Skip to main content

Advertisement

Log in

Molecular characterization of the ER stress-inducible factor CRELD2

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Previously, we found by constructing various luciferase reporters that a well-conserved ATF6-binding element in the CRELD2 promoter is activated by transient ATF6 overexpression. In this study, we established ATF6-deficient and ATF4-deficient cell lines to analyze CRELD2 mRNA and protein expression together with that of other ER stress-inducible factors. Our results showed that ATF6 deficiency markedly suppressed tunicamycin (Tm)-induced expression of unglycosylated CRELD2. This reduction reflected a decrease in the CRELD2 transcription level. On the other hand, a putative ATF4-binding site in the mouse CRELD2 promoter did not respond to Tm stimulation, but ATF4 loss resulted in reductions in CRELD2 mRNA and protein expression, accompanied by a decrease in Tm-induced ATF6 expression. In contrast, transient suppression of GADD34, an ATF4 downstream factor, suppressed Tm-induced CRELD2 protein expression without a decrease in ATF6 protein expression. Furthermore, we investigated the association of CRELD2 with a well-known ERAD substrate, namely, an α1-antitripsin truncation mutant, NHK, by generating various CRELD2 and NHK constructs. Coimmunoprecipitation of these proteins was observed only when the cysteine in the CXXC motif on the N-terminal side of CRELD2 was replaced with alanine, and the interaction between the two was found to be disulfide bond-independent. Taken together, these findings indicate that CRELD2 expression is regulated by multiple factors via transcriptional and posttranscriptional mechanisms. In addition, the N-terminal structure of CRELD2, including the CXXC motif, was suggested to play a role in the association of the target proteins. In the future, the identification and characterization of factors interacting with CRELD2 will be useful for understanding protein homeostasis under various ER stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATF4:

activating transcription factor 4

ATF6:

activating transcription factor 6

CREB3:

cAMP response element binding protein 3

CREB3L2:

cAMP response element binding protein 3-like 2

CRELD2:

cysteine-rich with EGF-like domains 2

CRISPR/Cas9:

clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins 9

ER:

endoplasmic reticulum

ERAD:

ER-associated degradation

ERSE:

ER stress response element

GADD34:

growth arrest and DNA-damage-inducible protein 34

GADD153:

growth arrest and DNA-damage-inducible protein 153

G3PDH:

glyceraldehyde 3-phosphate dehydrogenase

GRP78:

78 kDa glucose-regulated protein

GRP94:

94 kDa glucose-regulated protein

Herp:

homocysteine-induced ER protein

RT-PCR:

reverse transcription polymerase chain reaction

SEL1L:

suppressor/enhancer of lin-12-like

References

  1. Hendershot, L. M., Buck, T. M., & Brodsky, J. L. (2023). The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. Journal of Molecular Biology, 22, 168418.

    Article  Google Scholar 

  2. Han, J., & Kaufman, R. J. (2016). The role of ER stress in lipid metabolism and lipotoxicity. Journal of Lipid Research, 57, 1329–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Michalak, M., Robert Parker, J. M., & Opas, M. (2002). Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium, 32, 269–278.

    Article  CAS  PubMed  Google Scholar 

  4. Haze, K., Yoshida, H., Yanagi, H., Yura, T., & K Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular Biology of the Cell, 10, 3787–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harding, H. P., Zhang, Y., & Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397, 271–274.

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida, H., Matsui, T., Yamamoto, Y., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107, 881–891.

    Article  CAS  PubMed  Google Scholar 

  7. Oh-hashi, K., Koga, H., Ikeda, S., Shimada, K., Hirata, Y., & Kiuchi, K. (2009). CRELD2 is a novel endoplasmic reticulum stress-inducible gene. Biochemical and Biophysical Research Communications, 387, 504–510.

    Article  CAS  PubMed  Google Scholar 

  8. Jariwala, U., Prescott, J., Jia, L., Barski, A., Pregizer, S., Cogan, J. P., Arasheben, A., Tilley, W. D., Scher, H. I., Gerald, W. L., Buchanan, G., Coetzee, G. A., & Frenkel, B. (2007). Identification of novel androgen receptor target genes in prostate cancer. Molecular Cancer, 6, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry, 273, 33741–33749.

