Skip to main content

Advertisement

Log in

Application of NanoBiT for Monitoring Dimerization of the Null Hong Kong Variant of α-1-Antitrypsin, NHK, in Living Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we investigated expression and dimerization of an ER-associated degradation (ERAD) substrate, a null Hong Kong variant of α-1-antitrypsin (NHK) using immunoblotting assay and a novel NanoLuc complementary reporter system called the NanoBiT (NB) assay. This NB-tagged NHK made it possible to monitor the intra- and extracellular status of NHK in living cells. The values for this NB assay fluctuated in response to distinct pharmacological stimuli and co-transfection of several ERAD-related factors. We then focused on mesencephalic astrocyte-derived neurotrophic factor (MANF), an unclarified ATF6/IRE1-downstream target, and established MANF-deficient Neuro2a (N2a) cells using CRISPR/Cas9 system. MANF-deficient N2a significantly elevated OS-9 protein after tunicamycin treatment; however, no specific differences in intra- and extracellular status of NHK protein were observed between wild-type and MANF-deficient cells. Taken together, intrinsic MANF in N2a cells is not strongly associated with the accumulation and clearance of unfolded proteins within the ER under current condition, but this novel NB assay is a useful approach for characterizing the protein status including ERAD substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ellgaard, L., & Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nature Reviews Molecular Cell Biology, 4, 181–191.

    Article  CAS  PubMed  Google Scholar 

  2. Vembar, S. S., & Brodsky, J. L. (2008). One step at a time: Endoplasmic reticulum-associated degradation. Nature Reviews Molecular Cell Biology, 9, 944–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schröder, M., & Kaufman, R. J. (2005). ER stress and unfolded protein response. Mutation Research, 569, 29–63.

    Article  CAS  PubMed  Google Scholar 

  4. Harding, H. P., Zhang, Y., & Ron, D. (1997). Protein translation and folding are coupled by an endoplasmic-reticulum resident kinase. Nature, 397, 271–274.

    Article  CAS  Google Scholar 

  5. Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., et al. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 415, 92–96.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, C., Johansen, F. E., & Prywes, R. (1997). Interaction of ATF6 and serum response factor. Molecular and Cellular Biology, 17, 4957–4966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haze, K., Yoshida, H., Yanagi, H., Yura, T., & Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular Biology of the Cell, 10, 3787–3799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoseki, J., Ushioda, R., & Nagata, K. (2010). Mechanism and components of endoplasmic reticulum associated degradation. Journal of Biochemistry, 147, 19–25.

    Article  CAS  PubMed  Google Scholar 

  9. Zhog, Y., Shen, H., Wang, Y., Yang, Y., Yang, P., & Fang, S. (2015). Identification of ERAD components essential for dislocation of the null Hong Kong variant of α-1-antitrypsin (NHK). Biochemical and Biophysical Research Communications, 458, 424–428.

    Article  CAS  Google Scholar 

  10. Christianson, J. C., Shaler, T. A., Tyler, R. E., & Kopito, R. R. (2008). OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nature Cell Biology, 10, 272–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hosokawa, N., Kamiya, Y., Kamiya, D., Kato, K., & Nagata, K., & Human (2009). OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. Journal of Biological Chemistry, 284, 17061–17068.

    Article  CAS  PubMed  Google Scholar 

  12. Hosokawa, N., Wada, I., Nagasawa, K., Moriyama, T., Okawa, K., & Nagata, K. (2008). Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. Journal of Biological Chemistry, 283, 20914–20924.

    Article  CAS  PubMed  Google Scholar 

  13. Kny M, Standera, S., Hartmann-Petesen, R., Kloetzel, P.M., Seeger, M. (2011). Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner. Journal of Biological Chemistry, 286, 5151–5156.

    Article  CAS  PubMed  Google Scholar 

  14. Shridhar, R., Shridhar, V., Rivard, S., Siegfried, J. M., Pietraszkiewicz, H., Ensley, J., et al. (1996). Mutations in the arginine-rich protein gene, in lung, breast, and prostate cancers, and in squamous cell carcinoma of the head and neck. Cancer Research, 56, 5576–5578.

    CAS  PubMed  Google Scholar 

  15. Evron, E., Cairns, P., Halachmi, N., Ahrendt, S. A., Reed, A. L., & Sidransky, D. (1997). Normal polymorphism in the incomplete trinucleotide repeat of the arginine-rich protein gene. Cancer Research, 57, 2888–2889.

