), 2–20.

    PubMed  Google Scholar 

  18. Shepherd, R. K., & Javel, E. (1997). Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hearing Research, 108(1–2), 112–144.

    PubMed  CAS  Google Scholar 

  19. Shepherd, R. K., & Hardie, N. A. (2001). Deafness-induced changes in the auditory pathway: implications for cochlear implants. Audiology & Neuro-Otology, 6(6), 305–318.

    CAS  Google Scholar 

  20. Hall, R. D. (1990). Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hearing Research, 49(1–3), 155–168.

    PubMed  CAS  Google Scholar 

  21. Sly, D. J., Heffer, L. F., White, M. W., Shepherd, R. K., Birch, M. G., Minter, R. L., et al. (2007). Deafness alters auditory nerve fibre responses to cochlear implant stimulation. The European Journal of Neuroscience, 26(2), 510–522.

    PubMed  Google Scholar 

  22. Shepherd, R. K., Roberts, L. A., & Paolini, A. G. (2004). Long-term sensorineural hearing loss induces functional changes in the rat auditory nerve. The European Journal of Neuroscience, 20(11), 3131–3140.

    PubMed  Google Scholar 

  23. Fayad, J. N., & Linthicum, F. H., Jr. (2006). Multichannel cochlear implants: relation of histopathology to performance. Laryngoscope, 116(8), 1310–1320.

    PubMed  Google Scholar 

  24. Linthicum, F. H., Jr., & Fayad, J. N. (2009). Spiral ganglion cell loss is unrelated to segmental cochlear sensory system degeneration in humans. Otology & Neurotology, 30(3), 418–422.

    Google Scholar 

  25. Teufert, K. B., Linthicum, F. H., Jr., & Connell, S. S. (2006). The effect of organ of corti loss on ganglion cell survival in humans. Otology & Neurotology, 27(8), 1146–1151.

    Google Scholar 

  26. Rask-Andersen, H., Tylstedt, S., Kinnefors, A., & Schrott-Fischer, A. (1997). Nerve fibre interaction with large ganglion cells in the human spiral ganglion: a TEM study. Auris, Nasus, Larynx, 24(1), 1–11.

    PubMed  CAS  Google Scholar 

  27. Tylstedt, S., & Rask-Andersen, H. (2001). A 3-D model of membrane specializations between human auditory spiral ganglion cells. Journal of Neurocytology, 30(6), 465–473.

    PubMed  CAS  Google Scholar 

  28. Rubinstein, J. T., & Miller, C. A. (1999). How do cochlear prostheses work? Current Opinion in Neurobiology, 9(4), 399–404.

    PubMed  CAS  Google Scholar 

  29. Shibata, S. B., & Raphael, Y. (2010). Future approaches for inner ear protection and repair. Journal of Communication Disorders, 43(4), 295–310.

    PubMed  Google Scholar 

  30. Hildebrand, M. S., Dahl, H. H., Hardman, J., Coleman, B., Shepherd, R. K., & de Silva, M. G. (2005). Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. Journal of the Association for Research in Otolaryngology, 6(4), 341–354.

    PubMed  Google Scholar 

  31. Tateya, I., Nakagawa, T., Iguchi, F., Kim, T. S., Endo, T., Yamada, S., et al. (2003). Fate of neural stem cells grafted into injured inner ears of mice. Neuroreport, 14(13), 1677–1681.

    PubMed  Google Scholar 

  32. Ito, J., Kojima, K., & Kawaguchi, S. (2001). Survival of neural stem cells in the cochlea. Acta Oto-Laryngologica, 121(2), 140–142.

    PubMed  CAS  Google Scholar 

  33. Li, H., Roblin, G., Liu, H., & Heller, S. (2003). Generation of hair cells by stepwise differentiation of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13495–13500.

    PubMed  CAS  Google Scholar 

  34. Regala, C., Duan, M., Zou, J., Salminen, M., & Olivius, P. (2005). Xenografted fetal dorsal root ganglion, embryonic stem cell and adult neural stem cell survival following implantation into the adult vestibulocochlear nerve. Experimental Neurology, 193(2), 326–333.

    PubMed  CAS  Google Scholar 

  35. Naito, Y., Nakamura, T., Nakagawa, T., Iguchi, F., Endo, T., Fujino, K., et al. (2004). Transplantation of bone marrow stromal cells into the cochlea of chinchillas. Neuroreport, 15(1), 1–4.