    Article  CAS  PubMed  Google Scholar 

  10. Oh-hashi, K., Koga, H., Ikeda, S., Shimada, K., Hirata, Y., & Kiuchi, K. (2010). Role of an ER stress response element in regulating the bidirectional promoter of the mouse CRELD2 - ALG12 gene pair. BMC Genomics, 11, 664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boyle, S. T., Poltavets, V., Kular, J., Pyne, N. T., Sandow, J. J., Lewis, A. C., Murphy, K. J., Kolesnikoff, N., Moretti, P. A. B., Tea, M. N., Tergaonkar, V., Timpson, P., Pitson, S. M., Webb, A. I., Whitfield, R. J., Lopez, A. F., Kochetkova, M., & Samuel, M. S. (2020). ROCK-mediated selective activation of PERK signalling causes fibroblast reprogramming and tumour progression through a CRELD2-dependent mechanism. Nature Cell Biology, 22, 882–895.

    Article  CAS  PubMed  Google Scholar 

  12. Novoa, I., Zeng, H., Harding, H. P., & Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. Journal of Cell Biology, 153, 1011–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oh-hashi, K., Kunieda, R., Hirata, Y., & Kiuchi, K. (2011). Biosynthesis and secretion of mouse cysteine-rich with EGF-like domains 2. FEBS Letters, 585, 2481–2487.

    Article  CAS  PubMed  Google Scholar 

  14. Ortiz, J. A., Castillo, M., del Toro, E. D., Mulet, J., Gerber, S., Valor, L. M., Sala, S., Sala, F., Gutiérrez, L. M., & Criado, M. (2005). The cysteine-rich with EGF-like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits. Journal of Neurochemistry, 95, 1585–1596.

    Article  CAS  PubMed  Google Scholar 

  15. Hartley, C. L., Edwards, S., Mullan, L., Bell, P. A., Fresquet, M., Boot-Handford, R. P., & Briggs, M. D. (2013). Armet/Manf and Creld2 are components of a specialized ER stress response provoked by inappropriate formation of disulphide bonds: implications for genetic skeletal diseases. Human Molecular Genetics, 22, 5262–5275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, Y., Park, S. J., Manson, S. R., Molina, C. A., Kidd, K., Thiessen-Philbrook, H., Perry, R. J., Liapis, H., Kmoch, S., Parikh, C. R., Bleyer, A. J., & Chen, Y. M. (2017). Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease. JCI Insight, 2, e92896.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sifers, R. N., Brashears-Macatee, S., Kidd, V. J., Muensch, H., & Woo, S. L. (1988). A frameshift mutation results in a truncated alpha 1-antitrypsin that is retained within the rough endoplasmic reticulum. Journal of Biological Chemistry, 263, 7330–7335.

    Article  CAS  PubMed  Google Scholar 

  18. Iida, Y., Fujimori, T., Okawa, K., Nagata, K., Wada, I., & Hosokawa, N. (2011). SEL1L protein critically determines the stability of the HRD1-SEL1L endoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. Journal of Biological Chemistry, 286, 16929–16939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oh-hashi, K., Fujimura, K., Norisada, J., & Hirata, Y. (2018). Expression analysis and functional characterization of the mouse cysteine-rich with EGF-like domains 2. Scientific Reports, 8, 12236.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Norisada, J., Fujimura, K., Amaya, F., Kohno, H., Hirata, Y., & Oh-Hashi, K. (2018). Application of NanoBiT for Monitoring Dimerization of the Null Hong Kong Variant of α-1-Antitrypsin, NHK, in Living Cells. Molecular Biotechnology, 60, 539–549.

    Article  CAS  PubMed  Google Scholar 

  21. Oh-hashi, K., Sugiura, N., Amaya, F., Isobe, K. I., & Hirata, Y. (2018). Functional validation of ATF4 and GADD34 in Neuro2a cells by CRISPR/Cas9-mediated genome editing. Molecular and Cellular Biochemistry, 65, 65–75.

    Article  Google Scholar 

  22. Murase, R., Yamamoto, A., Hirata, Y., & Oh-Hashi, K. (2022). Expression analysis and functional characterization of thioredoxin domain-containing protein 11. Molecular Biology Reports, 49, 10541–10556.

    Article  CAS  PubMed  Google Scholar 

  23. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, C., Dudenhausen, E., Chen, H., Pan, Y. X., Gjymishka, A., & Kilberg, M. S. (2005). Amino-acid limitation induces transcription from the human C/EBPbeta gene via an enhancer activity located downstream of the protein coding sequence. Biochemical Journal, 391, 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, Y., & Hendershot, L. M. (2003). Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. Journal of Biological Chemistry, 278, 34864–34873.