    CAS  PubMed  Google Scholar 

  16. Petrova, P., Raibekas, A., Pevsner, J., Vigo, N., Anafi, M., Moore, M. K., et al. (2003). MANF: A new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. Journal of Molecular Neuroscience, 20, 173–188.

    Article  CAS  PubMed  Google Scholar 

  17. Voutilainen, M. H., Back, S., Porsti, E., Toppinen, L., Lindgren, L., Lindholm, P., et al. (2009). Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. Journal of Neuroscience, 29, 9651–9659.

    Article  CAS  PubMed  Google Scholar 

  18. Apostolou, A., Shen, Y., Liang, Y., Luo, J., & Fang, S. (2008). Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Experimental Cell Research, 314, 2454–2467.

    Article  CAS  PubMed  Google Scholar 

  19. Glembotski, C. C., Thuerauf, D. J., Huang, C., Vekich, J. A., Gottlieb, R. A., & Doroudgar, S. (2012). Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. Journal of Biological Chemistry, 287, 25893–25904.

    Article  CAS  PubMed  Google Scholar 

  20. Yu, Y. Q., Liu, L. C., Wang, F. C., Liang, Y., Cha, D. Q., Zhang, J. J., et al. (2010). Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. Journal of Cerebral Blood Flow Metabolism, 30, 79–91.

    Article  CAS  PubMed  Google Scholar 

  21. Lindahl, M., Danilova, T., Palm, E., Lindholm, P., Võikar, V., Hakonen, E., et al. (2014). MANF is indispensable for the proliferation and survival of pancreatic β cells. Cell Reports, 7, 366–375.

    Article  CAS  PubMed  Google Scholar 

  22. Lindholm, P., & Saarma, M. (2010). Novel CDNF/MANF family of neurotrophic factors. Devlopmental Neurobiology, 70, 360–371.

    CAS  Google Scholar 

  23. Lee, A. H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology, 23, 7448–7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mizobuchi, N., Hoseki, J., Kubota, H., Toyokuni, S., Nozaki, J., Naitoh, M., et al. (2007). ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Structure and Function, 32, 41–50.

    Article  CAS  PubMed  Google Scholar 

  25. Oh-hashi, K., Hirata, Y., & Kiuchi, K. (2013). Transcriptional regulation of mouse mesencephalic astrocyte-derived neurotrophic factor in Neuro2a cells. Cellular & Molecular Biology Letters, 18, 398–415.

    CAS  Google Scholar 

  26. Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., & Nagata, K. (2001). A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Reports, 2, 415–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ushioda, R., Hoseki, J., Araki, K., Jansen, G., Thomas, D. Y., & Nagata, K. (2008). ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science, 321, 569–572.

    Article  CAS  PubMed  Google Scholar 

  28. Aridor, M., Fish, K. N., Bannykh, S., Weissman, J., Roberts, T. H., Lippincott-Schwartz, J., et al. (2001). The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. Journal Cell Biology, 152, 213–229.

    Article  CAS  Google Scholar 

  29. Bernasconi, R., Petel, T., Luban, J., & Molinari, M. (2008). A dual task for the Xbp1-responsive OS-9 variants in the mammalian endoplasmic reticulum. Journal of Biological Chemistry, 283, 16446–16454.

    Article  CAS  PubMed  Google Scholar 

  30. Sai, X., Kokame, K., Shiraishi, H., Kawamura, Y., Miyata, T., Yanagisawa, K., et al. (2003). The ubiquitin-like domain of Herp is involved in Herp degradation, but not necessary for its enhancement of amyloid L-protein generation. FEBS Letters, 553, 151–156.

    Article  CAS  PubMed  Google Scholar 

  31. Esvelt, K. M., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andrew, S. D., Marie, K. S., Mary, P. H., Kris, Z., Paul, O., Thomas, H. L., et al. (2016). NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chemical Biology, 11, 400–408.

    Article  CAS  Google Scholar 

  33. Oh-hashi, K., Hirata, Y., & Kiuchi, K. (2016). SOD1 dimerization monitoring using a novel split NanoLuc, NanoBit. Cell Biochemistry Function, 34, 497–504.