    PubMed  Google Scholar 

  36. Matsumoto, M., Nakagawa, T., Kojima, K., Sakamoto, T., Fujiyama, F., & Ito, J. (2008). Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. Journal of Neuroscience Research, 86(14), 3075–3085.

    PubMed  CAS  Google Scholar 

  37. Altschuler, R. A., O’Shea, K. S., & Miller, J. M. (2008). Stem cell transplantation for auditory nerve replacement. Hearing Research, 242(1–2), 110–116.

    PubMed  Google Scholar 

  38. Olivius, P., Alexandrov, L., Miller, J., Ulfendahl, M., Bagger-Sjoback, D., & Kozlova, E. N. (2003). Allografted fetal dorsal root ganglion neuronal survival in the guinea pig cochlea. Brain Research, 979(1–2), 1–6.

    PubMed  CAS  Google Scholar 

  39. Coleman, B., Hardman, J., Coco, A., Epp, S., de Silva, M., Crook, J., et al. (2006). Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplantation, 15(5), 369–380.

    PubMed  CAS  Google Scholar 

  40. Ahn, K. S., Jeon, S. J., Jung, J. Y., Kim, Y. S., Kang, J. H., Shin, S., et al. (2008). Isolation of embryonic stem cells from enhanced green fluorescent protein-transgenic mouse and their survival in the cochlea after allotransplantation. Cytotherapy, 10(7), 759–769.

    PubMed  CAS  Google Scholar 

  41. Hu, Z., Wei, D., Johansson, C. B., Holmstrom, N., Duan, M., Frisen, J., et al. (2005). Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Experimental Cell Research, 302(1), 40–47.

    PubMed  CAS  Google Scholar 

  42. Hu, Z., Andang, M., Ni, D., & Ulfendahl, M. (2005). Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Research, 1051(1–2), 137–144.

    PubMed  CAS  Google Scholar 

  43. Hu, Z., Ulfendahl, M., & Olivius, N. P. (2004). Central migration of neuronal tissue and embryonic stem cells following transplantation along the adult auditory nerve. Brain Research, 1026(1), 68–73.

    PubMed  CAS  Google Scholar 

  44. Parker, M. A., Corliss, D. A., Gray, B., Anderson, J. K., Bobbin, R. P., Snyder, E. Y., et al. (2007). Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hearing Research, 232(1–2), 29–43.

    PubMed  Google Scholar 

  45. Lang, H., Schulte, B. A., Goddard, J. C., Hedrick, M., Schulte, J. B., Wei, L., et al. (2008). Transplantation of mouse embryonic stem cells into the cochlea of an auditory-neuropathy animal model: effects of timing after injury. Journal of the Association for Research in Otolaryngology, 9(2), 225–240.

    PubMed  Google Scholar 

  46. Reyes, J. H., O’Shea, K. S., Wys, N. L., Velkey, J. M., Prieskorn, D. M., Wesolowski, K., et al. (2008). Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: in vitro and in vivo studies. The Journal of Neuroscience, 28(48), 12622–12631.

    PubMed  CAS  Google Scholar 

  47. Fu, Y., Wang, S., Liu, Y., Wang, J., Wang, G., Chen, Q., et al. (2009). Study on neural stem cell transplantation into natural rat cochlea via round window. American Journal of Otolaryngology, 30(1), 8–16.

    PubMed  Google Scholar 

  48. Nishimura, K., Nakagawa, T., Ono, K., Ogita, H., Sakamoto, T., Yamamoto, N., et al. (2009). Transplantation of mouse induced pluripotent stem cells into the cochlea. Neuroreport, 20(14), 1250–1254.

    PubMed  Google Scholar 

  49. Matsuoka, A. J., Kondo, T., Miyamoto, R. T., & Hashino, E. (2007). Enhanced survival of bone-marrow-derived pluripotent stem cells in an animal model of auditory neuropathy. Laryngoscope, 117(9), 1629–1635.

    PubMed  Google Scholar 

  50. Corrales, C. E., Pan, L., Li, H., Liberman, M. C., Heller, S., & Edge, A. S. B. (2006). Engraftment and differentiation of embryonic stem cell–derived neural progenitor cells in the cochlear nerve trunk: Growth of processes into the organ of corti. Journal of Neurobiology, 66(13), 1489–1500.