    Article  CAS  PubMed  Google Scholar 

  26. Oh-hashi, K., Yamamoto, A., Murase, R., & Hirata, Y. (2021). Comparative Analysis of CREB3 and CREB3L2 Protein Expression in HEK293 Cells. International Journal of Molecular Sciences, 22, 2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nadanaka, S., Okada, T., Yoshida, H., & Mori, K. (2007). Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Molecular and Cellular Biology, 27, 1027–1043.

    Article  CAS  PubMed  Google Scholar 

  28. Parker, R., Phan, T., Baumeister, P., Roy, B., Cheriyath, V., Roy, A. L., & Lee, A. S. (2001). Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Molecular and Cellular Biology, 21, 3220–3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mizobuchi, N., Hoseki, J., Kubota, H., Toyokuni, S., Nozaki, J., Naitoh, M., Koizumi, A., & Nagata, K. (2007). ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Structure Function, 32, 41–50.

    Article  CAS  PubMed  Google Scholar 

  30. Ma, Y., & Hendershot, L. M. (2004). Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways. Journal of Biological Chemistry, 279, 13792–13799.

    Article  CAS  PubMed  Google Scholar 

  31. Ma, Y., Brewer, J. W., Diehl, J. A., & Hendershot, L. M. (2002). Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. Journal of Molecular Biology, 318, 1351–1365.

    Article  CAS  PubMed  Google Scholar 

  32. Teske, B. F., Wek, S. A., Bunpo, P., Cundiff, J. K., McClintick, J. N., Anthony, T. G., & Wek, R. C. (2011). The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Molecular Biology of the Cell, 22, 4390–4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kern, P., Balzer, N. R., Blank, N., Cygon, C., Wunderling, K., Bender, F., Frolov, A., Sowa, J. P., Bonaguro, L., Ulas, T., Homrich, M., Kiermaier, E., Thiele, C., Schultze, J. L., Canbay, A., Bauer, R., & Mass, E. (2021). Creld2 function during unfolded protein response is essential for liver metabolism homeostasis. The FASEB Journal, 35, e21939.

    Article  CAS  PubMed  Google Scholar 

  34. Siegert, A. M., García Díaz-Barriga, G., Esteve-Codina, A., Navas-Madroñal, M., Gorbenko Del Blanco, D., Alberch, J., Heath, S., & Galán, M. (1865). G Egea. A FBN1 3′UTR mutation variant is associated with endoplasmic reticulum stress in aortic aneurysm in Marfan syndrome. Biochimica et Biophysica Acta Molecular Basis, 2019, 107–114.

    Google Scholar 

  35. Zhou, P., Wu, C., Ma, C., Luo, T., Yuan, J., Zhou, P., & Wei, Z. (2023). Identification of an endoplasmic reticulum stress-related gene signature to predict prognosis and potential drugs of uterine corpus endometrial cancer. Mathematical Biosciences and Engineering, 20, 4018–4039.

    Article  PubMed  Google Scholar 

  36. Liu, G. M., Zeng, H. D., Zhang, C. Y., & Xu, J. W. (2019). Key genes associated with diabetes mellitus and hepatocellular carcinoma. Pathology - Research and Practice, 215, 152510.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, X., & Cubillos-Ruiz, J. R. (2021). Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nature Reviews Cancer, 21, 71–88.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, M. F., Chang, C. H., Yang, L. Y., Hsieh, P. H., Shih, H. N., Ueng, S. W. N., & Chang, Y. (2019). Synovial fluid interleukin-16, interleukin-18, and CRELD2 as novel biomarkers of prosthetic joint infections. Bone and Joint Research, 8, 179–188.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ameri, K., & Harris, A. L. (2008). Activating transcription factor 4. The International Journal of Biochemistry & Cell Biology, 40, 14–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the OGAWA Science and Technology Foundation, Koshiyama Science and Technology Foundation and Grants-in-aid from the Japan Society for the Promotion of Science (JSPS, Japan, KAKENHI, Nos. 19H04030 and 20K21751 to K.O.). This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. GrantA112 to M.K.). We are grateful to Dr. George Church and Dr. Nobuko Hosokawa for providing the hCas9 and human NHK genes, respectively.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and K.O. performed the experiments; S.H. and K.O. confirmed the results; and M.K. and K.O. designed and prepared the manuscript.

Corresponding author

Correspondence to Kentaro Oh-hashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinaga, S., Kandeel, M. & Oh-hashi, K. Molecular characterization of the ER stress-inducible factor CRELD2. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01300-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01300-1

Keywords

Navigation