    Article  CAS  PubMed  Google Scholar 

  34. Hosokawa, N., Tremblay, L. O., You, Z., Herscovics, A., Wada, I., & Nagata, K. (2003). Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. Journal of Biological Chemistry, 278, 26287–26294.

    Article  CAS  PubMed  Google Scholar 

  35. Norisada, J., Hirata, Y., Amaya, F., Kiuchi, K., & Oh-hashi, K. (2016). A comparative analysis of the molecular features of MANF and CDNF. PLoS ONE, 11, e0146923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwinn, M. K., Machleidt, T., Zimmerman, K., Eggers, C. T., Dixon, A. S., Hurst, R., et al. (2018). CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chemical Biology, 13, 467–474.

    Article  CAS  PubMed  Google Scholar 

  37. Oh-hashi, K., Sugiura, N., Amaya, F., Isobe, K. I., & Hirata, Y. (2018). Functional validation of ATF4 and GADD34 in Neuro2a cells by CRISPR/Cas9-mediated genome editing. Molecular and Cellular Biochemistry, 440, 65–75.

    Article  CAS  PubMed  Google Scholar 

  38. Okuda-Shimizu, Y., & Hendershot, L. M. (2007). Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. Molecular Cell, 28, 544–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhong, X., Shen, Y., Ballar, P., Apostolou, A., Agami, R., & Fang, S. (2004). AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. Journal of Biological Chemistry, 279, 45676–45684.

    Article  CAS  PubMed  Google Scholar 

  40. Fu, L., & Sztul, E. (2003). Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator. Journal of Cell Biology, 160, 157–163.

    Article  CAS  PubMed  Google Scholar 

  41. Hosokawa, N., Wada, I., Natsuka, Y., & Nagata, K. (2006). EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1-antitrypsin. Genes Cell, 11, 465–476.

    Article  CAS  Google Scholar 

  42. Christianson, J. C., Olzmann, J. A., Shaler, T. A., Sowa, M. E., Bennett, E. J., Richter, C. M., et al. (2012). Defining human ERAD networks through an integrative mapping strategy. Nature Cell Biology, 14, 93–105.

    Article  CAS  Google Scholar 

  43. Horimoto, S., Ninagawa, S., Okada, T., Koba, H., Sugimoto, T., Kamiya, Y., Kato, K., Takeda, S., & Mori, K. (2013). The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L protein. Journal of Biological Chemistry, 288, 31517–31527.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., & Mori, K. (2003). A time-dependent phase shift in the mammalian unfolded protein response. Developmental Cell, 4, 265–271.

    Article  CAS  PubMed  Google Scholar 

  45. Okada, T., Yoshida, H., Akazawa, R., Negishi, M., & Mori, K. (2002). Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochemical Journal, 366, 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sugimoto, T., Ninagawa, S., Yamano, S., Ishikawa, T., Okada, T., Takeda, S., et al. (2017). SEL1L-dependent substrates require derlin2/3 and herp1/2 for endoplasmic reticulum-associated degradation. Cell Structure and Function, 42, 81–94.

    Article  PubMed  Google Scholar 

  47. Sun, S., Shi, G., Sha, H., Ji, Y., Han, X., Shu, X., et al. (2015). IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nature Cell Biology, 17, 1546–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Nobuko Hosokawa for the critical reading of this manuscript. We are grateful to Dr. Wei Liu and Dr. Jennifer Lippincott-Schwartz, Dr. Maurizio Molinari, Dr. Nobuko Hosokawa, Dr. Kazuhiro Nagata and Promega Corporation for providing the HA-tagged Sar1 (H79G), OS-9 and NHK genes and NB assay system, respectively. This work is, in part, supported by Research Fellowships for Young Scientists (to J.N.), Grant-in-Aid for Challenging Exploratory Research (No. 17K19901 to K.O.), Grant-in-Aid for Challenging Exploratory Research (No. 26670692, to F.A.), and the OGAWA Science and Technology Foundation (to K.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Oh-hashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norisada, J., Fujimura, K., Amaya, F. et al. Application of NanoBiT for Monitoring Dimerization of the Null Hong Kong Variant of α-1-Antitrypsin, NHK, in Living Cells. Mol Biotechnol 60, 539–549 (2018). https://doi.org/10.1007/s12033-018-0092-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0092-5

Keywords

Navigation