    PubMed  Google Scholar 

  51. Sekiya, T., Kojima, K., Matsumoto, M., Kim, T. S., Tamura, T., & Ito, J. (2006). Cell transplantation to the auditory nerve and cochlear duct. Experimental Neurology, 198(1), 12–24.

    PubMed  Google Scholar 

  52. Shi, F., Corrales, C. E., Liberman, M. C., & Edge, A. S. (2007). BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. The European Journal of Neuroscience, 26(11), 3016–3023.

    PubMed  Google Scholar 

  53. Iguchi, F., Nakagawa, T., Tateya, I., Kim, T. S., Endo, T., Taniguchi, Z., et al. (2003). Trophic support of mouse inner ear by neural stem cell transplantation. Neuroreport, 14(1), 77–80.

    PubMed  Google Scholar 

  54. Praetorius, M., Vicario, I., & Schimmang, T. (2008). Efficient transfer of embryonic stem cells into the cochlea via a non-invasive vestibular route. Acta Oto-Laryngologica, 128(7), 720–723.

    PubMed  Google Scholar 

  55. Tamura, T., Nakagawa, T., Iguchi, F., Tateya, I., Endo, T., Kim, T. S., et al. (2004). Transplantation of neural stem cells into the modiolus of mouse cochleae injured by cisplatin. Acta Oto-Laryngologica. Supplementum, 551, 65–68.

    PubMed  Google Scholar 

  56. Hildebrand, M. S., Newton, S. S., Gubbels, S. P., Sheffield, A. M., Kochhar, A., de Silva, M. G., et al. (2008). Advances in molecular and cellular therapies for hearing loss. Molecular Therapy, 16(2), 224–236.

    PubMed  CAS  Google Scholar 

  57. Sharif, S., Nakagawa, T., Ohno, T., Matsumoto, M., Kita, T., Riazuddin, S., et al. (2007). The potential use of bone marrow stromal cells for cochlear cell therapy. Neuroreport, 18(4), 351–354.

    PubMed  Google Scholar 

  58. Okano, T., Nakagawa, T., Endo, T., Kim, T. S., Kita, T., Tamura, T., et al. (2005). Engraftment of embryonic stem cell-derived neurons into the cochlear modiolus. Neuroreport, 16(17), 1919–1922.

    PubMed  Google Scholar 

  59. Pandit, S. R., Sullivan, J. M., Egger, V., Borecki, A. A., & Oleskevich, S. (2011). Functional effects of adult human olfactory stem cells on early-onset sensorineural hearing loss. Stem Cells, 29(4), 670–677.

    PubMed  Google Scholar 

  60. Liu, Q., Ye, J., Yu, H., Li, H., Dai, C., Gu, Y., et al. (2010). Survival-enhancing of spiral ganglion cells under influence of olfactory ensheathing cells by direct cellular contact. Neuroscience Letters, 478(1), 37–41.

    PubMed  CAS  Google Scholar 

  61. Olivius, P., Alexandrov, L., Miller, J. M., Ulfendahl, M., Bagger-Sjoback, D., & Kozlova, E. N. (2004). A model for implanting neuronal tissue into the cochlea. Brain Research. Brain Research Protocols, 12(3), 152–156.

    PubMed  Google Scholar 

  62. Hu, Z., Ulfendahl, M., & Olivius, N. P. (2004). Survival of neuronal tissue following xenograft implantation into the adult rat inner ear. Experimental Neurology, 185(1), 7–14.

    PubMed  Google Scholar 

  63. Coleman, B., Fallon, J. B., Pettingill, L. N., de Silva, M. G., & Shepherd, R. K. (2007). Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Experimental Cell Research, 313(2), 232–243.

    PubMed  CAS  Google Scholar 

  64. Sun, S. K., Dee, C. T., Tripathi, V. B., Rengifo, A., Hirst, C. S., & Scotting, P. J. (2007). Epibranchial and otic placodes are induced by a common Fgf signal, but their subsequent development is independent. Developmental Biology, 303(2), 675–686.

    PubMed  CAS  Google Scholar 

  65. Park, B. Y., & Saint-Jeannet, J. P. (2008). Hindbrain-derived Wnt and Fgf signals cooperate to specify the otic placode in Xenopus. Developmental Biology, 324(1), 108–121.

    PubMed  CAS  Google Scholar 

  66. Anniko, M., & Wikstrom, S. O. (1984). Pattern formation of the otic placode and morphogenesis of the otocyst. American Journal of Otolaryngology, 5(6), 373–381.

    PubMed  CAS  Google Scholar 

  67. Bok, J., Chang, W., & Wu, D. K. (2007). Patterning and morphogenesis of the vertebrate inner ear. The International Journal of Developmental Biology, 51(6–7), 521–533.

    PubMed  CAS  Google Scholar 

  68. Morsli, H., Choo, D., Ryan, A., Johnson, R., & Wu, D. K. (1998). Development of the mouse inner ear and origin of its sensory organs. The Journal of Neuroscience, 18(9), 3327–3335.

    PubMed  CAS  Google Scholar 

  69. Raft, S., Nowotschin, S., Liao, J., & Morrow, B. E. (2004). Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development, 131(8), 1801–1812.

    PubMed  CAS  Google Scholar 

  70. Vitelli, F., Viola, A., Morishima, M., Pramparo, T., Baldini, A., & Lindsay, E. (2003). TBX1 is required for inner ear morphogenesis. Human Molecular Genetics, 12(16), 2041–2048.

    PubMed  CAS  Google Scholar 

  71. Nichols, D. H., Pauley, S., Jahan, I., Beisel, K. W., Millen, K. J., & Fritzsch, B. (2008). Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell and Tissue Research, 334(3), 339–358.

    PubMed  CAS  Google Scholar 

  72. Koo, S. K., Hill, J. K., Hwang, C. H., Lin, Z. S., Millen, K. J., & Wu, D. K. (2009). Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Developmental Biology, 333(1), 14–25.

    PubMed  CAS  Google Scholar 

  73. Cole, L. K., Le Roux, I., Nunes, F., Laufer, E., Lewis, J., & Wu, D. K. (2000). Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. The Journal of Comparative Neurology, 424(3), 509–520.

    PubMed  CAS  Google Scholar 

  74. Kiernan, A. E., Pelling, A. L., Leung, K. K., Tang, A. S., Bell, D. M., Tease, C., et al. (2005). Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 434(7036), 1031–1035.

    PubMed  CAS  Google Scholar 

  75. Mak, A. C., Szeto, I. Y., Fritzsch, B., & Cheah, K. S. (2009). Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expression Patterns, 9(6), 444–453.

    PubMed  CAS  Google Scholar 

  76. Zou, D., Silvius, D., Fritzsch, B., & Xu, P. X. (2004). Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes. Development, 131(22), 5561–5572.

    PubMed  CAS  Google Scholar 

  77. Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J. L., & Anderson, D. J. (1998). neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron, 20(3), 469–482.

    PubMed  CAS  Google Scholar 

  78. Raft, S., Koundakjian, E. J., Quinones, H., Jayasena, C. S., Goodrich, L. V., Johnson, J. E., et al. (2007). Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development, 134(24), 4405–4415.

    PubMed  CAS  Google Scholar 

  79. Koundakjian, E. J., Appler, J. L., & Goodrich, L. V. (2007). Auditory neurons make stereotyped wiring decisions before maturation of their targets. The Journal of Neuroscience, 27(51), 14078–14088.

    PubMed  CAS  Google Scholar 

  80. Yang, T., Kersigo, J., Jahan, I., Pan, N., & Fritzsch, B. (2011). The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hearing Research, 278(1–2), 21–33.

    PubMed  CAS  Google Scholar 

  81. Ma, Q., Anderson, D. J., & Fritzsch, B. (2000). Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. Journal of the Association for Research in Otolaryngology, 1(2), 129–143.

    PubMed  CAS  Google Scholar 

  82. Jahan, I., Pan, N., Kersigo, J., & Fritzsch, B. (2010). Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PloS One, 5(7), e11661.

    PubMed  Google Scholar 

  83. Huang, E. J., Liu, W., Fritzsch, B., Bianchi, L. M., Reichardt, L. F., & Xiang, M. (2001). Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development, 128(13), 2421–2432.

    PubMed  CAS  Google Scholar 

  84. Fritzsch, B. (2003). Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Research Bulletin, 60(5–6), 423–433.

    PubMed  Google Scholar 

  85. Karis, A., Pata, I., van Doorninck, J. H., Grosveld, F., de Zeeuw, C. I., de Caprona, D., et al. (2001). Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. The Journal of Comparative Neurology, 429(4), 615–630.

    PubMed  CAS  Google Scholar 

  86. Jahan, I., Kersigo, J., Pan, N., & Fritzsch, B. (2010). Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell and Tissue Research, 341(1), 95–110.

    PubMed  CAS  Google Scholar 

  87. Liu, M., Pereira, F. A., Price, S. D., Chu, M. J., Shope, C., Himes, D., et al. (2000). Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes & Development, 14(22), 2839–2854.

    CAS  Google Scholar 

  88. Zou, D., Erickson, C., Kim, E. H., Jin, D., Fritzsch, B., & Xu, P. X. (2008). Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear. Human Molecular Genetics, 17(21), 3340–3356.

    PubMed  CAS  Google Scholar 

  89. Dabdoub, A. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18396.

    PubMed  CAS  Google Scholar 

  90. Puligilla, C., Dabdoub, A., Brenowitz, S. D., & Kelley, M. W. (2010). Sox2 induces neuronal formation in the developing mammalian cochlea. The Journal of Neuroscience, 30(2), 714–722.

    PubMed  CAS  Google Scholar 

  91. Hafidi, A., Despres, G., & Romand, R. (1993). Ontogenesis of type II spiral ganglion neurons during development: peripherin immunohistochemistry. International Journal of Developmental Neuroscience, 11(4), 507–512.

    PubMed  CAS  Google Scholar 

  92. Berglund, A. M., & Ryugo, D. K. (1991). Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea. The Journal of Comparative Neurology, 306(3), 393–408.

    PubMed  CAS  Google Scholar 

  93. Fritzsch, B., Dillard, M., Lavado, A., Harvey, N. L., & Jahan, I. (2010). Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PloS One, 5(2), e9377.

    PubMed  Google Scholar 

  94. Lin, J., Ozeki, M., Javel, E., Zhao, Z., Pan, W., Schlentz, E., et al. (2003). Identification of gene expression profiles in rat ears with cDNA microarrays. Hearing Research, 175(1–2), 2–13.

    PubMed  CAS  Google Scholar 

  95. Chen, W. C., Xue, H. Z., Hsu, Y. L., Liu, Q., Patel, S., & Davis, R. L. (2011). Complex distribution patterns of voltage-gated calcium channel alpha-subunits in the spiral ganglion. Hearing Research, 278(1–2), 52–68.

    PubMed  CAS  Google Scholar 

  96. Nayagam, B. A., & Minter, R. L. (2011). A comparison of in vitro treatments for directing stem cells toward a sensory neural fate. American Journal of Otolaryngology, In press.

  97. Lin, J., Feng, L., Hamajima, Y., Komori, M., Burns, T. C., Fukudome, S., et al. (2009). Directed differentiation of mouse cochlear neural progenitors in vitro. American Journal of Physiology. Cell Physiology, 296(3), C441–C452.

    PubMed  CAS  Google Scholar 

  98. Chen, W., Johnson, S. L., Marcotti, W., Andrews, P. W., Moore, H. D., & Rivolta, M. N. (2009). Human fetal auditory stem cells can be expanded in vitro and differentiate into functional auditory neurons and hair cell-like cells. Stem Cells, 27(5), 1196–1204.

    PubMed  CAS  Google Scholar 

  99. Nayagam, B. A., Edge, A. S., & Dottori, M. (2011). Stem cell-derived sensory progenitors can innervate the early post-natal sensory epithelium in vitro. Proceedings of the Association for Research in Otolaryngology. Pg 8.

  100. Jiang, X., Gwye, Y., McKeown, S. J., Bronner-Fraser, M., Lutzko, C., & Lawlor, E. R. (2009). Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells and Development, 18(7), 1059–1070.

    PubMed  CAS  Google Scholar 

  101. Lee, G., Kim, H., Elkabetz, Y., Al Shamy, G., Panagiotakos, G., Barberi, T., et al. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnology, 25(12), 1468–1475.

    PubMed  CAS  Google Scholar 

  102. Pomp, O., Brokhman, I., Ziegler, L., Almog, M., Korngreen, A., Tavian, M., et al. (2008). PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Research, 1230, 50–60.

    PubMed  CAS  Google Scholar 

  103. Hotta, R., Pepdjonovic, L., Anderson, R. B., Zhang, D., Bergner, A. J., Leung, J., et al. (2009). Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells, 27(12), 2896–2905.

    PubMed  CAS  Google Scholar 

  104. Taylor, K. M., & Labonne, C. (2005). SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Developmental Cell, 9(5), 593–603.

    PubMed  CAS  Google Scholar 

  105. Saint-Germain, N., Lee, Y. H., Zhang, Y., Sargent, T. D., & Saint-Jeannet, J. P. (2004). Specification of the otic placode depends on Sox9 function in Xenopus. Development, 131(8), 1755–1763.

    PubMed  CAS  Google Scholar 

  106. Fedtsova, N. G., & Turner, E. E. (1995). Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mechanisms of Development, 53(3), 291–304.

    PubMed  CAS  Google Scholar 

  107. Huang, E. J., Zang, K., Schmidt, A., Saulys, A., Xiang, M., & Reichardt, L. F. (1999). POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression. Development, 126(13), 2869–2882.

    PubMed  CAS  Google Scholar 

  108. Silos-Santiago, I., Fagan, A. M., Garber, M., Fritzsch, B., & Barbacid, M. (1997). Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. The European Journal of Neuroscience, 9(10), 2045–2056.

    PubMed  CAS  Google Scholar 

  109. Henion, P. D., Garner, A. S., Large, T. H., & Weston, J. A. (1995). trkC-mediated NT-3 signaling is required for the early development of a subpopulation of neurogenic neural crest cells. Developmental Biology, 172(2), 602–613.

    PubMed  CAS  Google Scholar 

  110. Schecterson, L. C., & Bothwell, M. (1994). Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear. Hearing Research, 73(1), 92–100.

    PubMed  CAS  Google Scholar 

  111. Schimmang, T., Minichiello, L., Vazquez, E., San Jose, I., Giraldez, F., Klein, R., et al. (1995). Developing inner ear sensory neurons require TrkB and TrkC receptors for innervation of their peripheral targets. Development, 121(10), 3381–3391.

    PubMed  CAS  Google Scholar 

  112. Pirvola, U., Arumae, U., Moshnyakov, M., Palgi, J., Saarma, M., & Ylikoski, J. (1994). Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hearing Research, 75(1–2), 131–144.

    PubMed  CAS  Google Scholar 

  113. Minichiello, L., Piehl, F., Vazquez, E., Schimmang, T., Hokfelt, T., Represa, J., et al. (1995). Differential effects of combined trk receptor mutations on dorsal root ganglion and inner ear sensory neurons. Development, 121(12), 4067–4075.

    PubMed  CAS  Google Scholar 

  114. Fritzsch, B., Silos-Santiago, I., Smeyne, R., Fagan, A. M., & Barbacid, M. (1995). Reduction and loss of inner ear innervation in trkB and trkC receptor knockout mice: a whole mount DiI and scanning electron microscopic analysis. Auditory Neuroscience, 1, 401–417.

    Google Scholar 

  115. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    PubMed  CAS  Google Scholar 

  116. Liao, J., Cui, C., Chen, S., Ren, J., Chen, J., Gao, Y., et al. (2009). Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell, 4(1), 11–15.

    PubMed  CAS  Google Scholar 

  117. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.

    PubMed  CAS  Google Scholar 

  118. Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., et al. (2009). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4(1), 16–19.

    PubMed  Google Scholar 

  119. Jiang, P., Rushing, S. N., Kong, C. W., Fu, J., Lieu, D. K., Chan, C. W., et al. (2010). Electrophysiological properties of human induced pluripotent stem cells. American Journal of Physiology. Cell Physiology, 298(3), C486–C495.

    PubMed  CAS  Google Scholar 

  120. Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., et al. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 28(1), 31–40.

    PubMed  CAS  Google Scholar 

  121. Coleman, B., Backhouse, S., & Shepherd, R. (2007). A targeted delivery strategy for the transplantation of stem cells into Rosenthal’s canal. Proceedings of the Association for Research in Otolaryngology, 94.

  122. Sekiya, T., Holley, M. C., Kojima, K., Matsumoto, M., Helyer, R., & Ito, J. (2007). Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve. The European Journal of Neuroscience, 25(8), 2307–2318.

    PubMed  Google Scholar 

  123. Chen, W., Cacciabue-Rivolta, D. I., Moore, H. D., & Rivolta, M. N. (2007). The human fetal cochlea can be a source for auditory progenitors/stem cells isolation. Hearing Research, 233(1–2), 23–29.

    PubMed  Google Scholar 

  124. Nicholl, A. J., Kneebone, A., Davies, D., Cacciabue-Rivolta, D. I., Rivolta, M. N., Coffey, P., et al. (2005). Differentiation of an auditory neuronal cell line suitable for cell transplantation. The European Journal of Neuroscience, 22(2), 343–353.

    PubMed  CAS  Google Scholar 

  125. MacLaren, R. E., Pearson, R. A., MacNeil, A., Douglas, R. H., Salt, T. E., Akimoto, M., et al. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444(7116), 203–207.

    PubMed  CAS  Google Scholar 

  126. Backhouse, S., Coleman, B., & Shepherd, R. (2008). Surgical access to the mammalian cochlea for cell-based therapies. Experimental Neurology, 214(2), 193–200.

    PubMed  Google Scholar 

  127. Ryugo, D. K., Rosenbaum, B. T., Kim, P. J., Niparko, J. K., & Saada, A. A. (1998). Single unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus. The Journal of Comparative Neurology, 397(4), 532–548.

    PubMed  CAS  Google Scholar 

  128. Ryugo, D. K., Kretzmer, E. A., & Niparko, J. K. (2005). Restoration of auditory nerve synapses in cats by cochlear implants. Science, 310(5753), 1490–1492.

    PubMed  CAS  Google Scholar 

  129. Ryugo, D. K., Baker, C. A., Montey, K. L., Chang, L. Y., Coco, A., Fallon, J. B., et al. (2010). Synaptic plasticity after chemical deafening and electrical stimulation of the auditory nerve in cats. The Journal of Comparative Neurology, 518(7), 1046–1063.

    PubMed  CAS  Google Scholar 

  130. Fallon, J. B., Irvine, D. R., & Shepherd, R. K. (2009). Cochlear implant use following neonatal deafness influences the cochleotopic organization of the primary auditory cortex in cats. The Journal of Comparative Neurology, 512(1), 101–114.

    PubMed  Google Scholar 

  131. Beisel, K., Hansen, L., Soukup, G., & Fritzsch, B. (2008). Regenerating cochlear hair cells: quo vadis stem cell. Cell and Tissue Research, 333(3), 373–379.

    PubMed  Google Scholar 

  132. Boer, J. C., Carney, K. E., & van der Zee, S. (2009). Differentiation of mouse embryonic stem cells into spiral ganglion neurons: a therapeutic approach to deafness. The Journal of Neuroscience, 29(18), 5711–5712.

    PubMed  CAS  Google Scholar 

  133. Erdo, F., Buhrle, C., Blunk, J., Hoehn, M., Xia, Y., Fleischmann, B., et al. (2003). Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 23(7), 780–785.

    PubMed  Google Scholar 

  134. Ulfendahl, M., Hu, Z., Olivius, P., Duan, M., & Wei, D. (2007). A cell therapy approach to substitute neural elements in the inner ear. Physiology and Behavior, 92(1–2), 75–79.

    PubMed  CAS  Google Scholar 

  135. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855.

    PubMed  CAS  Google Scholar 

  136. Cantz, T., & Martin, U. (2010). Induced pluripotent stem cells: Characteristics and perspectives. In C. Kasper, M. van Griensven, & R. Pörtner (Eds.), Bioreactor systems for tissue engineering II (pp. 107–126). Berlin: Springer.

    Google Scholar 

  137. Yamanaka, S. (2009). A fresh look at iPS cells. Cell, 137(1), 13–17.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their thanks to Dr Karina Needham and to the Reviewers, whose constructive feedback greatly improved this manuscript. We acknowledge generous financial support from the National Health and Medical Research Council of Australia, The Garnett Passe and Rodney Williams Memorial Foundation, The Royal Victorian Eye and Ear Hospital, and the Freidrich Ataxia Research Association (USA and Australasia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryony A Nayagam.

Additional information

The manuscript has been prepared in accordance with the Stem Cell Reviews and Reports Guidelines for Authors, and we confirm that the manuscript poses no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunewardene, N., Dottori, M. & Nayagam, B.A. The Convergence of Cochlear Implantation with Induced Pluripotent Stem Cell Therapy. Stem Cell Rev and Rep 8, 741–754 (2012). https://doi.org/10.1007/s12015-011-9320-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9320-0

Keywords

Navigation